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Abstract 

Background:  The history of gene families—which are equivalent to event-labeled gene trees—can be reconstructed 
from empirically estimated evolutionary event-relations containing pairs of orthologous, paralogous or xenologous 
genes. The question then arises as whether inferred event-labeled gene trees are biologically feasible, that is, if there 
is a possible true history that would explain a given gene tree. In practice, this problem is boiled down to finding a 
reconciliation map—also known as DTL-scenario—between the event-labeled gene trees and a (possibly unknown) 
species tree.

Results:  In this contribution, we first characterize whether there is a valid reconciliation map for binary event-labeled 
gene trees T that contain speciation, duplication and horizontal gene transfer events and some unknown species tree 
S in terms of “informative” triples that are displayed in T and provide information of the topology of S. These informa-
tive triples are used to infer the unknown species tree S for T. We obtain a similar result for non-binary gene trees. To 
this end, however, the reconciliation map needs to be further restricted. We provide a polynomial-time algorithm to 
decide whether there is a species tree for a given event-labeled gene tree, and in the positive case, to construct the 
species tree and the respective (restricted) reconciliation map. However, informative triples as well as DTL-scenarios 
have their limitations when they are used to explain the biological feasibility of gene trees. While reconciliation maps 
imply biological feasibility, we show that the converse is not true in general. Moreover, we show that informative 
triples neither provide enough information to characterize “relaxed” DTL-scenarios nor non-restricted reconciliation 
maps for non-binary biologically feasible gene trees.
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Background
The evolutionary history of genes is intimately linked 
with the history of the species in which they reside. Genes 
are passed from generation to generation to the offspring. 
Some of those genes are frequently duplicated, mutate, 
or get lost—a mechanism that also ensures that new spe-
cies can evolve. In particular, genes that share a common 
origin (homologs) can be classified into the type of their 
“evolutionary event relationship”, namely orthologs, paral-
ogs and xenologs [1, 2]. Two homologous genes are orthol-
ogous if at their most recent point of origin the ancestral 
gene is transmitted to two daughter lineages; a speciation 

event happened. They are paralogous if the ancestor gene 
at their most recent point of origin was duplicated within 
a single ancestral genome; a duplication event happened. 
Horizontal gene transfer (HGT) refers to the transfer of 
genes between organisms in a manner other than tradi-
tional reproduction and across different species and yield 
so-called xenologs. In contrast to orthology and paral-
ogy, the definition of xenology is less well established and 
by no means consistent in the biological literature. One 
definition stipulates that two genes are xenologs if their 
history since their common ancestor involves horizontal 
transfer of at least one of them [2, 3]. The mathematical 
framework for evolutionary event-relations relations in 
terms of symbolic ultrametrics, cographs and two-struc-
tures [4–7], on the other hand, naturally accommodates 
more than two types of events associated with the inter-
nal nodes of the gene tree. We follow the notion in [1, 6] 
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and call two genes xenologous, whenever their least com-
mon ancestor was a HGT event.

The knowledge of evolutionary event relations such as 
orthology, paralogy or xenology is of fundamental impor-
tance in many fields of mathematical and computational 
biology, including the reconstruction of evolutionary 
relationships across species [8–12], as well as functional 
genomics and gene organization in species [13–15]. The 
type of event relationship is determined by the true his-
tory of the genes and species. However, events of the past 
cannot be observed directly and hence, must be inferred 
from the genomic data available today. Tree-reconcilia-
tion methods are widely studied in the literature [9, 16–
31] and provide one way to address this problem. Here, a 
gene tree is mapped into a species tree such that certain 
optimization criteria are fulfilled. This mapping, eventu-
ally, identifies inner vertices of the gene tree as a duplica-
tion, speciation or HGT. These methods usually require a 
gene and species tree as input. In most practical applica-
tions, however, neither the gene tree nor the species tree 
can be determined unambiguously. Intriguingly, there are 
methods to infer orthologs [14, 32–40] or to detect HGT 
[41–45] without the need to construct gene or species 
trees. Given empirical estimated event-relations one can 
infer the history of gene families which are equivalent to 
event-labeled gene trees [5, 6, 11, 46–48].

The crucial point is the following important result: For 
(tree-free estimated) event-relations there is an event-
labeled gene tree that represents this estimate if and only 
if the respective event-relations are directed cographs [5, 
6]. Usually, estimated event-relations violate this condi-
tion and must, therefore, be corrected [33, 36, 46–51]. 
Such corrected event-relations can, in most cases, be rep-
resented by an event-labeled gene tree. However, these 
trees can still be error-prone in the sense that there is no 
species tree on which they can evolve. The latter strongly 
depends on the applied correction method, the presence 
or absence of HGT events and, in particular, the theoreti-
cal model that is used to define that “a gene tree evolves 
along a species tree” (reconciliation map). The method 
ParaPhylo [11] already uses many of the latter men-
tioned ideas for the reconstruction of species trees and 
event-labeled gene trees without HGT-events. Para-
Phylo is based on the knowledge of estimated orthology 
relations which are cleaned up to the closest cograph and, 
afterwards, corrected to obtain biologically feasible gene 
trees.

For an event-labeled gene tree to be biologically fea-
sible there must be a putative “true” history that can 
explain the inferred gene tree. However, in practice it is 
not possible to observe the entire evolutionary history as, 
e.g. gene losses eradicate the entire information on parts 
of the history. Therefore, the problem of determining 

whether an event-labeled gene tree is biologically feasi-
ble is reduced to the problem of finding a valid reconcili-
ation map, also known as DTL-scenario [29, 31], between 
the event-labeled gene trees and an arbitrary (possibly 
unknown) species tree. DTL-scenarios and its vari-
ants have been extensively studied [22, 29, 52–54] and 
have also applications in the context of the host-parasite 
cophylogeny problem [55–62].

In this contribution, we assume that we have a given 
event-labeled gene tree T and wish to answer the ques-
tion: Is T biologically feasible and how much information 
about the unknown species tree S and the reconciliation 
between T and S is already contained in the gene tree T?

To this end, we first provide a mathematical defini-
tion of the term “biologically feasible” and two types of 
reconciliation maps: DTL-scenarios (as used in, e.g. [29, 
31, 63]) and a restricted version (as used in, e.g. [12, 48]). 
Given the event-labeled gene-trees, it is possible to derive 
“informative” triples that are displayed in the gene tree T 
and provide information on the topology of the species 
tree S. In particular, we prove that consistency of inform-
ative triple sets characterize whether there are DTL-
scenarios and restricted maps for binary and non-binary 
gene trees, respectively. The latter generalizes results 
established for binary gene trees that do not contain 
HGT-events by Hernandez et  al. [10]. Furthermore, we 
provide a polynomial-time algorithm to decide whether 
there is a species tree for a given event-labeled gene tree 
and, in the positive case, to construct the species tree and 
a respective (restricted) reconciliation map.

In addition to the established results, we discuss limi-
tations of reconciliation maps to explain biological feasi-
bility of gene trees. While any (restricted) reconciliation 
map gives an idea of a putative true history that can 
explain the given gene tree, the converse is in general 
not true. We provide simple examples that show that not 
all biologically feasible gene trees can be explained by 
(restricted) DTL-scenarios. This immediately raises the 
question whether generalization of reconciliation maps 
might be used to explain biological feasibility. We shortly 
discuss a mild generalization, so-called “relaxed” rec-
onciliation maps. However, as it turns out such general 
maps cannot be characterized by informative triples. We 
close this contribution with a couple of open problems.

Preliminaries
A rooted tree T = (V ,E) (on L) is an acyclic connected 
simple graph with leaf set L ⊆ V , set of edges E, and set 
of interior vertices V 0 = V \ L such that there is one dis-
tinguished vertex ρT ∈ V , called the root of T.

A vertex v ∈ V  is called a descendant of u ∈ V , v �T u, 
and u is an ancestor of v, u �T v, if u lies on the path from 
ρT to v. As usual, we write v ≺T u and u ≻T v to mean 
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v �T u and u �= v. If u �T v or v �T u then u and v are 
comparable and otherwise, incomparable. For x ∈ V , we 
write LT (x) := {y ∈ L | y � x} for the set of leaves in the 
subtree T(x) of T rooted in x.

Remark 1  It will be convenient to use a notation for 
edges e that implies which of the vertex in e is closer to 
the root. Thus, the notation for edges (u,  v) of a tree is 
always chosen such that u ≻T v.

For our discussion below we need to extend the ances-
tor relation �T on V to the union of the edge and vertex 
sets of T. More precisely, for the edge e = (u, v) ∈ E we 
put x ≺T e if and only if x �T v and e ≺T x if and only 
if u �T x. For edges e = (u, v) and f = (a, b) in T we put 
e �T f  if and only if v �T b. In the latter case, the edges e 
and f are called comparable.

For a non-empty subset of leaves A ⊆ L, we define 
lcaT (A), or the least common ancestor of A, to be 
the unique �T-minimal vertex of T that is an ances-
tor of every vertex in A. In case A = {x, y}, we put 
lcaT (x, y) := lcaT ({x, y}) and if A = {x, y, z}, we put 
lcaT (x, y, z) := lcaT ({x, y, z}). We will make frequent use 
that for two non-empty vertex sets A, B of a tree, it always 
holds that lca(A ∪ B) = lca(lca(A), lca(B)).

A phylogenetic tree T (on L) is a rooted tree T = (V ,E) 
(on L) such that no interior vertex v ∈ V 0 has degree two, 
except possibly the root ρT. If L corresponds to a set of 
genes G or species S, we call a phylogenetic tree on L gene 
tree and species tree, respectively. The restriction T|L′ of a 
phylogenetic tree T to L′ ⊆ L is the rooted tree with leaf 
set L′ obtained from T by first forming the minimal sub-
tree of T with leaf set L′ and then by suppressing all ver-
tices of degree two with the exception of the root ρT|L′

. By 
construction, V (T|L′) ⊆ V (T ). If T = (V ,E) is equipped 
with a map ℓ : V ∪ E → M, then the restriction of ℓ to 
T|L′ = (V ′,E′) is the map ℓ|L′ : V ′ ∪ E′ → M that satisfies

In other words, ℓ|L′ keeps the vertex-labels of all non-
suppressed vertices and assigns the edge-label of the edge 
(u,  v) in T to the edge (u,  v) in T|L′, if v = b and other-
wise, to the edge (u,  b) in T|L′, where b is the first non-
suppressed vertex that lies on the unique path from v to 
b in T.

Rooted triples are phylogenetic trees on three leaves 
with precisely two interior vertices. They constitute an 
important concept in the context of supertree recon-
struction [64–66] and will also play a major role here. A 

ℓ|L′(α) =






ℓ(v) if α = v ∈ V ′,
ℓ(e) if α = (u, b) ∈ E′, e = (u, v) ∈ E

and either v = b or v is suppressed
in T|L′ and lies on the path from
u to b in T .

rooted tree T on L displays a triple (xy|z) if, x, y, z ∈ L and 
the path from x to y does not intersect the path from z 
to the root ρT and thus, having lcaT (x, y) ≺T lcaT (x, y, z). 
We denote by R(T ) the set of all triples that are displayed 
by the rooted tree T.

A set R of triples is consistent if there is a rooted tree 
T on LR = ∪r∈RLr(ρr) such that R ⊆ R(T ) and thus, T 
displays each triple in R. Not all sets of triples are con-
sistent of course. Nevertheless, given a triple set R there 
is a polynomial-time algorithm, referred to in [64, 67] as 
BUILD, that either constructs a phylogenetic tree T that 
displays R or that recognizes that R is not consistent [68]. 
The runtime of BUILD is O(|LR||R|) [64]. Further prac-
tical implementations and improvements have been dis-
cussed in [69–72].

We will consider rooted trees T = (V ,E) from which 
particular edges are removed. Let E ⊆ E and consider 
the forest T

E
:= (V ,E \ E). We can preserve the order 

�T for all vertices within one connected component 
of T

E
 and define �T

E
 as follows: x �T

E
y iff x �T y and 

x, y are in same connected component of T
E

. Since each 
connected component T ′ of T

E
 is a tree, the ordering 

�T
E

 also implies a root ρT ′ for each T ′, that is, x �T
E
ρT ′ 

for all x ∈ V (T ′). If L(T
E
) is the leaf set of T

E
, we define 

LT
E
(x) = {y ∈ L(T

E
) | y ≺T

E
x} as the set of leaves in T

E
 

that are reachable from x. Hence, all y ∈ LT
E
(x) must be 

contained in the same connected component of T
E

. We 
say that the forest T

E
 displays a triple r, if r is displayed 

by one of its connected components. Moreover, R(T
E
) 

denotes the set of all triples that are displayed by the for-
est T

E
.

Biologically feasible and observable gene trees
A gene tree arises through a series of events (specia-
tion, duplication, HGT, and gene loss) along a species 
tree. In a “true history” the gene tree T̂ = (V ,E) on a 
set of genes Ĝ is equipped with an event-labeling map 
t̂ : V ∪ E → Î ∪ {0, 1} with Î = {s, d, t,⊙,x} that assigns 
to each vertex v of T̂  a value t̂(v) ∈ Î  indicating whether v 
is a speciation event (s), duplication event (d), HGT event 
(t), extant leaf (⊙) or a loss event (x). Note, in the figures 
we omitted the symbol ⊙ and used •,� and △ for s, d and 
t, respectively.

Horizontal gene transfer is intrinsically a directional 
event, i.e., there is a clear distinction between the hori-
zontally transferred “copy” and the “original” that con-
tinues to be vertically transferred. To this end, the edges 
in the gene tree are annotated by associating a label to 
the edge that points from the horizontal transfer event 
to the next event in the history of the copy. To be more 
precise, to each edge e a value t̂(e) ∈ {0, 1} is assigned 
that indicates whether e is a transfer edge (1) or not (0). 
Hence, e = (x, y) and t̂(e) = 1 iff t̂(x) = t and the genetic 
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material is transferred from the species containing x to 
a species containing y. We remark that the restriction of 
t to the vertex set V was introduced as “symbolic dating 
map” in [4] and that there is a close relationship to so-
called cographs [5, 73, 74]. Let G ⊆ Ĝ be the set of all 
extant genes in T̂ , i.e., G contains all genes v of Ĝ with 
t̂(v) �= x. Hence, there is a map σ : G → S that assigns 
to each extant gene the extant species in which it resides.

We assume that the gene tree and its event labels are 
inferred from (sequence) data, i.e., T is restricted to 
those labeled trees that can be constructed at least in 
principle from observable data. Gene losses eradicate 
the entire information on parts of the history and thus, 
cannot directly be observed from extant sequences. 
Hence, in our setting the (observable) gene tree T is the 
restriction T̂|G to the set of extant genes equipped with 
the event-label t = t̂|G, see Fig.  1. Since all leaves of T 
are extant genes in G we don’t need to specially label 
the leaves in G, and thus simplify the event-labeling map 
t : V 0 ∪ E → I ∪ {0, 1} by assigning only to the interior 
vertex an event in I = {s, d, t}. We assume here that all 
non-transfer edges transmit the genetic material verti-
cally, that is, from an ancestral species to its descendants.

Definition 1  We write (T ; t, σ) for the tree T = (V ,E) 
with event-labeling t and corresponding map σ. The set 
E = {e ∈ E | t(e) = 1} will always denote the set of trans-
fer edges in (T ; t, σ).

Additionally, we consider gene trees (T = (V ,E); t, σ) 
from which the transfer edges have been removed, result-
ing in the forest T

E
= (V ,E \ E) in which we preserve the 

event-labeling t of all vertices.

We call a gene tree (T ; t, σ) on G biologically feasible, 
if there is a true scenario such that T = T̂|G and t = t̂|G , 
that is, there is a true history that can explain (T ; t, σ). 
By way of example, the gene tree in Fig. 1 (right) is bio-
logically feasibly. However, so-far it is unknown whether 
there are gene trees (T ; t, σ) that are not biologically fea-
sible. Answering the latter might be a hard task, as many 
HGT or duplication vertices followed by losses can be 
inserted into T that may result in a putative true history 
that explains the event-labeled gene tree.

Following Nøjgaard et al. [63], we additionally restrict 
the set of observable gene trees (T ; t, σ) to those gene 
trees that satisfy the following observability axioms:

(O1)	 Every internal vertex v has degree at least three, 
except possibly the root which has degree at least 
two.

(O2)	 Every HGT node has at least one transfer edge, 
t(e) = 1, and at least one non-transfer edge, 
t(e) = 0.

(O3)	 (a) If x ∈ V  is a speciation vertex, then 
there are distinct children v, w of x in T with 
σT

E
(v) ∩ σT

E
(w) = ∅. (b) If (x, y) ∈ E, then 

σT
E
(x) ∩ σT

E
(y) = ∅.

Condition (O1) is justified by the restriction T = T̂|G of 
the true binary gene tree T̂  to the set of extant genes G , 
since T = T̂|G is always a phylogenetic tree. In particular, 
(O1) ensures that every event leaves a historical trace in 
the sense that there are at least two children that have 
survived in at least two of its subtrees. Condition (O2) 
ensures that for an HGT event a historical trace remains 
of both the transferred and the non-transferred copy.

Condition (O3.a) is a consequence of (O1), (O2) and a 
stronger Condition (O3.a’) claimed in [63]: If x is a spe-
ciation vertex, then there are at least two distinct children 
v, w of x such that the species V and W that contain v and 
w, resp., are incomparable in S. Note, a speciation vertex 
x cannot be observed from data if it does not “separate” 
lineages, that is, there are two leaf descendants of dis-
tinct children of x that are in distinct species. Condition 
(O3.a’) is even weaker and ensures that any “observable” 
speciation vertex x separates at least locally two lineages. 
As a result of (O3.a’) one can obtain (O3.a) [63]. Intui-
tively, (O3.a) is satisfied since within a connected com-
ponent of T

E
 no genetic material is exchanged between 

non-comparable nodes. Thus, a gene separated in a spe-
ciation event necessarily ends up in distinct species in the 
absence of the transfer edges.

Condition (O3.b) is a consequence of (O1), (O2) and a 
stronger Condition (O3.b’) claimed in [63]: If (v, w) is a 
transfer edge in T, then t(v) = t and the species V and W 
that contain v and w, resp., are incomparable in S. Note, 

Fig. 1  Left an example of a “true” history of a gene tree that evolves 
along the (tube-like) species tree. The set of extant genes G comprises 
a,a′,b,b′,c,c′,c″ and e and σ maps each gene in G to the species (capi-
tals below  the genes) A, B, C , E ∈ σ(G). For simplicity all speciation 
events followed by a loss along the path from v to a′ in T are omitted. 
Left the observable gene tree (T ; t , σ) is shown. Since there is a true 
scenario which explains (T ; t , σ), the gene tree is biologically feasible. 
In particular, (T ; t , σ) satisfies (O1), (O2) and (O3)
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if (v,w) ∈ E then v signifies the transfer event itself but w 
refers to the next (visible) event in the gene tree T. In a 
“true history” v is contained in a species V that transmits 
its genetic material (maybe along a path of transfers) to a 
contemporary species Z that is an ancestor of the species 
W containing w. In order to have evidence that this trans-
fer happened, Condition (O3.b’) is used and as a result 
one obtains (O3.b). The intuition behind (O3.b) is as fol-
lows: observe that T

E
(x) and T

E
(y) are subtrees of distinct 

connected components of T
E

 whenever (x, y) ∈ E. Since 
HGT amounts to the transfer of genetic material across 
distinct species, the genes x and y are in distinct species, 
cf. (O3.b). However, since T

E
 does not contain transfer 

edges and thus, there is no genetic material transferred 
across distinct species between distinct connected com-
ponents in T

E
. We refer to [63] for further details.

Remark 2  In what follows, we only consider gene trees 
(T ; t, σ) that satisfy (O1), (O2) and (O3).

We simplify the notation a bit and write 
σT

E
(u) := σ(LT

E
(u)).

Based on Axiom (O2) the following results was estab-
lished in [63].

Lemma 3.1  Let (T ; t, σ) be an event-labeled gene tree. 
Let T1, . . . ,Tk be the connected components of T

E
 with 

roots ρ1, . . . , ρk, respectively. Then, {LT
E
(ρ1), . . . , LT

E
(ρk)} 

forms a partition of G.

Lemma 3.1 particularly implies that σT
E
(x) �= ∅ for all 

x ∈ V (T ). Note, T
E

 might contain interior vertices (dis-
tinct from the root) that have degree two. Nevertheless, 
for each x �T

E
y in T

E
 we have x �T y in T. Hence, par-

tial information (that in particular is “undisturbed” by 
transfer edges) on the partial ordering of the vertices in T 
can be inferred from T

E
.

Reconciliation map
Before we define a reconciliation map that “embeds” a 
given gene tree into a given species tree we need a slight 
modification of the species tree. In order to account for 
duplication events that occurred before the first spe-
ciation event, we need to add an extra vertex and an 
extra edge “above” the last common ancestor of all spe-
cies: hence, we add an additional vertex to W (that 
is now the new root ρS of S) and the additional edge 
(ρS , lcaS(S)) ∈ F  . Note that strictly speaking S is not a 
phylogenetic tree anymore. In case there is no danger of 
confusion, we will from now on refer to a phylogenetic 
tree on S with this extra edge and vertex added as a spe-
cies tree on S.

Definition 2  (DTL-scenario) Suppose that S is a 
set of species, S = (W , F) is a phylogenetic tree on 
S , T = (V ,E) is a gene tree with leaf set G and that 
σ : G → S and t : V 0 → {s, d, t} ∪ {0, 1} are the maps 
described above. Then we say that S is a species tree for 
(T ; t, σ) if there is a map µ : V → W ∪ F  such that, for 
all x ∈ V :

(M1)	 Leaf constraint. If x ∈ G then µ(x) = σ(x).
(M2)	 Event constraint.

(i)	 If t(x) = s, then µ(x) = lcaS(σT
E
(x)).

(ii)	 If t(x) ∈ {d, t}, then µ(x) ∈ F .
(iii)	 If t(x) = t and (x, y) ∈ E, then µ(x) and µ(y) 

are incomparable in S.
(M3)	� Ancestor constraint. Let x, y ∈ V  with x ≺T

E
y . 

Note, the latter implies that the path connecting 
x and y in T does not contain transfer edges. We 
distinguish two cases:

(i)	 If t(x), t(y) ∈ {d, t}, then µ(x) �S µ(y),
(ii)	 otherwise, i.e., at least one of t(x) and t(y) is 

a speciation s, µ(x) ≺S µ(y).
	  We call µ the reconciliation map from (T ; t, σ) 

to S.

Definition 2 is a natural generalization of the map 
defined in [10], that is, in the absence of horizontal gene 
transfer, Condition (M2.iii) vanishes and thus, the pro-
posed reconciliation map precisely coincides with the 
one given in [10]. In case that the event-labeling of T is 
unknown, but a species tree S is given, the authors in [31, 
54] gave an axiom set, called DTL-scenario, to recon-
cile T with S. This reconciliation is then used to infer the 
event-labeling t of T. The “usual” DTL axioms explicitly 
refer to binary, fully resolved gene and species trees. We 
therefore use a different axiom set that is, nevertheless, 
equivalent to DTL-scenarios in case the considered gene 
trees are binary [63].

Condition (M1) ensures that each leaf of T, i.e., an 
extant gene in G, is mapped to the species in which it 
resides. Condition (M2.i) and (M2.ii) ensure that each 
vertex of T is either mapped to a vertex or an edge in S 
such that a vertex of T is mapped to an interior vertex of 
S if and only if it is a speciation vertex. We will discuss 
(M2.i) in further detail below. Condition (M2.iii) maps the 
vertices of a transfer edge in a way that they are incom-
parable in the species tree and is used to satisfy axiom 
(O3). Condition (M3) refers only to the connected com-
ponents of T

E
 and is used to preserve the ancestor order 

�T of T along the paths that do not contain transfer edges 
is preserved.
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It needs to be discussed, why one should map a specia-
tion vertex x to lcaS(σT

E
(x)) as required in (M2.i). The 

next lemma shows, that one can put µ(x) = lcaS(σT
E
(x)).

Lemma 4.1  Nøjgaard et al. [63] Let µ be a reconcilia-
tion map from (T ; t, σ) to S that satisfies (M1) and (M3), 
then µ(u) �S lcaS(σT

E
(u)) for any u ∈ V (T ).

Condition (M2.i) implies in particular the weaker 
property “(M2.i’) if t(x) = s then µ(x) ∈ W ”. In the light 
of Lemma  4.1, µ(x) = lcaS(σT

E
(x)) is the lowest pos-

sible choice for the image of a speciation vertex. Note 
that there are possibly exponentially many reconcilia-
tion maps, whenever µ(x) ≻S lcaS(σT

E
(x)) is allowed for 

speciation vertices x. First, we we restrict our attention 
to those maps that satisfy (M2.i) only. In particular, as 
we shall see in “Binary gene trees” section, there is a neat 
characterization of maps that satisfy (M2.i) that does, 
however, not work for maps with “relaxed” (M2.i), as dis-
cussed in “Limitations of informative triples andrecon-
ciliation maps” section.

Moreover, we have the following result, which is a mild 
generalization of [63].

Lemma 4.2  Let µ be a reconciliation map from a gene 
tree (T ; t, σ) to S.

1.	 If v,w ∈ V (T ) are in the same connected component 
of T

E
, then µ(lcaT

E
(v,w)) �S lcaS(µ(v),µ(w)).

2.	 If (T ; t, σ) is a binary gene tree and x a speciation 
vertex with children v,  w in T, then then µ(v) and 
µ(w) are incomparable in S.

Proof  Let v,w ∈ V (T ) be in the same connected 
component of T

E
. Assume that v and w are compa-

rable in T
E

 and that w.l.o.g. v ≻T
E
w. Condition (M3) 

implies that µ(v) �S µ(w). Hence, v = lcaT
E
(v,w) and 

µ(v) = lcaS(µ(v),µ(w)) and we are done.

Now assume that v and w are incomparable in T
E

. Con-
sider the unique path P connecting w with v in T

E
. This 

path P is uniquely subdivided into a path P′ and a path 
P′′ from lcaT

E
(v,w) to v and w, respectively. Condition 

(M3) implies that the images of the vertices of P′ and P′′ 
under µ, resp., are ordered in S with regards to �S and 
hence, are contained in the intervals Q′ and Q′′ that con-
nect µ(lcaT

E
(v,w)) with µ(v) and µ(w), respectively. In 

particular, µ(lcaT
E
(v,w)) is the largest element (w.r.t. �S ) 

in the union of Q′ ∪ Q′′ which contains the unique path 
from µ(v) to µ(w) and hence also lcaS(µ(v),µ(w)).

Item 2 was already proven in [63].�  �
Assume now that there is a reconciliation map µ from 

(T ; t, σ) to S. From a biological point of view, however, it 
is necessary to reconcile a gene tree with a species tree 

such that genes do not “travel through time”, a see Fig. 4 
for an example.

Definition 3  (Time Map) The map τT : V (T ) → R 
is a time map for the rooted tree T if x ≺T y implies 
τT (x) > τT (y) for all x, y ∈ V (T ).

Definition 4  A reconciliation map µ from (T ; t, σ) to S 
is time-consistent if there are time maps τT for T and τS 
for S for all u ∈ V (T ) satisfying the following conditions:

(T1)	 If t(u) ∈ {s,⊙}, then τT (u) = τS(µ(u)).
(T2)	 If t(u) ∈ {d, t} and, thus µ(u) = (x, y) ∈ E(S), 

then τS(y) > τT (u) > τS(x).

Condition (T1) is used to identify the time-points of 
speciation vertices and leaves u in the gene tree with the 
time-points of their respective images µ(u) in the spe-
cies trees. Moreover, duplication or HGT vertices u are 
mapped to edges µ(u) = (x, y) in S and the time point 
of u must thus lie between the time points of x and y 
which is ensured by Condition (T2). Nøjgaard et al. [63] 
designed an O(|V (T )| log(|V (S)|))-time algorithm to 
check whether a given reconciliation map µ is time-con-
sistent, and an algorithm with the same time complexity 
for the construction of a time-consistent reconciliation 
map, provided one exists. Clearly, a necessary condition 
for the existence of time-consistent reconciliation maps 
from (T ; t, σ) to S is the existence of some reconciliation 
map from (T ; t, σ) to S. In the next section, we first char-
acterize the existence of reconciliation maps and discuss 
open time-consistency problems.

From gene trees to species trees
Since a gene tree T is uniquely determined by its induced 
triple set R(T ), it is reasonable to expect that a lot of 
information on the species tree(s) for (T ; t, σ) is con-
tained in the images of the triples in R(T ), or more pre-
cisely their leaves under σ. However, not all triples in 
R(T ) are informative, see Fig. 2 for an illustrative exam-
ple. In the absence of HGT, it has already been shown by 
Hernandez-Rosales et al. [10] that the informative triples 
r ∈ R(T ) are precisely those that are rooted at a specia-
tion event and where the genes in r reside in three dis-
tinct species. However, in the presence of HGT we need 
to further subdivide the informative triples as follows.

Definition 5  Let (T ; t, σ) be a given event-labeled gene 
tree with respective set of transfer-edges E = {e1, . . . , eh} 
and T

E
 as defined above. We define

Rσ (TE
) ={(ab|c) ∈ R(T

E
) : σ(a), σ(b), σ(c)

are pairwise distinct}
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as the subset of all triples displayed in T
E

 such that the 
leaves are from pairwise distinct species.

Let

be the set of triples in Rσ (TE
) that are rooted at a specia-

tion event.
For each ei = (x, y) ∈ E define

Hence, Ri(TE
) contains a triple (ab|c) for every 

a, b ∈ LT
E
(x), c ∈ LT

E
(y) that reside in pairwise distinct 

species. Analogously, for any a, b ∈ LT
E
(y), c ∈ LT

E
(x) 

there is a triple (ab|c) ∈ Ri(TE
), if σ(a), σ(b), σ(c) are 

pairwise distinct.
The informative triples of T are comprised in the set 

R(T ; t, σ) = ∪h
i=0Ri(TE

).
Finally, we define the informative species triple set

that can be inferred from the informative triples of 
(T ; t, σ).

R0(TE
) := {(ab|c) ∈ Rσ (TE

) : t(lcaT
E
(a, b, c)) = s}

Ri(TE
) := {(ab|c) : σ(a), σ(b), σ(c) are pairwise distinct

and either a, b ∈ LT
E
(x), c ∈ LT

E
(y)

or c ∈ LT
E
(x), a, b ∈ LT

E
(y)}.

S(T ; t, σ) := {(σ (a)σ (b)|σ(c)) : (ab|c) ∈ R(T ; t, σ)}

Binary gene trees
In this section, we will be concerned only with binary, i.e., 
“fully resolved” gene trees, if not stated differently. This is 
justified by the fact that a speciation or duplication event 
instantaneously generates exactly two offspring. However, 
we will allow also non-binary species tree to model incom-
plete knowledge of the exact species phylogeny. Non-binary 
gene trees are discussed in “Non-binary gene trees” section.

Hernandez et al. [10] established the following charac-
terization for the HGT-free case.

Theorem  5.1  For a given gene tree 
(T ; t, σ) on G that does not contain HGT and 
S := {(σ (a)σ (b)|σ(c)) : (ab|c) ∈ R0(T )}, the following 
statement is satisfied:

There is a species tree on S = σ(G) for (T ; t, σ) if and 
only if the triple set S is consistent.

We emphasize that the results established in [10] are only 
valid for binary gene trees, although this was not explic-
itly stated. For an example that shows that Theorem 5.1 is 
not always satisfied for non-binary gene trees see Fig.  3. 
Lafond and El-Mabrouk [12, 48] established a similar result 
as in Theorem 5.1 by using only species triples that can be 
obtained directly from a given orthology/paralogy-relation. 
However, they require a stronger version of axiom (O3.a), 
that is, the images of all children of a speciation vertex must 
be pairwisely incomparable in the species tree. We, too, will 
use this restriction in “Non-binary gene trees” section.

In what follows, we generalize the latter result and 
show that consistency of S(T ; t, σ) characterizes whether 
there is a species tree S for (T ; t, σ) even if (T ; t, σ) con-
tains HGT.

Lemma 5.2  If µ is a reconciliation map from a gene tree 
(T ; t, σ) to a species tree S and (ab|c) ∈ R(T ; t, σ), then 
(σ (a)σ (b)|σ(c)) is displayed in S.

Proof  Recall that G is the leaf set of T = (V ,E) and, 

by Lemma 3.1, of T
E

. Let {a, b, c} ∈
(
G
3

)
 and assume 

w.l.o.g. (ab|c) ∈ R(T ; t, σ).

First assume that (ab|c) ∈ R0, that is (ab|c) is dis-
played in T

E
 and t(lcaT

E
(a, b, c)) = s. For simplicity set 

u = lcaT
E
(a, b, c) and let x, y be its children in T

E
. Since 

(ab|c) ∈ R0, we can assume that w.l.o.g. a, b ∈ LT
E
(x) 

and c ∈ LT
E
(y). Hence, x �T

E
lcaT

E
(a, b) and y �T

E
c . 

Condition (M3) implies that µ(y) �S µ(c) = σ(c). 
Moreover, Condition (M3) and Lemma 4.2(1) imply that 
µ(x) �S µ(lcaT

E
(a, b)) �S lcaS(µ(a),µ(b)) = lcaS(σ (a), σ(b))  . 

Since t(u) = s, we can apply Lemma 4.2(2) and conclude 
that µ(x) and µ(y) are incomparable in S. Hence, σ(c) 

Fig. 2  Left an example of a “true” history of a gene tree that evolves 
along the (tube-like) species tree (taken from [11]). The set of extant 
genes G comprises a, b, c1, c2 and d and σ maps each gene in G 
to the species (capitals below the genes) A, B, C ,D ∈ S. Upper right 
the observable gene tree (T ; t , σ) is shown. To derive S(T ; t , σ) 
we cannot use the triples R0(T ), that is, we need to remove the 
transfer edges. To be more precise, if we would consider R0(T ) 
we obtain the triples (ac1|d) and (c2d|a) which leads to the two 
contradicting species triples (AC|D) and (CD|A). Thus, we restrict 
R0 to T

E
 and obtain R0(TE ) = {(ac1|d)}. However, this triple 

alone would not provide enough information to obtain a species 
tree such that a valid reconciliation map µ can be constructed. 
Hence, we take R1(TE ) = {(bc2|d)} into account and obtain 
S(T ; t , σ) = {(AC|D), (BC|D)}. Lower right a least resolved species 
tree S (obtained with BUILD) that displays all triples in S(T ; t , σ) 
together with the reconciled gene tree (T ; t , σ) is shown. Although 
S does not display the triple (AB|C) as in the true history, this tree 
S does not pretend a higher resolution than actually supported by 
(T ; t , σ). Clearly, as more gene trees (gene families) are available as 
more information about the resolution of the species tree can be 
provided
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and lcaS(σ (a), σ(b)) are incomparable. Thus, the triple 
(σ (a)σ (b)|σ(c)) must be displayed in S.

Now assume that (ab|c) ∈ Ri for some trans-
fer edge ei = (x, y) ∈ E. For ei = (x, y) we either 
have a, b ∈ LT

E
(x) and c ∈ LT

E
(y) or c ∈ LT

E
(x) and 

a, b ∈ LT
E
(y). W.l.o.g. let a, b ∈ LT

E
(x) and c ∈ LT

E
(y).  

Thus, x �T
E
lcaT

E
(a, b) and y �T

E
c . Condition 

(M3) implies that µ(y) �S µ(c) = σ(c). Moreo-
ver, Condition (M3) and Lemma 4.2(1) imply that 

µ(x) �S µ(lcaT
E
(a, b)) �S lcaS(µ(a),µ(b)) = lcaS(σ (a), σ(b))  . 

Since t(x) = t, we can apply (M2.iii) and conclude that 
µ(x) and µ(y) are incomparable in S. Hence, σ(c) and 
lcaS(σ (a), σ(b)) are incomparable. Thus, the triple 
(σ (a)σ (b)|σ(c)) must be displayed in S. � �

Lemma 5.3  Let S = (W , F) be a species tree on S. Then 
there is a reconciliation map µ from a gene tree (T ; t, σ)  
to S whenever S displays all triples in S(T ; t, σ).

Fig. 3  Consider the “true” history (left) that is also shown in Fig. 1. The center-left gene tree (T ; t , σ) is biologically feasible and obtained as the 
observable part of the true history. There is no reconciliation map for (T ; t , σ) to any species tree according to Def. 2 because S(T ; t , σ) is inconsist-
ent (cf. Thm. 5.4). The graph in the lower-center depicts the orthology-relation that comprises all pairs (x, y) of vertices for which t(lca(x , y)) = s. The 
center-right gene tree (T ′; t , σ) is non-binary and can directly be computed from the orthology-relation. Although S(T ′; t , σ) is inconsistent, there 
is a valid reconciliation map µ to a species tree for (T ′; t , σ) according to Def. 2 (right). Note, both trees (T ; t , σ) and (T ′; t , σ) satisfy axioms (O1)–(O3) 
and even (O3.A). However, the reconciliation map µ does not satisfy the extra Condition (M2.iv), since µ(z) and µ(a′) = A are comparable, although 
z and a′ are children of a common speciation vertex. Therefore, Axioms (O1)–(O3) and (O3.A) do not imply (M2.iv). Moreover, Thm. 5.7 implies that 
there is no restricted reconciliation map for (T ; t , σ) as well as (T ′; t , σ) and any species tree, since S(T ; t , σ) and S(T ′; t , σ) are inconsistent. See text 
for further details

Fig. 4  From the binary gene tree (T ; t , σ) (right) we obtain the species triples S(T ; t , σ) = {(AB|D), (AC|D)}. Shown are two (tube-like) species 
trees (left and middle) that display S(T ; t , σ). The respective reconciliation maps for T and S are given implicitly by drawing T within the species tree 
S. The left tree S is least resolved for S(T ; t , σ). Although there is even a unique reconciliation map from T to S, this map is not time-consistent. Thus, 
no time-consistent reconciliation between T and S exists. On the other hand, for T and the middle species tree S′ (that is a refinement of S) there 
is a time-consistent reconciliation map. Fig. 2 provides an example that shows that also least-resolved species trees can have a time-consistent 
reconciliation map with gene trees
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Proof  Recall that G is the leaf set of T = (V ,E) and, by 
Lemma 3.1, of T

E
. In what follows, we write L(u) instead 

of the more complicated writing LT
E
(u) and, for consist-

ency and simplicity, we also often write σ(L(u)) instead 
of σT

E
(u). Put S = (W , F) and S = S(T ; t, σ). We first 

consider the subset U = {x ∈ V | x ∈ G or t(x) = s}} of 
V comprising the leaves and speciation vertices of T.

In what follows we will explicitly construct 
µ : V → W ∪ F  and verify that µ satisfies Conditions 
(M1), (M2) and (M3). To this end, we first set for all 
x ∈ U :

(S1)	 µ(x) = σ(x), if x ∈ G,
(S2)	 µ(x) = lcaS(σ (L(x))), if t(x) = s.

Conditions (S1) and (M1), as well as (S2) and (M2.i) are 
equivalent.

For later reference, we show that 
lcaS(σ (L(x))) ∈ W 0 = W \ S and that there are two 
leaves a, b ∈ L(x) such that σ(a) �= σ(b), whenever 
t(x) = s. By Condition (O3.a), for the two children v and 
w of x in T we have σ(L(v)) ∩ σ(L(w)) = ∅. Moreover, 
Lemma 3.1 implies that both L(v) and L(w) are non-
empty subsets of G and hence, neither σ(L(v)) = ∅ nor 
σ(L(w)) = ∅. Thus, there are two leaves a, b ∈ L(x) such 
that σ(a) �= σ(b). Hence, lcaS(σ (L(x))) ∈ W 0 = W \ S.
Claim 1: For all x, y ∈ U  with x ≺T

E
y we have 

µ(x) ≺S µ(y).
Note, y must be an interior vertex, since x ≺T

E
y.

Hence t(y) = s.
If x is a leaf, then µ(x) = σ(x) ∈ S. As argued above, 

µ(y) ∈ W \ S. Since x ∈ L(y) and σ(L(y)) �= ∅, we have 
σ(x) ∈ σ(L(y)) ⊆ S and thus, µ(x) ≺S µ(y).

Now assume that x is an interior vertex and 
hence, t(x) = s. Again, there are leaves a, b ∈ L(x) 
with A = σ(a) �= σ(b) = B. Since t(y) = s, ver-
tex y has two children in T

E
. Let y′ denote the child of 

y with x �T
E
y′. Since L(x) ⊆ L(y′) � L(y), we have 

L(y) \ L(y′) �= ∅ and, by Condition (O3.a), there is a gene 
c ∈ L(y) \ L(y′) ⊆ L(y) \ L(x) with σ(c) = C �= A,B.  
By construction, (ab|c) ∈ R0 and hence, 
(AB|C) ∈ S(T ; t, σ) . Hence, lcaS(A,B) ≺S lcaS(A,B,C). 
Since this holds for all triples (x′x′′|z) with x′, x′′ ∈ L(x) 
and z ∈ L(y) \ L(y′), we can conclude that

Since σ(L(x)) ∪ σ(L(y) \ L(y′)) ⊆ σ(L(y)) we obtain

Hence, µ(x) ≺S µ(y). Thus, the claim is proven. � �

µ(x) = lcaS(σ (L(x)))

≺S lcaS(σ (L(x)) ∪ σ(L(y) \ L(y′))).

lcaS(σ (L(x)) ∪ σ(L(y) \ L(y′)))

�S lcaS(σ (L(y))) = µ(y).

We continue to extend µ to the entire set V. To this 
end, observe first that if t(x) ∈ {t, d} then we wish to map 
x on an edge µ(x) = (u, v) ∈ F  such that Lemma 4.1 is 
satisfied: v �S lcaS(σ (L(x))). Such an edge exists for 
v = lcaS(σ (L(x))) in S by construction. Every speciation 
vertex y with y ≻T

E
x therefore necessarily maps on the 

vertex u or above, i.e., µ(y) �S u must hold. Thus, we set:

(S3)	µ(x) = (u, lcaS(σ (L(x)))), if t(x) ∈ {t, d},

which now makes µ a map from V to W ∪ F .
By construction of µ, Conditions (M1), (M2.i), (M2.ii) 

are satisfied by µ.
We proceed to show that (M3) is satisfied.

Claim 2:  For all x, y ∈ V  with x ≺T
E
y, Condition (M3) 

is satisfied.
If both x and y are speciation vertices, then we can 

apply the Claim 1 to conclude that µ(x) ≺S µ(y). If x is a 
leaf, then we argue similarly as in the proof of Claim 1 to 
conclude that µ(x) �S µ(y).

Now assume that both x and y are interior vertices of 
T and at least one vertex of x, y is not a speciation ver-
tex. Since, x ≺T

E
y we have L(x) ⊆ L(y) and thus, 

σ(L(x)) ⊆ σ(L(y)).
We start with the case t(y) = s and t(x) ∈ {d, t}. Since 

t(y) = s, vertex y has two children in T
E

. Let y′ be the 
child of y with x �T

E
y′. If σ(L(x)) contains only one spe-

cies A, then µ(x) = (u,A) ≺S u �S lcaS(σ (L(y))) = µ(y) . 
If σ(L(x)) contains at least two species, then 
there are a, b ∈ L(x) with σ(a) = A �= σ(b) = B 
Moreover, since L(x) ⊆ L(y′) � L(y), we have 
L(y) \ L(y′) �= ∅ and, by Condition (O3.a), there is a gene 
c ∈ L(y) \ L(y′) ⊆ L(y) \ L(x) with σ(c) = C �= A,B. By 
construction, (ab|c) ∈ R0 and hence (AB|C) ∈ S(T ; t, σ) . 
Now we can argue similar as in the proof of the Claim 1, to 
see that

If t(x) = s and t(y) ∈ {d, t}, then σ(L(x)) ⊆ σ(L(y)) 
implies that

Finally assume that t(x), t(y) ∈ {d, t}. If σ(L(x)) = σ(L(y)) ,  
then µ(x) = µ(y) . Now let σ(L(x)) � σ(L(y)) 
which implies that lcaS(σ (L(x))) �S lcaS(σ (L(y))).  
If lcaS(σ (L(x))) = lcaS(σ (L(y))), then µ(x) = µ(y). If 
lcaS(σ (L(x))) ≺S lcaS(σ (L(y))), then

µ(x) = (u, lcaS(σ (L(x)))) ≺S u

�S lcaS(σ (L(y))) = µ(y).

µ(x) = lcaS(σ (L(x))) �S lcaS(σ (L(y)))

≺S (u, lcaS(σ (L(y)))) = µ(y).

µ(x) = (u, lcaS(σ (L(x)))) ≺S u

�S lcaS(σ (L(y))) ≺ (u′, lcaS(σ (L(y))))

= µ(y).
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It remains to show (M2.iii), that is, if ei = (x, y) is 
a transfer-edge, then µ(x) and µ(y) are incompara-
ble in S. Since (x, y) is a transfer edge and by Condition 
(O3.b), σ(L(x)) ∩ σ(L(y)) = ∅. If σ(L(x)) = {A} and 
σ(L(y)) = {C}, then µ(x) = (u,A) and µ(y) = (u′,C) . 
Since A and C are distinct leaves in S, µ(x) and µ(y) 
are incomparable. Assume that |σ(L(x))| > 1. Hence, 
there are leaves a, b ∈ L(x) with A = σ(a) �= σ(b) = B 
and c ∈ L(y) with σ(c) = C �= A,B. By construction, 
(ab|c) ∈ Ri and hence, (AB|C) ∈ S(T ; t, σ). The latter 
is fulfilled for all triples (x′x′′|c) ∈ Ri with x′, x′′ ∈ L(x) , 
and, therefore, lcaS(σ (L(x)) ∪ {C}) ≻S lcaS(σ (L(x))) . 
Set v = lcaS(σ (L(x)) ∪ {C}). Thus, there is an edge 
(v, v′) in S with v′ �S lcaS(σ (L(x))) and an edge 
(v, v′′) such that v′′ �S C. Hence, either µ(x) = (v, v′) 
or µ(x) = (u, lcaS(σ (L(x))) and v′ �S u. Assume 
that σ(L(y)) contains only the species C and thus, 
µ(y) = (u′,C). Since v′′ �S C, we have either v′′ = C 
which implies that µ(y) = (v, v′′) or v′′ ≻S C which 
implies that µ(y) = (u′,C) and v′′ �S u′. Since both ver-
tices v′ and v′′ are incomparable in S, so µ(x) and µ(y) are. 
If |σ(L(y))| > 1, then we set v = lcaS(σ (L(x)) ∪ σ(L(y))) 
and we can argue analogously as above and conclude 
that there are edges (v, v′) and (v, v′′) in S such that 
v′ �S lcaS(σ (L(x))) and v′′ �S lcaS(σ (L(y))). Again, 
since v′ and v′′ are incomparable in S and by construction 
of µ, µ(x) and µ(y) are incomparable. Thus, the claim is 
proven.�  �

Lemma 5.2 implies that consistency of the triple set 
S(T ; t, σ) is necessary for the existence of a reconcilia-
tion map from (T ; t, σ) to a species tree on S. Lemma 5.3, 
on the other hand, establishes that this is also sufficient. 
Thus, we have

Theorem 5.4  There is a species tree on S = σ(G) for a 
binary gene tree (T ; t, σ) on G if and only if the triple set 
S(T ; t, σ) is consistent.

Non‑binary gene trees
Now, we consider arbitrary, possibly non-binary gene 
trees that might be used to model incomplete knowledge 
of the exact genes phylogeny. Consider the “true” history 
of a gene tree that evolves along the (tube-like) species 
tree in Fig.  3 (left). The observable gene tree (T ; t, σ) is 
shown in Fig. 3 (center-left). Since (ab|c), (b′c′|a′) ∈ R0 , 
we obtain a set of species triples S(T ; t, σ) that contain 
the pair of inconsistent species triple (AB|C), (BC|A) . 
Thus, there is no reconciliation map for (T ; t, σ) and any 
species tree, although (T ; t, σ) is biologically feasible. 

Consider now the “orthology” graph G (shown below the 
gene trees) that has as vertex set G and two genes x, y are 
connected by an edge if lca(x, y) is a speciation vertex. 
Such graphs can be obtained from orthology inference 
methods [14, 36–38] and the corresponding non-binary 
gene tree (T ′; t, σ) (center-right) is constructed from 
such estimates (see [5–7] for further details). Still, we can 
see that S(T ′; t, σ) contains the two inconsistent species 
triples (AB|C), (BC|A). However, there is a reconciliation 
map µ according to Definition 2 and a species tree S, as 
shown in Fig.  3 (right). Thus, consistency of S(T ′; t, σ) 
does not characterize whether there is a valid reconcilia-
tion map for non-binary gene trees.

In order to obtain a similar result as in Theorem 5.4 for 
non-binary gene trees we have to strengthen observabil-
ity axiom (O3.a) to

(O3.A)	 If x is a speciation vertex with children v1, . . . , vk, 
then σT

E
(vi) ∩ σT

E
(vj) = ∅, 1 ≤ i < j ≤ k;

and to add an extra event constraint to Definition 2:

(M2.iv)	 Let v1, . . . , vk be the children of the speciation 
vertex x. Then, µ(vi) and µ(vj) are incomparable in S, 
1 ≤ i < j ≤ k.

We call a reconciliation map that additionally satisfies 
(M2.iv) a restricted reconciliation map. Such restricted 
reconciliation maps satisfy the condition as required 
in [12, 48] for the HGT-free case. It can be shown that 
restricted reconciliation maps imply Condition (O3.A), 
however, the converse is not true in general, see Fig.  3. 
Hence, we cannot use the axioms (O1)-(O3) and (O3.A) 
to derive Condition (M2.iv)—similar to Lemma 4.2(2)—
and thus, need to claim it.

In particular, Condition (M2.iv) forbids ancestral rela-
tionships of the images µ(vi) and µ(vi) in S for any two 
distinct children vi and vj of a speciation vertex x. In 
Fig.  3 (right) a map µ is shown that violates Condition 
(M2.iv). Here, the images µ(z) and µ(a′) are comparable. 
The latter might happen, if there are unrecognized HGT 
events followed by a loss. Condition (M2.iv) is a quite 
strong restriction, however, it is indispensable for the 
characterization of reconciliation maps for non-binary 
gene trees in terms of informative triples, as we shall see 
soon.

It is now straightforward to obtain the next result.

Lemma 5.5  If µ is a restricted reconciliation map 
from (T ; t, σ) to S and (ab|c) ∈ R(T ; t, σ), then 
(σ (a)σ (b)|σ(c))is displayed in S.
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Proof  Let {a, b, c} ∈

(
G
3

)
 and assume w.l.o.g. 

(ab|c) ∈ R(T ; t, σ).

First assume that (ab|c) ∈ R0, that is (ab|c) is dis-
played in T

E
 and t(lcaT

E
(a, b, c)) = s. For simplicity set 

u = lcaT
E
(a, b, c). Hence, there are two children x,  y of 

u in T
E

 such that w.l.o.g. a, b ∈ LT
E
(x) and c ∈ LT

E
(y). 

Now we can argue analogously as in the proof of Lemma 
5.2 after replacing “we can apply Lemma 4.2(2)” by “we 
can apply Condition (M2.iv)”. The proof for (ab|c) ∈ Ri 
remains the same as in Lemma 5.2. � �

Lemma 5.6  Let S be a species tree on S. Then, there is a 
restricted reconciliation map µ from a gene tree (T ; t, σ) 
that satisfies also (O3.A) to S whenever S displays all tri-
ples in S(T ; t, σ).

Proof  The proof is similar to the proof of Lemma 5.6. 
However, note that a speciation vertex might have more 
than two children. In these cases, one simply has to apply 
Axiom (O3.A) instead of Lemma (O3.a) to conclude that 
(M1), (M2.i)–(M2.iii), (M3) are satisfied.

It remains to show that (M2.iv) is satisfied. To this end, 
let x be a speciation vertex in T and the set of its chil-
dren Ch(x) = {v1, . . . , vk}. By axiom (O3.A) we have 
σT

E
(vi) ∩ σT

E
(vj) = ∅ for all i �= j. Consider the fol-

lowing partition of Ch(x) into Ch1 and Ch2 that con-
tain all vertices vi with |σT

E
(vi)| = 1 and |σT

E
(vi)| > 1 , 

respectively. By construction of µ, for all vertices in 
vi, vj ∈ Ch1, i �= j we have that µ(vi) ∈ {σ(vi), (u, σ(vi))} 
and µ(vj) ∈ {σ(vj), (u

′, σ(vj))} are incomparable. Now 
let vi ∈ Ch1 and vj ∈ Ch2. Thus, there are A,B ∈ σT

E
(vj) 

and σ(vi) = C. Hence, (AB|C) ∈ S(T ; t, σ) There-
fore, lcaS(A,B) must be incomparable to C in S. 
Since the latter is satisfied for all species in σT

E
(vj) , 

lcaS(σT
E
(vj)) and C must be incomparable in S. Again, 

by construction of µ, we see that µ(vi) ∈ {C , (u,C)} and 
µ(vj) ∈ {lcaS(σT

E
(vj)), (u

′, lcaS(σT
E
(vj)))} are incom-

parable in S. Analogously, if vi, vj ∈ Ch2, i �= j, then all 
triples (AB|C) and (CD|A) for all A,B ∈ σT

E
(vj) and 

C ,D ∈ σT
E
(vj) are contained in S(T ; t, σ) and thus, dis-

played by S. Hence, lcaS(σT
E
(vi)) and lcaS(σT

E
(vj)) must 

be incomparable in S. Again, by construction of µ, we 
obtain that µ(vi) ∈ {lcaS(σT

E
(vi)), (u, lcaS(σT

E
(vi)))} and 

µ(vj) ∈ {lcaS(σT
E
(vj)), (u

′, lcaS(σT
E
(vj)))} are incompara-

ble in S. Therefore, (M2.iv) is satisfied. � �

As in the binary case, we obtain

Theorem  5.7  There is a restricted reconciliation map 
for a gene tree (T ; t, σ) on G that satisfies also (O3.A) and 

some species tree on S = σ(G) if and only if the triple set 
S(T ; t, σ) is consistent.

Algorithm
The proof of Lemmas 5.3 and 5.6 is constructive and we 
summarize the latter findings in Algorithm 1, see Fig. 2 
for an illustrative example.

Lemma 5.8  Algorithm  1 returns a species tree S for a 
binary gene tree (T ; t, σ) and a reconciliation map µ in 
polynomial time, if one exists and otherwise, returns that 
there is no species tree for (T ; t, σ).

If (T ; t, σ) is non-binary but satisfies Condition (O3.A), 
then Algorithm 1 returns a species tree S for (T ; t, σ) and 
a restricted reconciliation map µ in polynomial time, if 
one exists and otherwise, returns that there is no species 
tree for (T ; t, σ).
Proof  Theorem  5.4 and the construction of µ in the 
proof of Lemmas 5.3 and 5.6 implies the correctness of 
the algorithm.

For the runtime observe that all tasks, computing 
S(T ; t, σ), using the BUILD algorithm [64, 68] and the 
construction of the map µ [10, Cor.7] can be done in pol-
ynomial time. �

In our examples, the species trees that display 
S(T ; t, σ) is computed using the O(|LR||R|) time algo-
rithm BUILD, that either constructs a tree S that dis-
plays all triples in a given triple set R or recognizes 
that R is not consistent. However, any other supertree 
method might be conceivable, see [65] for an overview. 
The tree T returned by BUILD is least resolved, i.e., if 
T ′ is obtained from T by contracting an edge, then T ′ 
does not display R anymore. However, the trees gener-
ated by BUILD do not necessarily have the minimum 
number of internal vertices, i.e., the trees may resolve 
multifurcations in an arbitrary way that is not implied 
by any of the triples in R. Thus, depending on R, not all 
trees consistent with R can be obtained from BUILD.  
Nevertheless, in [11, Prop. 2(SI)] the following result 
was established.

Lemma 5.9  Let R be a consistent triple set. If the tree T 
obtained with BUILD applied on R is binary, then T is a 
unique tree on LR that displays R, i.e., for any tree T ′ on LR 
that displays R we have T ′ ≃ T .
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So-far, we have shown that event-labeled gene trees 
(T ; t, σ) for which a species tree exists can be character-
ized by a set of species triples S(T ; t, σ) that is easily con-
structed from a subset of triples displayed in T. From a 
biological point of view, however, it is necessary to recon-
cile a gene tree with a species tree such that genes do not 
“travel through time”. In [63], the authors gave algorithms 
to check whether a given reconciliation map µ is time-
consistent and for the construction of a time-consistent 
reconciliation maps, provided one exists. These algo-
rithms require as input an event-labeled gene tree and 
species tree. Hence, a necessary condition for the exist-
ence of time-consistent reconciliation maps is given by 
consistency of the species triple S(T ; t, σ) derived from 
(T ; t, σ). However, there are possibly exponentially many 
species trees that are consistent with S(T ; t, σ) for which 
some of them have a time-consistent reconciliation map 
with T and some not, see Fig. 4. The question therefore 
arises as whether there is at least one species tree S with 
time-consistent map, and if so, construct S.

Limitations of informative triples 
and reconciliation maps
In “Non-binary gene trees” section we have already dis-
cussed that consistency of S(T ; t, σ) cannot be used to 
characterize whether there is a reconciliation map that 
doesn’t need to satisfy (M2.iv) for some non-binary gene 
tree, see Fig. 3. In particular, Fig. 3 shows a biologically 
feasible binary gene trees (center-left) for which, how-
ever, neither a reconciliation map nor a restricted recon-
ciliation map exists.

A further simple example is given in Fig.  5. Consider 
the “true” history of the gene tree that evolves along 
the (tube-like) species tree in Fig.  5 (left). The set of 
extant genes G comprises a, a′, b, b′, c and c′ and σ maps 
each gene in G to the species (capitals below the genes) 
A,B,C ∈ S. For the observable gene tree (T ; t, σ) in 
Fig.  5 (center) we observe that R0 = {(ab|c), (b′c′|a′)} 
and thus, one obtains the inconsistent species triples 
S(T ; t, σ) = {(AB|C), (BC|A)}. Hence, Theorem  5.4 
implies that there is no species tree for (T ; t, σ). Note, 
(T ; t, σ) satisfies also Condition (O3.A). Hence, Theo-
rem 5.7 implies that no restricted reconciliation map to 
any species tree exists for (T ; t, σ). Nevertheless, (T ; t, σ) 
is biologically feasible as there is a true scenario that 
explains the gene tree.

Now consider the gene tree (T ; t, σ) in Fig. 6 (right). The 
set S(T ; t, σ) is consistent. Both, the species trees S that 
displays all informative triples and the reconciliation map 
µ from (T ; t, σ) to S, are unique. However, µ is not time-
consistent. Uniqueness of S and µ implies that there is no 
time-consistent reconciliation map for (T ; t, σ) to any spe-
cies tree. Thus, consistency of S(T ; t, σ) does not imply 
the existence of time-consistent reconciliation maps. It can 
be shown that (T ; t, σ) is biologically feasible.

Fig. 5  Shown is a binary and biologically feasible gene tree (T ; t , σ) (center) that is obtained as the observable part of the true scenario (left). 
However, there is no reconciliation map for (T ; t , σ) to any species tree according to Def. 2 because S(T ; t , σ) is inconsistent. Nevertheless, a relaxed 
reconciliation map µ between (T ; t , σ) and the species tree exists (right). However, this map does not satisfy Lemma 4.2(2) since µ(a′) = A and 
µ(lcaT

E
(b′ , c′)) are comparable. See text for further details
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Finally, we shortly discuss a relaxation of Condition 
(M2.i). Lemma  4.1 implies that µ(x) = lcaS(σT

E
(x)) is 

the lowest possible choice for the image of a speciation 
vertex. Nevertheless, it is possible to relax this condi-
tion, i.e., we could allow for speciation vertices x that 
µ(x) �S lcaS(σT

E
(x)). Indeed, there are relaxed recon-

ciliation maps for (T ; t, σ) and S, although no (restricted) 
reconciliation map for (T ; t, σ) to any species tree exists, 
see Fig. 5 (right). This example shows that the existence 
of relaxed reconciliation maps cannot be character-
ized by means of consistency of the informative triples 
in S(T ; t, σ). However, it might be of interest for future 
research to investigate this generalization in more detail 
and to understand to what extent relaxed reconciliation 
maps imply biologically feasibility.

We summarize the latter observations:

1.	 Consistency of S(T ; t, σ) is equivalent to the exist-
ence of a (restricted) reconciliation map. Thus, if 
S(T ; t, σ) is consistent, then there is also a relaxed 
reconciliation map. The converse is not true in gen-
eral.

2.	 Existence of time-consistent (restricted) reconcili-
ation maps implies the existence of (restricted) rec-
onciliation maps and thus, consistency of S(T ; t, σ). 
The converse is not true in general.

3.	 If (T ; t, σ) does not contain HGT-events and 
S(T ; t, σ) is consistent, then (T ; t, σ) is biologically 
feasible. The converse is not true in general.

4.	 If (T ; t, σ) contains HGT-events and there is a time-
consistent reconciliation map for (T ; t, σ) to some 
species tree, then (T ; t, σ) is biologically feasible. The 
converse is not true in general.

Conclusion and open problems
Event-labeled gene trees can be obtained by combining 
the reconstruction of gene phylogenies with methods for 
orthology and HGT detection. We showed that event-
labeled gene trees (T ; t, σ) for which a species tree exists 
can be characterized by a set of species triples S(T ; t, σ) 
that is easily constructed from a subset of triples dis-
played in T.

We have shown that biological feasibility of gene trees 
cannot be explained in general by reconciliation maps, 
that is, there are biologically feasible gene trees for which 
no reconciliation map to any species tree exists.

We close this contribution by stating some open prob-
lems that need to be solved in future work.

1.	 Are all event-labeled gene trees (T ; t, σ) biologically 
feasible? If not, how are biologically feasible gene trees 
characterized and what is the computational complex-
ity to recognize them?

2.	 The results established here are based on informa-
tive triples provided by the gene trees. If it is desired 
to find “non-restricted” reconciliation maps (those 
for which Condition (M2.iv) is not required) for non-
binary gene trees the following question needs to be 
answered: How much information of a non-restricted 
reconciliation map and a species tree is already con-
tained in non-binary event-labeled gene trees (T ; t, σ)

? The latter might also be generalized by consider-
ing relaxed reconciliation maps (those for which 
µ(x) ≻S lcaS(σT

E
(x)) for speciation vertices x or any 

other relaxation is allowed).
3.	 Our results depend on three axioms (O1)–(O3) on the 

event-labeled gene trees that are motivated by the fact 
that event-labels can be assigned to internal vertices 
of gene trees only if there is observable information 
on the event. The question which event-labeled gene 
trees are actually observable given an arbitrary, true 
evolutionary scenario deserves further investigation in 
future work, since a formal theory of observability is 
still missing.

4.	 The definition of reconciliation maps is by no means 
consistent in the literature. For the results established 
here we considered three types of reconciliation 
maps, that is, the “usual” map as in Def. 2 (as used in, 
e.g. [10, 31, 54, 63]), a restricted version (as used in, 
e.g. [12, 48]) and a relaxed version. However, a unified 
framework for reconciliation maps is desirable and 
might be linked with a formal theory of observability.

5.	 “Satisfiable” event-relations R1, . . . ,Rk are those for 
which there is a representing gene tree (T ; t, σ) such 
that (x, y) ∈ Ri if and only if t(lca(x, y)) = i. They are 

Fig. 6  Shown is a (tube-like) species trees S with reconciled gene tree 
(T ; t , σ) (taken from [63]). The informative triple set S(T ; t , σ) is con-
sistent and application of Lemma 5.9 shows that S is unique. Moreo-
ver, the reconciliation map µ is unique, however, not time-consistent. 
Thus, although S(T ; t , σ) is consistent, there is no time-consistent 
reconciliation map for (T ; t , σ) and S. Nevertheless, it can be shown 
that (T ; t , σ) is biologically feasible
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equivalent to so-called unp two-structures [6]. In par-
ticular, if event-relations consist of orthologs, paralogs 
and xenologs only, then satisfiable event-relations are 
equivalent to directed cographs [6]. Satisfiable event-
relations R1, . . . ,Rk are “S-consistent” if there is a spe-
cies tree S for the representing gene tree (T ; t, σ) [12, 
48]. However, given the unavoidable noise in the input 
data and possible uncertainty about the true relation-
ship between two genes, one might ask to what extent 
the work of Lafond et  al. [12, 48] can be generalized 
to determine whether given “partial” event-relations 
are S-consistent or not. It is assumable that subsets of 
the informative species triples S(T ; t, σ) that might be 
directly computed from such event-relations can offer 
an avenue to the latter problem. Characterization and 
complexity results for “partial” event-relations to be 
satisfiable have been addressed in [74].

6.	 In order to determine whether there is a time-consist-
ent reconciliation map for some given event-labeled 
gene tree and species trees fast algorithms have been 
developed [63]. However, these algorithms require as 
input a gene tree (T ; t, σ) and a species tree S. A nec-
essary condition to a have time-consistent (restricted) 
reconciliation map to some species tree is given by the 
consistency of the species triples S(T ; t, σ). However, 
in general there might be exponentially many spe-
cies trees that display S(T ; t, σ) for which some of 
them may have a time-consistent reconciliation map 
with (T ; t, σ) and some might have not (see Fig. 4 or 
[63]). Therefore, additional constraints to determine 
whether there is at least one species tree S with time-
consistent map, and if so, construct S, must be estab-
lished.

7.	 A further key problem is the reliable identification of 
horizontal transfer events. In principle, likely genes that 
have been introduced into a genome by HGT can be 
identified directly from sequence data [75]. Sequence 
composition often identifies a gene as a recent addi-
tion to a genome. In the absence of horizontal transfer, 
the similarities of pairs of true orthologs in the species 
pairs (A,B) and (A,C) are expected to be linearly cor-
related. Outliers are likely candidates for HGT events 
and thus can be “relabeled”. However, a more detailed 
analysis of the relational properties of horizontally 
transferred genes is needed.
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