
Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25
DOI 10.1186/s13015-017-0116-x

RESEARCH

HAlign‑II: efficient ultra‑large multiple
sequence alignment and phylogenetic tree
reconstruction with distributed and parallel
computing
Shixiang Wan1 and Quan Zou1,2*

Abstract 

Background:  Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phy-
logenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large
biological sequence alignment approaches for coping with different sequence types.

Methods:  Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files
more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a
highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment
and phylogenetic tree construction.

Results:  The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that
HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA
and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high
memory efficiency and scales well with increases in computing resource.

Conclusions:  THAlign-II provides a user-friendly web server based on our distributed computing infrastructure.
HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.

Keywords:  Multiple sequence alignment, Phylogenetic trees, Distributed computing, Spark

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Multiple sequence alignment (MSA) is a necessary step
for analyzing biological sequence structures and func-
tions, phylogenetic inferences, and other basic fields in
bioinformatics [1]. Given the rapid increment of biologi-
cal sequences in next-generation sequencing [2], difficul-
ties arise from insufficiency of available state-of-the-art
methods for addressing ultra-large sources.

Increasingly more different parallelization strategies
are implemented for reducing time and space complexity
of MSA. These strategies can be mainly categorized into

three levels: multiple threads based on central processing
unit (CPU) on a single machine, multiple threads based
on graphics processing unit (GPU) on a single machine,
and multiple threads based on CPUs or GPUs on cluster
machines. CPU-based multiple threads, which are com-
mon and effortless, suit small-scale sequence alignment.
With emergence of bottlenecks in increasing clock fre-
quency of multi-core CPUs, Moore’s law became mean-
ingless [3]. Based on NVIDIA GPU, compute unified
device architecture (CUDA) technique was designed for
efficient parallelism [4, 5]. GPU functions in real-time
rendering of screens, because hundreds of cores in GPUs
can efficiently calculate pixels or coordinates in parallel.
However, under limited video memory size and band-
width, alignment of ultra-large sequences becomes dif-
ficult or even impossible [6]. With high computational

Open Access

Algorithms for
Molecular Biology

*Correspondence: zouquan@tju.edu.cn
2 Guangdong Province Key Laboratory of Popular High Performance
Computers, Shenzhen University, Shenzhen, China
Full list of author information is available at the end of the article

http://lab.malab.cn/soft/halign
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0116-x&domain=pdf

Page 2 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

cost, most naive algorithms attempted to reduce time and
space complexity to cope with ultra-large analysis tasks.

Recently, large-scale distributed computing was
applied extensively to various biological analyses, such
as ClustalW-MPI [7], Hadoop-BAM [8], HAlign [9], and
HPTree [10]. For next-generation sequencing, CloudDOE
[11], BioPig [12], and SeqPig [13] were implemented;
these software benefited from using open-source dis-
tributed frameworks. Different from traditional single
machine systems, distributed computing systems perform
load-balancing for fault-tolerant parallelized tasks and can
be easily extended to cheaper devices for improvement of
computing power. Additionally, distributed computing
systems based on MapReduce framework present more
abstract interfaces and more elastic computing resources
than those based on message passing interface (MPI) [14].
Ultra-large biological sequence analysis can be efficiently
addressed by assembling distributed and parallel comput-
ing systems with numerous cheap devices [15–17].

Although HAlign software, which is based on Hadoop
framework [18], exhibits better computing power and
expansibility than other strategies running on a sin-
gle machine. Apache Spark framework works up to 100
times faster than Hadoop, especially in iterative operators.
Apache Spark can also accelerate real-world data analytics
approximately 40 times faster than Hadoop and can even
be employed to scan one TB data in five- to seven-second
latency [19]. Based on Spark framework [20], Marek et al.
developed SparkSeq [21], which can be used to analyze
nucleotide sequences with considerable scalability. Zhao
et al. developed SparkSW [3], which can carry out Smith–
Waterman algorithm [22] in load-balancing way on a dis-
tributed system to cope with increasing sizes of biological
sequence databases. However, SparkSeq can only work with
nucleotide sequences but not with protein sequences; thus,
Smith–Waterman algorithm in SparkSW cannot achieve
peer performance on nucleotide sequences. Additionally,
both SparkSeq and SparkSW are fairly suitable for develop-
ers, they do not support generation of phylogenetic trees.

We implemented HAlign-II based on HAlign work,
HPTree work, and Apache Spark framework to address
ultra-large multiple biological sequence alignment and
construct large-scale phylogenetic trees. HAlign-II shows
high memory efficiency with large-scale MSA and phy-
logenetic trees construction, scales well with increasing
computing resources, and provides a user-friendly web
server deployed on our infrastructure.

The rest of this paper is organized as follows. In the
following section, we first introduce the Apache Spark
framework. Based on Spark framework, respectively,
we describe Smith–Waterman algorithm for protein
sequence alignment, trie trees algorithm for nucleotide
sequence alignment, and neighbor-joining (NJ) method

[23] for phylogenetic trees construction. Thereafter, we
present datasets and comparative experiments with state-
of-the-art tools and evaluate memory efficiency and scal-
ability of HAlign-II. Last, preceding experimental results
are discussed, and conclusion of the study is provided.

Methods
Overview of Apache Spark
Apache Hadoop and Apache Spark are famous open-
source frameworks in the field of distributed computing.
Hadoop mainly contains Hadoop Distributed File System
(HDFS) [18] for distributed storage and MapReduce pro-
gramming model for big datasets [24]. HDFS stores data on
inexpensive machines, providing dependable fault-tolerant
mechanism and high-aggregate bandwidth across clusters.
Spark aims to blueprint a programming model that extends
applications of MapReduce model and achieves high com-
putational efficiency-based memory cache.

Spark designs an abstract data structure named resil-
ient distributed datasets (RDDs) [19] to support efficient
computing and to ensure distribution of datasets on clus-
ter machines. RDDs support extensive variety of iterative
algorithms, a highly efficient SQL engine Shark, and a
large-scale graph computing engine GraphX. RDDs stay-
ing in memory cache will visibly reduce load time when
requiring replication, especially in iterative operations.
From Fig. 1, to further reduce time and cost, two types of
operations in RDDs are designed: transforms and actions
[19]. Transforms only deliver computing graphs, which
only describe how to compute and not how to carry out
computing operations, such as map and filter operation.
Actions carry out computing, such as reduce and col-
lect operations, results of which are stored as new RDDs.
Based on these operations, RDDs are efficiently executed
in parallel. To ensure dependable fault tolerance, RDDs
will be recomputed after data loss, for example, because
of halting of individual machines. Based on RDDs, Spark
can implement up to 100 times theoretical speed than
Hadoop in real-world datasets [19].

Fig. 1  A simple Spark workflow

Page 3 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

Smith–Waterman algorithm for protein sequences
with Spark
With its high sensitivity, Smith–Waterman algorithm
[23] can locally align object and subject sequences to
obtain similarity segments based on dynamic program-
ming; however, global alignment results cannot be
obtained. In the past decades, this algorithm was cited
over 8000 times in the biological field.

Smith–Waterman algorithm can search the best align-
ment location through given scoring methods, such as
substitution matrix and gap-scoring scheme. Negative
scoring matrix cells of this algorithm are set to zero,
which is necessary for achieving alignment location.
Traceback procedure of alignment starts from highest
scoring matrix cell and proceeds until a cell with score
of zero is encountered, thereby yielding the highest local
alignment scoring. Suppose that n and m correspond to
respective lengths of A and B sequences, then substitu-
tion matrix and gap-scoring scheme are respectively
represented by s(a, b) and Wk. Then, Smith–Waterman
algorithm creates scoring matrix H and initializes the
first row and column; the process can be formulated as
follows:

Then, the rest of matrix H should be filled with similar-
ity scores, which are formulated as follows:

where Hi−1,j−1 + s
(

ai, bj
)

 represents similarity scores
between ai and bj, Hi−k,j − Wk corresponds to matched
scores when ai points to the end of a k length gap,
Hi,j−l − Wl is the matched scores when bj points to the
end of a l length gap, and 0 indicates absence of similarity.

Figure 2 shows gradual traceback from the highest-
score matrix cell to lowest-score matrix cell, looping to
dynamic programming based on zero-score matrix cell.
The algorithm obtains inserted space positions and gen-
erates pairwise alignment results.

As high time and space complexity of Smith–Water-
man algorithm poses challenges concerning ultra-large
datasets, this paper implements this algorithm on distrib-
uted computing system based on Spark framework.

As shown in Fig. 3, the entire processing procedure is
partitioned into two MapReduce steps. In the first step,
the extracted center star sequence based on Smith–
Waterman algorithm becomes a broadcast variable to
align other sequences for filling inserted space matrix
cells; this sequence records positions and numbers of

(1)Hk0 = H0l = 0, (0 ≤ k ≤ n, 0 ≤ l ≤ m).

(2)

Hij = max















Hi−1,j−1 + s
�

ai , bj
�

,

maxk≥1

�

Hi−k ,j −Wk

�

,

maxl≥1

�

Hi,j−l −Wl

�

,

0

�

1 ≤ i ≤ n, 1 ≤ j ≤ m
�

.

inserted space. Then, first reduction generates the last
and longest center star sequence for further calcula-
tions. Score matrix and center star sequence are cached
in memory, spreading the center star sequence to each
data node. Next, final pairwise alignment is initiated by
inserted space matrix and each individual sequence.
Finally, HDFS stores MSA results.

Trie trees method for similar nucleotide sequences
with Spark
Smith–Waterman algorithm is accurate and mature and
thus is suitable for protein sequence alignment of com-
plex structures and elements. However, to obtain high
similarity of most nucleotide sequences during alignment,
running time of Smith–Waterman algorithm extremely
increases, especially with ultra-large nucleotide sequences.
Hence, this work considers tree-based data structures to
address the problem in ultra-large nucleotide sequence
alignment. A series of MSA methods about tree-based
data structures are applied; such methods include BLAT
[25] and Hobbes [26]. According to HAlign [9], trie tree
serves as an efficient data structure for storing multiple
sequences; this structure quickly indexes common sub-
strings from long strings and accelerates MSA search.
A trie tree only features one root node and n leafs for n
nucleotide sequences [27]. Additionally, trie tree can speed
up search in linear running time by failure links.

Fig. 2  Traceback procedure and pairwise alignment results of Smith–
Waterman algorithm

Page 4 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

Two primary steps can be used to realize MSA based
on trie tree: select a center star sequence for pairwise
alignment and to integrate inserted spaces. Center
star sequence contains the most segments among all
sequences, thereby implying that it is the most similar
to other sequences. As large-scale nucleotide sequences
are similar, the first sequence represents the center
sequence. Thereafter, other sequences are aligned to
center sequence based on unmatched segments from the
trie tree. In HAlign-II, this step is designed as numer-
ous highly parallel operations across data construction
of RDDs and is partitioned into memory on multiple
workers. Pairwise alignment costs linear running time
instead of exponential running time. Suppose that n simi-
lar nucleotide sequences with average length of m exists.
Then, time complexity of trie tree algorithm is O(n2m);
trie tree algorithm requires less running time than the
original center star method (time complexity is O(n2m2)).
For n − 1 times pairwise sequence alignment, time com-
plexity is O

(

nm2
)

. However, practical time consumed is
far less than theoretical value because matched segments
are skipped in high sequences. If n ≪ m, then practical
time consumed can be regarded as linear. In the last step,
multiple alignment results are partitioned into new RDDs
and delivered to multiple distributed workers for calcu-
lation. Center star sequence and its alignment results
spread to entire Spark cluster as shared similar constants,
as presented in Fig. 3, to further reduce running time.

NJ method for constructing phylogenetic trees with Spark
Frequently, MSA is required before constructing phyloge-
netic trees, such as MAFFT, MEGA, IQ-TREE, FastTree,

iGTP, SATe-II, phangorn and our NJ method. However,
most MSA tools cannot address large or ultra-large num-
bers of sequences. Based on MSA and Spark framework,
this paper implement NJ method for constructing phylo-
genetic trees.

Phylogenetic trees can be built using distance-
based, maximum parsimony, and maximum likelihood
approaches [10]. NJ approach [23] represents one of the
distance-based approaches, and according to HPTree
work, it is time-efficient and suitable for ultra-large
sequences data.

As shown in Fig. 4, based on parallel computing, we
first cluster all MSA results into several clusters. Then,
we calculate individual phylogenetic tree based on indi-
vidual clusters. Last, all phylogenetic trees are merged on
clusters into the final evolution tree. We highlight the ini-
tial clustering procedure. Approximately 10% (a changea-
ble threshold value) of all MSA sequences are selected by
random sampling for initial clustering. Then, functional
distance of each pairwise MSA sequence is calculated,
clustered, and labeled until all sequences are identified.
When few clusters whose number of elements is over
10%, then they are merged into other clusters; otherwise,
they are divided into more balanced clusters until bal-
anced construction. The entire procedure is designed for
Spark parallel model in Fig. 4.

Results and experiments
Datasets and metrics
The main research object of HAlign-II is ultra-large bio-
logical sequences dataset included protein sequences and
nucleotide sequences. For protein sequences datasets,

Fig. 3  MSA procedures based on Spark distributed framework

Page 5 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

BAliBASE [28] is regarded as golden benchmark, with
BAliBASE 4 as the newest version. The tests in the BAli-
BASE 4 benchmark suite are divided into 10 different ref-
erence sets. For each test, a number of files are provided,
while all files derived from different families contain the
sequences corresponding to the homologous regions
only. And a family in a reference set is matched to a given
reference alignment for evaluating. Each family need to
be aligned simultaneously. In order to focus on the per-
formance with increasing sequences scale, we employ the
newest and largest R10 reference set ΦProtein as our pro-
tein sequence datasets (that is, 218 MSAs are indepen-
dently constructed).

According to previous HAlign work [9], we use human
mitochondrial genomes ΦDNA and 16s rRNA ΦRNA as
nucleotide sequences datasets [29]. After MSA, phyloge-
netic trees are generated by MSA results on Spark plat-
form. Table 1 shows more detailed information regarding
biological datasets.

The original bali score program in BAliBASE used
a different way of handling gaps in segments, which
resulted in incorrect normalizations, so that even perfect
multiple alignments could have a score less than one. To
determine the similarity of the alignment obtained by a

program to the reference alignment in BAliBASE, col-
umn score (CS) and sum-of-pair score (SPS) are calcu-
lated as two alignment scores according to Karplus’s work
[30]. The CS counts the number of columns of the seg-
ments that are aligned correctly in all sequences, normal-
ized by the number of alignment columns. It is noticeable
however, that one badly misaligned sequence reduces CS
from 1 to 0. Indeed we have observed that CS tends to be
almost a binary value—with each alignment either being
very good or scoring 0. The SPS counts how many pairs
of residues are correctly aligned. Suppose that there is an
alignment with N sequences of length of M, if in column
i, both sequence x and sequence y have residues aligned
in a segment of the reference alignment, then pair value
Pixy equals 2; if one of both alignments has a gap, then
Pixy equals 1, otherwise Pixy equals 0. The total score is
normalized by the maximum possible score, so that the
range of possible values is from 0 to 1, with 1 indicating a
multiple alignment that is identical on the segments. The
score Si with the ith column and SPS are

where Mr is the number of columns in the segments of
the reference alignment and Sri is the score Si for the ith
column in the reference alignment. For achieving better
evaluation of ultra-large-scale alignments, we employ
average SPS as the final metric of MSA experiments.

In essence, the higher the SPS or is, the more accu-
rate is the alignments generated by the programs. In this
paper, we calculated the alignment scores for evaluating
protein and nucleotide alignments.

As HAlign-II contains three types of biological
sequence alignment and phylogenetic tree construction
based on Spark platform, our experimental environment
consists of a cluster comprising 12 workstations. Each
workstation features 384 GB physical memory with Intel



















Si =
N
�

j=1

�

k �=j

Pijk

SPS =
M
�

i=1

Si

�

Mr
�

i=1

Sri

.

Fig. 4  Constructing phylogenetic trees based on distance measure

Table 1  Original dataset and datasets after threshold removal

Dataset Number Minimum length Maximum length Average length File size

ΦDNA(1 ×) 672 16,556 16,579 16,569.7 10 MB

ΦDNA(100 ×) 67,200 As above As above As above 1.1 GB

ΦDNA(1000 ×) 672,000 As above As above As above 11 GB

ΦRNA(small) 108,453 807 1599 1442.8 156 MB

ΦRNA(large) 1,011,621 807 1629 1388.5 1.4 GB

ΦProtein(1 ×) 17,892 (218 families) 19 4895 459.0 15 MB

ΦProtein(100 ×) 1,789,200 (218 families) As above As above As above 1.5 GB

ΦProtein(1000 ×) 17,892,000 (218 families) As above As above As above 15 GB

Page 6 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

Xeon E5-2620 processors, and each processor contains
eight processing cores. Based on Ubuntu 16.04 operating
system and Spark 2.0.2, a series of experiments are pre-
sented in succeeding sections.

Comparison with state‑of‑the‑art tools
We select a series of state-of-the-art tools to compare
with HAlign-II and evaluate its performance on address-
ing ultra-large datasets. Our comparison eliminates
Kalign [31] is completely unsuitable for large-scale data-
sets. Similarly, phangorn [32], RAxML [33], Pasta [34],
and STELLS [35] are eliminated because of their nearly
intolerable time consumption. In particularly, Clustal
Omega [36], designed for handling data-sets of hundreds
of thousands of sequences in reasonable time, has no
edge than other state-of-the-art tools in our large-scale
datasets. As should be mentioned, SparkSW method uses
Spark version 1.0; however, the newest version used in
our cluster is 2.0, which performs better in theory. Addi-
tionally, we deploy the newest Hadoop framework on our
cluster for running HAlign.

Experiment (a) Based on MUSCLE (version 3.8, fast
parameter “− maxiters 2” is used, the same below) [37],
MAFFT (version 7.3, fast parameter “− parttree” is used,
the same below) [38], Clustal-Omega (version 1.2.4,
default mode is used, the same below) [36], HAlign,
and HAlign-II tools, we implement ultra-large multiple
similar genome sequence alignments with ΦDNA(1 ×),
ΦDNA(100 ×), and ΦDNA(1000 ×) datasets.

Experiment (b) Based on MUSCLE, MAFFT, Clustal-
Omega, HAlign, and HAlign-II tools, we implement
ultra-large multiple dissimilarity RNA sequence align-
ments with ΦRNA(small) and ΦRNA(large) datasets.

Experiment (c) Based on MUSCLE, MAFFT, Clustal-
Omega, SparkSW, and HAlign-II tools, we implement
ultra-large multiple dissimilarity protein sequence
alignments with ΦProtein(1 ×), ΦProtein(100 ×), and
ΦProtein(1000 ×) datasets. It is noticeable that MUSLE,
MAFFT, SparkSW and HAlign-II align each family in the
reference set, respectively.

Experiment (d) Based on IQ-TREE (version 1.5.5, mul-
tithread mode) [39], HPTree, and HAlign-II tools, we
construct ultra-large phylogenetic trees with ΦDNA(1 ×),
ΦDNA(100 ×), ΦDNA(1000 ×), ΦRNA(small), ΦRNA(large),
ΦProtein(1 ×), ΦProtein(100 ×), and ΦProtein(1000 ×) data-
sets. For our HAlign-II method, we initially align multi-
ple sequences and then build phylogenetic trees.

Tables 2, 3, and 4 respectively show all experiment
results with genome MSA, RNA MSA, and protein MSA.
Surprisingly, MUSCLE exhibits extreme time consump-
tion. Based on our experiments, MUSCLE performs
best with small datasets, but it cannot properly allocate
memory resource, resulting in high memory occupancy
rate. Hence, MUSCLE eventually reports an out-of-mem-
ory message with ultra-large datasets. For large data-
sets, Mafft and Clustal-Omega are faster than default
Muscle and fast Muscle. And Mafft is always the fastest
one than Muscle and Clustal-Omega. However, MUS-
CLE, MAFFT and Clustal-Omega cannot deal with the
present ultra-large datasets. Based on Hadoop frame-
work, HAlign and HPTree perform better, but many
key-value pair conversion operators also result in high
memory occupancy rate. Considering the problems lead-
ing to degraded performance, HAlign-II utilizes memory
operation on hard disks, cutting down space complexity
and memory occupancy rate. These improvements facili-
tate running of sequence analysis on clusters compris-
ing cheap large-scale and low-end machines. However,
HAlign-II features an average SP score that is inferior to
those of other methods. Our method ignores high preci-
sion for changing large-scale computing power, which is
necessary for several decision research.

Table 5 presents running times of several outstand-
ing tools on phylogenetic trees construction. IQ-TREE
with multiple threads consumes more time than HPTree
and HAlign-II, as distributed computing on a single
node utilizes multiple threads and features time-effi-
cient data construction. Phylogenetic tree performance
is evaluated by maximum likelihood value under log
functions. HPTree point reaches – 219,543,85, which
is similar to that of NJ model in MEGA [40], implying

Table 2  Running time and average SPS with genome MSA

Memory is the maximum memory usage (the same as below)

ΦDNA(1 ×) ΦDNA(100 ×) ΦDNA(1000 ×)

Time Memory Avg SPS Time Memory (GB) Avg SPS Time Memory (GB) Avg SPS

MUSCLE 45 m 23 s ~ 8 GB 0.951 – – – – – –

MAFFT 1 m 20 s ~ 100 MB 0.926 13 m 21 s ~ 8 0.926 – – –

Clustal-Omega 1 h 25 m ~ 3 GB 0.913 15 h 56 m ~ 30 0.913 – – –

HAlign 2 m 12 s ~ 300 MB 0.722 26 m 35 s ~ 8 0.722 5 h 28 m ~ 40 0.722

HAlign-II 14 s ~ 100 MB 0.723 10 m 24 s ~ 2 0.723 1 h 25 m ~ 15 0.723

Page 7 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

close performance of results of both methods. Similarly,
out-of-memory error occurs when running the HPTree
method. Currently, no outstanding method exists for
constructing large-scale evolutionary trees, even on
workstation clusters. Constructing phylogenetic trees
based on MSA results can speed up construction speed.

Memory efficiency and scalability
Currently, most time-efficient methods, such as MUS-
CLE with small datasets and Mafft/Clustal-Omega/
HAlign for large-scale datasets, present extremely large
space complexities, resulting in impossibility to actually
address ultra-large datasets. Based on all experimental
results of Tables 2, 3, 4 and 5, we compare memory usage
of HAlign-II with other state-of-the-art methods in Fig. 5.

Figure 5 shows average maximum memory usage of
each machine on the cluster containing 12 machines for
SparkSW/HAlign/HAlign-II and a standalone machine
for MUSCLE/Mafft/Clustal-Omega. To conclude, Spark
framework exhibits more efficient memory than Hadoop
framework, as shown by inferiority of HAlign compared
with other methods. Whether for nucleotide sequences
or protein sequences, HAlign-II presents the lowest
average maximum memory usage, thereby facilitating
ultra-large MSA and phylogenetic tree construction on
cheaper clusters.

Additionally, Fig. 6 shows that with increase in worker
nodes, running time and memory efficiency becomes sig-
nificantly low, indicating linear growth of capacity and
computing power with increase of such nodes.

Table 3  Running time and average SPS with RNA MSA

ΦRNA(small) ΦRNA(large)

Time Memory (GB) Avg SPS Time Memory (GB) Avg SPS

MUSCLE 1 h 25 m ~ 13 0.821 – – –

MAFFT 45 m 33 s ~ 10 0.815 – – –

Clustal-Omega 4 h 16 m ~ 10 0.835 – – –

HAlign 1 h 32 s ~ 2 0.631 3 h 15 m ~ 10 0.631

HAlign-II 23 m 34 s ~ 1 0.633 59 m 42 s ~ 2 0.633

Table 4  Running time and average SPS with protein MSA

ΦProtein(1 ×) ΦProtein(100 ×) ΦProtein(1000 ×)

Time Memory (MB) Avg SPS Time Memory (GB) Avg SPS Time Memory (GB) Avg SPS

MUSCLE 3 m 13 s ~ 300 0.892 ~ 34 h ~ 10 0.892 – – –

MAFFT 5 m 53 s ~ 100 0.878 37 m 51 s ~ 5 0.878 7 h 22 m ~ 30 0.878

Clustal-Omega 54 m 08 s ~ 100 0.912 28 h 15 m ~ 5 0.912 – – –

SparkSW 3 m 23 s ~ 100 0.716 1 h 12 m ~ 2 0.716 5 h 30 m ~ 18 0.716

HAlign-II 1 m 45 s ~ 100 0.695 26 m 36 s ~ 1 0.695 2 h 52 m ~ 10 0.695

Table 5  Running time during phylogenetic trees construction

IQ-TREE HPTree HAlign-II

Time Memory Time Memory Time Memory

ΦDNA(1 ×) 9 m 52 s ~ 100 MB 1 m 25 s ~ 300 MB 27 s ~ 100 MB

ΦDNA(100 ×) 1 h 2 m ~ 5 GB 45 m 32 s ~ 8 GB 17 m 45 s ~ 1 GB

ΦDNA(1000 ×) – – – – 1 h 45 m ~ 10 GB

ΦRNA(small) – – 6 h 23 m ~ 2 GB 52 m 39 s ~ 1 GB

ΦRNA(large) – – 28 h 36 m ~ 10 GB 8 h 20 m ~ 2 GB

ΦProtein(1 ×) 22 m 12 s ~ 100 MB Not supported Not supported 2 m 24 s ~ 100 MB

ΦProtein(100 ×) 5 h 05 m ~ 5 GB Not supported Not supported 33 m 32 s ~ 1 GB

ΦProtein(1000 ×) 38 h 52 m ~ 30 GB Not supported Not supported 3 h 36 m ~ 10 GB

Page 8 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

Discussion
Multiple biological sequence alignment and phylogenetic
tree construction present complicated inter-relationships,
and both are necessary for sequence analysis. In the last
several decades, many state-of-the-art methods and algo-
rithms were created for more time- and space-efficient

MSA and phylogenetic trees construction issues. With
increasing next-generation sequence database, addressing
ultra-large datasets became an unprecedented challenge.
Other outstanding methods were developed to improve
time efficiency even with precision loss; such meth-
ods include ClustalW-MPI, Hadoop-BAM, HAlign, and

Fig. 5  Average maximum memory usage of various experiments

Fig. 6  Running time with increasing worker nodes

Page 9 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

HPTree. Thus, with the urgent need for additional time-
efficient and computing power for ultra-large datasets, we
conduct a series of experiments to assess the performance
of our HAlign-II method.

Based on Spark distributed and parallel computing
model, Smith–Waterman algorithm, trie trees, and NJ
methods are employed to completely utilize hardware
resources and computing power. For ultra-large genome
and RNA MSA experiments, MUSCLE, MAFFT and
Clustal-Omega achieve high accuracies. However, both
traditional tools show complete incompatibility with
large datasets. Methods based on distributed comput-
ing model present remarkable advantages, especially
HAlign-II, which presents the highest memory efficiency.
SparkSW and HAlign-II work well for ultra-large pro-
tein MSA experiments. However, the former still needs
to further cut down memory occupation. Difficulty also
arises from insufficient phylogenetic tree construction
for ultra-large protein sequences. For ultra-large phyloge-
netic tree construction based on MSA results, most tools
run out of memory, and even nearly 400 GB memory can-
not address the requirement of 10 GB size datasets. All
experimental results indicate that with regard to ultra-
large nucleotide MSA or protein MSA and phylogenetic
tree construction, HAlign-II performs best with regard to
time efficiency, memory efficiency, and scalability.

Conclusions
This paper presents a distributed and parallel comput-
ing tool named HAlign-II to address ultra-large multiple
biological sequence alignment and phylogenetic tree con-
struction. After comparing this tool with a series of state-
of-the-art methods with ultra-large data, we conclude
that HAlign-II features three advantages: (1) extremely
high memory efficiency and good scaling with increases
in computing resource; (2) efficient construction of phy-
logenetic trees with ultra-large biological sequences; (3)
provision of user-friendly web server based on high per-
formance and distributed computing infrastructure; the
server is established at http://lab.malab.cn/soft/halign.
These improvements will be significant in coping with
extreme increases in next-generation sequencing.

Authors’ contributions
SW and QZ conceived and designed the study. SW performed the experi-
ments and wrote the paper. Prof. reviewed and edited the manuscript. Both
authors read and approved the manuscript.

Author details
1 School of Computer Science and Technology, Tianjin University, Tianjin,
China. 2 Guangdong Province Key Laboratory of Popular High Performance
Computers, Shenzhen University, Shenzhen, China.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Available.

Consent for publication
Agree.

Ethics approval and consent to participate
Not applicable.

Funding
The work was supported by the Natural Science Foundation of China (No.
61771331).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 20 March 2017 Accepted: 22 September 2017

References
	1.	 Edgar RC, Batzoglou S. Multiple sequence alignment. Curr Opin Struct

Biol. 2006;16:368–73.
	2.	 Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a

new method for improved phylogenetic and taxonomic placement of
microbes. Nat Commun. 2013;4:2304.

	3.	 Zhao G, Ling C, Sun D. Sparksw: scalable distributed computing system
for large-scale biological sequence alignment. In: 2015 15th IEEE/ACM
international symposium on, cluster, cloud and grid computing (CCGrid).
2015. p. 845–52.

	4.	 Tölke J. Implementation of a Lattice Boltzmann kernel using the compute
unified device architecture developed by nVIDIA. Comput Vis Sci.
2010;13:29.

	5.	 Xi C, Chen W, Tang S, Yu C, Quan Z. CMSA: a heterogeneous CPU/GPU
computing system for multiple similar RNA/DNA sequence alignment.
BMC Bioinform. 2017;18:315.

	6.	 Harish P, Narayanan P. Accelerating large graph algorithms on the GPU
using CUDA. In: International conference on high-performance comput-
ing. 2007. p. 197–208.

	7.	 Li K-B. ClustalW-MPI: clustalW analysis using distributed and parallel
computing. Bioinformatics. 2003;19:1585–6.

	8.	 Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Hel-
janko K. Hadoop-BAM: directly manipulating next generation sequencing
data in the cloud. Bioinformatics. 2012;28:876–7.

	9.	 Zou Q, Hu Q, Guo M, Wang G. HAlign: fast multiple similar DNA/RNA
sequence alignment based on the centre star strategy. Bioinformatics.
2015;31:2475–81.

	10.	 Zou Q, Zeng X. HPTree: reconstructing phylogenetic trees for ultra-large
unaligned DNA sequences via NJ model and Hadoop. In: 2016 IEEE inter-
national conference on bioinformatics and biomedicine (IEEE BIBM 2016).
2016. p. 53–8.

	11.	 Chung W-C, Chen C-C, Ho J-M, Lin C-Y, Hsu W-L, Wang Y-C, et al. Cloud-
DOE: a user-friendly tool for deploying Hadoop clouds and analyz-
ing high-throughput sequencing data with MapReduce. PLoS ONE.
2014;9:e98146.

	12.	 Nordberg H, Bhatia K, Wang K, Wang Z. BioPig: a Hadoop-based analytic
toolkit for large-scale sequence data. Bioinformatics. 2013;29:3014–9.

	13.	 Schumacher A, Pireddu L, Niemenmaa M, Kallio A, Korpelainen E, Zanetti
G, et al. SeqPig: simple and scalable scripting for large sequencing data
sets in Hadoop. Bioinformatics. 2014;30:119–20.

	14.	 Gropp W, Lusk E, Doss N, Skjellum A. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel
Comput. 1996;22:789–828.

	15.	 Taylor RC. An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics. BMC Bioinform. 2010;11:S1.

http://lab.malab.cn/soft/halign

Page 10 of 10Wan and Zou ﻿Algorithms Mol Biol (2017) 12:25

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	16.	 Ebedes J, Datta A. Multiple sequence alignment in parallel on a worksta-
tion cluster. Bioinformatics. 2004;20:1193–5.

	17.	 Moritz P, Nishihara R, Stoica I, Jordan MI. Sparknet: training deep networks
in spark. 2015. arXiv preprint arXiv:1511.06051.

	18.	 Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al.
Apache hadoop yarn: Yet another resource negotiator. In: Proceedings of
the 4th annual symposium on cloud computing. 2013. p. 5.

	19.	 Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX conference on networked
systems design and implementation. 2012. p. 2.

	20.	 Gupta S, Dutt N, Gupta R, Nicolau A. SPARK: A high-level synthesis frame-
work for applying parallelizing compiler transformations. In: Proceedings
16th international conference on VLSI design, 2003. 2003. p. 461–6.

	21.	 Wiewiórka MS, Messina A, Pacholewska A, Maffioletti S, Gawrysiak P,
Okoniewski MJ. SparkSeq: fast, scalable, cloud-ready tool for the interac-
tive genomic data analysis with nucleotide precision. Bioinformatics.
2014;30:2652–3.

	22.	 Smith TF, Waterman MS. Identification of common molecular subse-
quences. J Mol Biol. 1981;147:195–7.

	23.	 Saitou N, Nei M. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

	24.	 Shanahan JG, Dai L. Large scale distributed data science using apache
spark. In: Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, 2015. p. 2323–4.

	25.	 Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res.
2002;12:656–64.

	26.	 Ahmadi A, Behm A, Honnalli N, Li C, Weng L, Xie X. Hobbes: optimized
gram-based methods for efficient read alignment. Nucleic Acids Res.
2012;40:e41.

	27.	 Wang J, Cetindil I, Ji S, Li C, Xie X, Li G, et al. Interactive and fuzzy search: a
dynamic way to explore MEDLINE. Bioinformatics. 2010;26:2321–7.

	28.	 Thompson JD, Koehl P, Ripp R, Poch O. BAliBASE 3.0: latest developments
of the multiple sequence alignment benchmark. Proteins Struct Funct
Bioinform. 2005;61:127–36.

	29.	 Tanaka M, Cabrera VM, González AM, Larruga JM, Takeyasu T, Fuku N, et al.
Mitochondrial genome variation in eastern Asia and the peopling of
Japan. Genome Res. 2004;14:1832–50.

	30.	 Karplus K, Hu B. Evaluation of protein multiple alignments by SAM-
T99 using the BAliBASE multiple alignment test set. Bioinformatics.
2001;17:713–20.

	31.	 Lassmann T, Sonnhammer EL. Kalign—an accurate and fast multiple
sequence alignment algorithm. BMC Bioinform. 2005;6:298.

	32.	 Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics.
2011;27:592–3.

	33.	 Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

	34.	 Trovato A, Seno F, Tosatto SCE. The PASTA server for protein aggregation
prediction. Protein Eng Des Sel. 2007;20:521–3.

	35.	 Wu Y. Coalescent-based species tree inference from gene tree topologies
under incomplete lineage sorting by maximum likelihood. Evolution.
2012;66:763–75.

	36.	 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable
generation of high-quality protein multiple sequence alignments using
Clustal Omega. Mol Syst Biol. 2011;7:1429–32.

	37.	 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 2004;32:1792–7.

	38.	 Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Res. 2002;30:3059–66.

	39.	 Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and
effective stochastic algorithm for estimating maximum-likelihood phy-
logenies. Mol Biol Evol. 2015;32:268–74.

	40.	 Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics
analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

http://arxiv.org/abs/1511.06051

	HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Methods
	Overview of Apache Spark
	Smith–Waterman algorithm for protein sequences with Spark
	Trie trees method for similar nucleotide sequences with Spark
	NJ method for constructing phylogenetic trees with Spark

	Results and experiments
	Datasets and metrics
	Comparison with state-of-the-art tools
	Memory efficiency and scalability

	Discussion
	Conclusions
	Authors’ contributions
	References

