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Abstract 

Background:  Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phy-
logenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large 
biological sequence alignment approaches for coping with different sequence types.

Methods:  Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files 
more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a 
highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment 
and phylogenetic tree construction.

Results:  The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that 
HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA 
and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high 
memory efficiency and scales well with increases in computing resource.

Conclusions:  THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. 
HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
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Background
Multiple sequence alignment (MSA) is a necessary step 
for analyzing biological sequence structures and func-
tions, phylogenetic inferences, and other basic fields in 
bioinformatics [1]. Given the rapid increment of biologi-
cal sequences in next-generation sequencing [2], difficul-
ties arise from insufficiency of available state-of-the-art 
methods for addressing ultra-large sources.

Increasingly more different parallelization strategies 
are implemented for reducing time and space complexity 
of MSA. These strategies can be mainly categorized into 

three levels: multiple threads based on central processing 
unit (CPU) on a single machine, multiple threads based 
on graphics processing unit (GPU) on a single machine, 
and multiple threads based on CPUs or GPUs on cluster 
machines. CPU-based multiple threads, which are com-
mon and effortless, suit small-scale sequence alignment. 
With emergence of bottlenecks in increasing clock fre-
quency of multi-core CPUs, Moore’s law became mean-
ingless [3]. Based on NVIDIA GPU, compute unified 
device architecture (CUDA) technique was designed for 
efficient parallelism [4, 5]. GPU functions in real-time 
rendering of screens, because hundreds of cores in GPUs 
can efficiently calculate pixels or coordinates in parallel. 
However, under limited video memory size and band-
width, alignment of ultra-large sequences becomes dif-
ficult or even impossible [6]. With high computational 
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cost, most naive algorithms attempted to reduce time and 
space complexity to cope with ultra-large analysis tasks.

Recently, large-scale distributed computing was 
applied extensively to various biological analyses, such 
as ClustalW-MPI [7], Hadoop-BAM [8], HAlign [9], and 
HPTree [10]. For next-generation sequencing, CloudDOE 
[11], BioPig [12], and SeqPig [13] were implemented; 
these software benefited from using open-source dis-
tributed frameworks. Different from traditional single 
machine systems, distributed computing systems perform 
load-balancing for fault-tolerant parallelized tasks and can 
be easily extended to cheaper devices for improvement of 
computing power. Additionally, distributed computing 
systems based on MapReduce framework present more 
abstract interfaces and more elastic computing resources 
than those based on message passing interface (MPI) [14]. 
Ultra-large biological sequence analysis can be efficiently 
addressed by assembling distributed and parallel comput-
ing systems with numerous cheap devices [15–17].

Although HAlign software, which is based on Hadoop 
framework [18], exhibits better computing power and 
expansibility than other strategies running on a sin-
gle machine. Apache Spark framework works up to 100 
times faster than Hadoop, especially in iterative operators. 
Apache Spark can also accelerate real-world data analytics 
approximately 40 times faster than Hadoop and can even 
be employed to scan one TB data in five- to seven-second 
latency [19]. Based on Spark framework [20], Marek et al. 
developed SparkSeq [21], which can be used to analyze 
nucleotide sequences with considerable scalability. Zhao 
et al. developed SparkSW [3], which can carry out Smith–
Waterman algorithm [22] in load-balancing way on a dis-
tributed system to cope with increasing sizes of biological 
sequence databases. However, SparkSeq can only work with 
nucleotide sequences but not with protein sequences; thus, 
Smith–Waterman algorithm in SparkSW cannot achieve 
peer performance on nucleotide sequences. Additionally, 
both SparkSeq and SparkSW are fairly suitable for develop-
ers, they do not support generation of phylogenetic trees.

We implemented HAlign-II based on HAlign work, 
HPTree work, and Apache Spark framework to address 
ultra-large multiple biological sequence alignment and 
construct large-scale phylogenetic trees. HAlign-II shows 
high memory efficiency with large-scale MSA and phy-
logenetic trees construction, scales well with increasing 
computing resources, and provides a user-friendly web 
server deployed on our infrastructure.

The rest of this paper is organized as follows. In the 
following section, we first introduce the Apache Spark 
framework. Based on Spark framework, respectively, 
we describe Smith–Waterman algorithm for protein 
sequence alignment, trie trees algorithm for nucleotide 
sequence alignment, and neighbor-joining (NJ) method 

[23] for phylogenetic trees construction. Thereafter, we 
present datasets and comparative experiments with state-
of-the-art tools and evaluate memory efficiency and scal-
ability of HAlign-II. Last, preceding experimental results 
are discussed, and conclusion of the study is provided.

Methods
Overview of Apache Spark
Apache Hadoop and Apache Spark are famous open-
source frameworks in the field of distributed computing. 
Hadoop mainly contains Hadoop Distributed File System 
(HDFS) [18] for distributed storage and MapReduce pro-
gramming model for big datasets [24]. HDFS stores data on 
inexpensive machines, providing dependable fault-tolerant 
mechanism and high-aggregate bandwidth across clusters. 
Spark aims to blueprint a programming model that extends 
applications of MapReduce model and achieves high com-
putational efficiency-based memory cache.

Spark designs an abstract data structure named resil-
ient distributed datasets (RDDs) [19] to support efficient 
computing and to ensure distribution of datasets on clus-
ter machines. RDDs support extensive variety of iterative 
algorithms, a highly efficient SQL engine Shark, and a 
large-scale graph computing engine GraphX. RDDs stay-
ing in memory cache will visibly reduce load time when 
requiring replication, especially in iterative operations. 
From Fig. 1, to further reduce time and cost, two types of 
operations in RDDs are designed: transforms and actions 
[19]. Transforms only deliver computing graphs, which 
only describe how to compute and not how to carry out 
computing operations, such as map and filter operation. 
Actions carry out computing, such as reduce and col-
lect operations, results of which are stored as new RDDs. 
Based on these operations, RDDs are efficiently executed 
in parallel. To ensure dependable fault tolerance, RDDs 
will be recomputed after data loss, for example, because 
of halting of individual machines. Based on RDDs, Spark 
can implement up to 100 times theoretical speed than 
Hadoop in real-world datasets [19].

Fig. 1  A simple Spark workflow
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Smith–Waterman algorithm for protein sequences 
with Spark
With its high sensitivity, Smith–Waterman algorithm 
[23] can locally align object and subject sequences to 
obtain similarity segments based on dynamic program-
ming; however, global alignment results cannot be 
obtained. In the past decades, this algorithm was cited 
over 8000 times in the biological field.

Smith–Waterman algorithm can search the best align-
ment location through given scoring methods, such as 
substitution matrix and gap-scoring scheme. Negative 
scoring matrix cells of this algorithm are set to zero, 
which is necessary for achieving alignment location. 
Traceback procedure of alignment starts from highest 
scoring matrix cell and proceeds until a cell with score 
of zero is encountered, thereby yielding the highest local 
alignment scoring. Suppose that n and m correspond to 
respective lengths of A and B sequences, then substitu-
tion matrix and gap-scoring scheme are respectively 
represented by s(a, b) and Wk. Then, Smith–Waterman 
algorithm creates scoring matrix H and initializes the 
first row and column; the process can be formulated as 
follows:

Then, the rest of matrix H should be filled with similar-
ity scores, which are formulated as follows:

where Hi−1,j−1 + s
(

ai, bj
)

 represents similarity scores 
between ai and bj, Hi−k,j −  Wk corresponds to matched 
scores when ai points to the end of a k length gap, 
Hi,j−l −  Wl is the matched scores when bj points to the 
end of a l length gap, and 0 indicates absence of similarity.

Figure  2 shows gradual traceback from the highest-
score matrix cell to lowest-score matrix cell, looping to 
dynamic programming based on zero-score matrix cell. 
The algorithm obtains inserted space positions and gen-
erates pairwise alignment results.

As high time and space complexity of Smith–Water-
man algorithm poses challenges concerning ultra-large 
datasets, this paper implements this algorithm on distrib-
uted computing system based on Spark framework.

As shown in Fig. 3, the entire processing procedure is 
partitioned into two MapReduce steps. In the first step, 
the extracted center star sequence based on Smith–
Waterman algorithm becomes a broadcast variable to 
align other sequences for filling inserted space matrix 
cells; this sequence records positions and numbers of 
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inserted space. Then, first reduction generates the last 
and longest center star sequence for further calcula-
tions. Score matrix and center star sequence are cached 
in memory, spreading the center star sequence to each 
data node. Next, final pairwise alignment is initiated by 
inserted space matrix and each individual sequence. 
Finally, HDFS stores MSA results.

Trie trees method for similar nucleotide sequences 
with Spark
Smith–Waterman algorithm is accurate and mature and 
thus is suitable for protein sequence alignment of com-
plex structures and elements. However, to obtain high 
similarity of most nucleotide sequences during alignment, 
running time of Smith–Waterman algorithm extremely 
increases, especially with ultra-large nucleotide sequences. 
Hence, this work considers tree-based data structures to 
address the problem in ultra-large nucleotide sequence 
alignment. A series of MSA methods about tree-based 
data structures are applied; such methods include BLAT 
[25] and Hobbes [26]. According to HAlign [9], trie tree 
serves as an efficient data structure for storing multiple 
sequences; this structure quickly indexes common sub-
strings from long strings and accelerates MSA search. 
A trie tree only features one root node and n leafs for n 
nucleotide sequences [27]. Additionally, trie tree can speed 
up search in linear running time by failure links.

Fig. 2  Traceback procedure and pairwise alignment results of Smith–
Waterman algorithm
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Two primary steps can be used to realize MSA based 
on trie tree: select a center star sequence for pairwise 
alignment and to integrate inserted spaces. Center 
star sequence contains the most segments among all 
sequences, thereby implying that it is the most similar 
to other sequences. As large-scale nucleotide sequences 
are similar, the first sequence represents the center 
sequence. Thereafter, other sequences are aligned to 
center sequence based on unmatched segments from the 
trie tree. In HAlign-II, this step is designed as numer-
ous highly parallel operations across data construction 
of RDDs and is partitioned into memory on multiple 
workers. Pairwise alignment costs linear running time 
instead of exponential running time. Suppose that n simi-
lar nucleotide sequences with average length of m exists. 
Then, time complexity of trie tree algorithm is O(n2m); 
trie tree algorithm requires less running time than the 
original center star method (time complexity is O(n2m2)). 
For n − 1 times pairwise sequence alignment, time com-
plexity is O

(

nm2
)

. However, practical time consumed is 
far less than theoretical value because matched segments 
are skipped in high sequences. If n ≪ m, then practical 
time consumed can be regarded as linear. In the last step, 
multiple alignment results are partitioned into new RDDs 
and delivered to multiple distributed workers for calcu-
lation. Center star sequence and its alignment results 
spread to entire Spark cluster as shared similar constants, 
as presented in Fig. 3, to further reduce running time.

NJ method for constructing phylogenetic trees with Spark
Frequently, MSA is required before constructing phyloge-
netic trees, such as MAFFT, MEGA, IQ-TREE, FastTree, 

iGTP, SATe-II, phangorn and our NJ method. However, 
most MSA tools cannot address large or ultra-large num-
bers of sequences. Based on MSA and Spark framework, 
this paper implement NJ method for constructing phylo-
genetic trees.

Phylogenetic trees can be built using distance-
based, maximum parsimony, and maximum likelihood 
approaches [10]. NJ approach [23] represents one of the 
distance-based approaches, and according to HPTree 
work, it is time-efficient and suitable for ultra-large 
sequences data.

As shown in Fig.  4, based on parallel computing, we 
first cluster all MSA results into several clusters. Then, 
we calculate individual phylogenetic tree based on indi-
vidual clusters. Last, all phylogenetic trees are merged on 
clusters into the final evolution tree. We highlight the ini-
tial clustering procedure. Approximately 10% (a changea-
ble threshold value) of all MSA sequences are selected by 
random sampling for initial clustering. Then, functional 
distance of each pairwise MSA sequence is calculated, 
clustered, and labeled until all sequences are identified. 
When few clusters whose number of elements is over 
10%, then they are merged into other clusters; otherwise, 
they are divided into more balanced clusters until bal-
anced construction. The entire procedure is designed for 
Spark parallel model in Fig. 4.

Results and experiments
Datasets and metrics
The main research object of HAlign-II is ultra-large bio-
logical sequences dataset included protein sequences and 
nucleotide sequences. For protein sequences datasets, 

Fig. 3  MSA procedures based on Spark distributed framework
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BAliBASE [28] is regarded as golden benchmark, with 
BAliBASE 4 as the newest version. The tests in the BAli-
BASE 4 benchmark suite are divided into 10 different ref-
erence sets. For each test, a number of files are provided, 
while all files derived from different families contain the 
sequences corresponding to the homologous regions 
only. And a family in a reference set is matched to a given 
reference alignment for evaluating. Each family need to 
be aligned simultaneously. In order to focus on the per-
formance with increasing sequences scale, we employ the 
newest and largest R10 reference set ΦProtein as our pro-
tein sequence datasets (that is, 218 MSAs are indepen-
dently constructed).

According to previous HAlign work [9], we use human 
mitochondrial genomes ΦDNA and 16s rRNA ΦRNA as 
nucleotide sequences datasets [29]. After MSA, phyloge-
netic trees are generated by MSA results on Spark plat-
form. Table 1 shows more detailed information regarding 
biological datasets.

The original bali score program in BAliBASE used 
a different way of handling gaps in segments, which 
resulted in incorrect normalizations, so that even perfect 
multiple alignments could have a score less than one. To 
determine the similarity of the alignment obtained by a 

program to the reference alignment in BAliBASE, col-
umn score (CS) and sum-of-pair score (SPS) are calcu-
lated as two alignment scores according to Karplus’s work 
[30]. The CS counts the number of columns of the seg-
ments that are aligned correctly in all sequences, normal-
ized by the number of alignment columns. It is noticeable 
however, that one badly misaligned sequence reduces CS 
from 1 to 0. Indeed we have observed that CS tends to be 
almost a binary value—with each alignment either being 
very good or scoring 0. The SPS counts how many pairs 
of residues are correctly aligned. Suppose that there is an 
alignment with N sequences of length of M, if in column 
i, both sequence x and sequence y have residues aligned 
in a segment of the reference alignment, then pair value 
Pixy equals 2; if one of both alignments has a gap, then 
Pixy equals 1, otherwise Pixy equals 0. The total score is 
normalized by the maximum possible score, so that the 
range of possible values is from 0 to 1, with 1 indicating a 
multiple alignment that is identical on the segments. The 
score Si with the ith column and SPS are

where Mr is the number of columns in the segments of 
the reference alignment and Sri is the score Si for the ith 
column in the reference alignment. For achieving better 
evaluation of ultra-large-scale alignments, we employ 
average SPS as the final metric of MSA experiments.

In essence, the higher the SPS or is, the more accu-
rate is the alignments generated by the programs. In this 
paper, we calculated the alignment scores for evaluating 
protein and nucleotide alignments.

As HAlign-II contains three types of biological 
sequence alignment and phylogenetic tree construction 
based on Spark platform, our experimental environment 
consists of a cluster comprising 12 workstations. Each 
workstation features 384 GB physical memory with Intel 
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Fig. 4  Constructing phylogenetic trees based on distance measure

Table 1  Original dataset and datasets after threshold removal

Dataset Number Minimum length Maximum length Average length File size

ΦDNA(1 ×) 672 16,556 16,579 16,569.7 10 MB

ΦDNA(100 ×) 67,200 As above As above As above 1.1 GB

ΦDNA(1000 ×) 672,000 As above As above As above 11 GB

ΦRNA(small) 108,453 807 1599 1442.8 156 MB

ΦRNA(large) 1,011,621 807 1629 1388.5 1.4 GB

ΦProtein(1 ×) 17,892 (218 families) 19 4895 459.0 15 MB

ΦProtein(100 ×) 1,789,200 (218 families) As above As above As above 1.5 GB

ΦProtein(1000 ×) 17,892,000 (218 families) As above As above As above 15 GB
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Xeon E5-2620 processors, and each processor contains 
eight processing cores. Based on Ubuntu 16.04 operating 
system and Spark 2.0.2, a series of experiments are pre-
sented in succeeding sections.

Comparison with state‑of‑the‑art tools
We select a series of state-of-the-art tools to compare 
with HAlign-II and evaluate its performance on address-
ing ultra-large datasets. Our comparison eliminates 
Kalign [31] is completely unsuitable for large-scale data-
sets. Similarly, phangorn [32], RAxML [33], Pasta [34], 
and STELLS [35] are eliminated because of their nearly 
intolerable time consumption. In particularly, Clustal 
Omega [36], designed for handling data-sets of hundreds 
of thousands of sequences in reasonable time, has no 
edge than other state-of-the-art tools in our large-scale 
datasets. As should be mentioned, SparkSW method uses 
Spark version 1.0; however, the newest version used in 
our cluster is 2.0, which performs better in theory. Addi-
tionally, we deploy the newest Hadoop framework on our 
cluster for running HAlign.

Experiment (a) Based on MUSCLE (version 3.8, fast 
parameter “− maxiters 2” is used, the same below) [37], 
MAFFT (version 7.3, fast parameter “− parttree” is used, 
the same below) [38], Clustal-Omega (version 1.2.4, 
default mode is used, the same below) [36], HAlign, 
and HAlign-II tools, we implement ultra-large multiple 
similar genome sequence alignments with ΦDNA(1  ×), 
ΦDNA(100 ×), and ΦDNA(1000 ×) datasets.

Experiment (b) Based on MUSCLE, MAFFT, Clustal-
Omega, HAlign, and HAlign-II tools, we implement 
ultra-large multiple dissimilarity RNA sequence align-
ments with ΦRNA(small) and ΦRNA(large) datasets.

Experiment (c) Based on MUSCLE, MAFFT, Clustal-
Omega, SparkSW, and HAlign-II tools, we implement 
ultra-large multiple dissimilarity protein sequence 
alignments with ΦProtein(1  ×), ΦProtein(100  ×), and 
ΦProtein(1000  ×) datasets. It is noticeable that MUSLE, 
MAFFT, SparkSW and HAlign-II align each family in the 
reference set, respectively.

Experiment (d) Based on IQ-TREE (version 1.5.5, mul-
tithread mode) [39], HPTree, and HAlign-II tools, we 
construct ultra-large phylogenetic trees with ΦDNA(1 ×), 
ΦDNA(100 ×), ΦDNA(1000 ×), ΦRNA(small), ΦRNA(large), 
ΦProtein(1 ×), ΦProtein(100 ×), and ΦProtein(1000 ×) data-
sets. For our HAlign-II method, we initially align multi-
ple sequences and then build phylogenetic trees.

Tables  2, 3, and 4 respectively show all experiment 
results with genome MSA, RNA MSA, and protein MSA. 
Surprisingly, MUSCLE exhibits extreme time consump-
tion. Based on our experiments, MUSCLE performs 
best with small datasets, but it cannot properly allocate 
memory resource, resulting in high memory occupancy 
rate. Hence, MUSCLE eventually reports an out-of-mem-
ory message with ultra-large datasets. For large data-
sets, Mafft and Clustal-Omega are faster than default 
Muscle and fast Muscle. And Mafft is always the fastest 
one than Muscle and Clustal-Omega. However, MUS-
CLE, MAFFT and Clustal-Omega cannot deal with the 
present ultra-large datasets. Based on Hadoop frame-
work, HAlign and HPTree perform better, but many 
key-value pair conversion operators also result in high 
memory occupancy rate. Considering the problems lead-
ing to degraded performance, HAlign-II utilizes memory 
operation on hard disks, cutting down space complexity 
and memory occupancy rate. These improvements facili-
tate running of sequence analysis on clusters compris-
ing cheap large-scale and low-end machines. However, 
HAlign-II features an average SP score that is inferior to 
those of other methods. Our method ignores high preci-
sion for changing large-scale computing power, which is 
necessary for several decision research.

Table  5 presents running times of several outstand-
ing tools on phylogenetic trees construction. IQ-TREE 
with multiple threads consumes more time than HPTree 
and HAlign-II, as distributed computing on a single 
node utilizes multiple threads and features time-effi-
cient data construction. Phylogenetic tree performance 
is evaluated by maximum likelihood value under log 
functions. HPTree point reaches –  219,543,85, which 
is similar to that of NJ model in MEGA [40], implying 

Table 2  Running time and average SPS with genome MSA

Memory is the maximum memory usage (the same as below)

ΦDNA(1 ×) ΦDNA(100 ×) ΦDNA(1000 ×)

Time Memory Avg SPS Time Memory (GB) Avg SPS Time Memory (GB) Avg SPS

MUSCLE 45 m 23 s ~ 8 GB 0.951 – – – – – –

MAFFT 1 m 20 s ~ 100 MB 0.926 13 m 21 s ~ 8 0.926 – – –

Clustal-Omega 1 h 25 m ~ 3 GB 0.913 15 h 56 m ~ 30 0.913 – – –

HAlign 2 m 12 s ~ 300 MB 0.722 26 m 35 s ~ 8 0.722 5 h 28 m ~ 40 0.722

HAlign-II 14 s ~ 100 MB 0.723 10 m 24 s ~ 2 0.723 1 h 25 m ~ 15 0.723
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close performance of results of both methods. Similarly, 
out-of-memory error occurs when running the HPTree 
method. Currently, no outstanding method exists for 
constructing large-scale evolutionary trees, even on 
workstation clusters. Constructing phylogenetic trees 
based on MSA results can speed up construction speed.

Memory efficiency and scalability
Currently, most time-efficient methods, such as MUS-
CLE with small datasets and Mafft/Clustal-Omega/
HAlign for large-scale datasets, present extremely large 
space complexities, resulting in impossibility to actually 
address ultra-large datasets. Based on all experimental 
results of Tables 2, 3, 4 and 5, we compare memory usage 
of HAlign-II with other state-of-the-art methods in Fig. 5.

Figure  5 shows average maximum memory usage of 
each machine on the cluster containing 12 machines for 
SparkSW/HAlign/HAlign-II and a standalone machine 
for MUSCLE/Mafft/Clustal-Omega. To conclude, Spark 
framework exhibits more efficient memory than Hadoop 
framework, as shown by inferiority of HAlign compared 
with other methods. Whether for nucleotide sequences 
or protein sequences, HAlign-II presents the lowest 
average maximum memory usage, thereby facilitating 
ultra-large MSA and phylogenetic tree construction on 
cheaper clusters.

Additionally, Fig. 6 shows that with increase in worker 
nodes, running time and memory efficiency becomes sig-
nificantly low, indicating linear growth of capacity and 
computing power with increase of such nodes.

Table 3  Running time and average SPS with RNA MSA

ΦRNA(small) ΦRNA(large)

Time Memory (GB) Avg SPS Time Memory (GB) Avg SPS

MUSCLE 1 h 25 m ~ 13 0.821 – – –

MAFFT 45 m 33 s ~ 10 0.815 – – –

Clustal-Omega 4 h 16 m ~ 10 0.835 – – –

HAlign 1 h 32 s ~ 2 0.631 3 h 15 m ~ 10 0.631

HAlign-II 23 m 34 s ~ 1 0.633 59 m 42 s ~ 2 0.633

Table 4  Running time and average SPS with protein MSA

ΦProtein(1 ×) ΦProtein(100 ×) ΦProtein(1000 ×)

Time Memory (MB) Avg SPS Time Memory (GB) Avg SPS Time Memory (GB) Avg SPS

MUSCLE 3 m 13 s ~ 300 0.892 ~ 34 h ~ 10 0.892 – – –

MAFFT 5 m 53 s ~ 100 0.878 37 m 51 s ~ 5 0.878 7 h 22 m ~ 30 0.878

Clustal-Omega 54 m 08 s ~ 100 0.912 28 h 15 m ~ 5 0.912 – – –

SparkSW 3 m 23 s ~ 100 0.716 1 h 12 m ~ 2 0.716 5 h 30 m ~ 18 0.716

HAlign-II 1 m 45 s ~ 100 0.695 26 m 36 s ~ 1 0.695 2 h 52 m ~ 10 0.695

Table 5  Running time during phylogenetic trees construction

IQ-TREE HPTree HAlign-II

Time Memory Time Memory Time Memory

ΦDNA(1 ×) 9 m 52 s ~ 100 MB 1 m 25 s ~ 300 MB 27 s ~ 100 MB

ΦDNA(100 ×) 1 h 2 m ~ 5 GB 45 m 32 s ~ 8 GB 17 m 45 s ~ 1 GB

ΦDNA(1000 ×) – – – – 1 h 45 m ~ 10 GB

ΦRNA(small) – – 6 h 23 m ~ 2 GB 52 m 39 s ~ 1 GB

ΦRNA(large) – – 28 h 36 m ~ 10 GB 8 h 20 m ~ 2 GB

ΦProtein(1 ×) 22 m 12 s ~ 100 MB Not supported Not supported 2 m 24 s ~ 100 MB

ΦProtein(100 ×) 5 h 05 m ~ 5 GB Not supported Not supported 33 m 32 s ~ 1 GB

ΦProtein(1000 ×) 38 h 52 m ~ 30 GB Not supported Not supported 3 h 36 m ~ 10 GB
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Discussion
Multiple biological sequence alignment and phylogenetic 
tree construction present complicated inter-relationships, 
and both are necessary for sequence analysis. In the last 
several decades, many state-of-the-art methods and algo-
rithms were created for more time- and space-efficient 

MSA and phylogenetic trees construction issues. With 
increasing next-generation sequence database, addressing 
ultra-large datasets became an unprecedented challenge. 
Other outstanding methods were developed to improve 
time efficiency even with precision loss; such meth-
ods include ClustalW-MPI, Hadoop-BAM, HAlign, and 

Fig. 5  Average maximum memory usage of various experiments

Fig. 6  Running time with increasing worker nodes
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HPTree. Thus, with the urgent need for additional time-
efficient and computing power for ultra-large datasets, we 
conduct a series of experiments to assess the performance 
of our HAlign-II method.

Based on Spark distributed and parallel computing 
model, Smith–Waterman algorithm, trie trees, and NJ 
methods are employed to completely utilize hardware 
resources and computing power. For ultra-large genome 
and RNA MSA experiments, MUSCLE, MAFFT and 
Clustal-Omega achieve high accuracies. However, both 
traditional tools show complete incompatibility with 
large datasets. Methods based on distributed comput-
ing model present remarkable advantages, especially 
HAlign-II, which presents the highest memory efficiency. 
SparkSW and HAlign-II work well for ultra-large pro-
tein MSA experiments. However, the former still needs 
to further cut down memory occupation. Difficulty also 
arises from insufficient phylogenetic tree construction 
for ultra-large protein sequences. For ultra-large phyloge-
netic tree construction based on MSA results, most tools 
run out of memory, and even nearly 400 GB memory can-
not address the requirement of 10 GB size datasets. All 
experimental results indicate that with regard to ultra-
large nucleotide MSA or protein MSA and phylogenetic 
tree construction, HAlign-II performs best with regard to 
time efficiency, memory efficiency, and scalability.

Conclusions
This paper presents a distributed and parallel comput-
ing tool named HAlign-II to address ultra-large multiple 
biological sequence alignment and phylogenetic tree con-
struction. After comparing this tool with a series of state-
of-the-art methods with ultra-large data, we conclude 
that HAlign-II features three advantages: (1) extremely 
high memory efficiency and good scaling with increases 
in computing resource; (2) efficient construction of phy-
logenetic trees with ultra-large biological sequences; (3) 
provision of user-friendly web server based on high per-
formance and distributed computing infrastructure; the 
server is established at http://lab.malab.cn/soft/halign. 
These improvements will be significant in coping with 
extreme increases in next-generation sequencing.
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