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Abstract 

Background:  Suffix arrays, augmented by additional data structures, allow solving efficiently many string processing 
problems. The external memory construction of the generalized suffix array for a string collection is a fundamental 
task when the size of the input collection or the data structure exceeds the available internal memory.

Results:  In this article we present and analyze eGSA [introduced in CPM (External memory generalized suffix and 
LCP arrays construction. In: Proceedings of CPM. pp 201–10, 2013)], the first external memory algorithm to construct 
generalized suffix arrays augmented with the longest common prefix array for a string collection. Our algorithm relies 
on a combination of buffers, induced sorting and a heap to avoid direct string comparisons. We performed experi-
ments that covered different aspects of our algorithm, including running time, efficiency, external memory access, 
internal phases and the influence of different optimization strategies. On real datasets of size up to 24 GB and using 
2 GB of internal memory, eGSA showed a competitive performance when compared to eSAIS and SAscan, which 
are efficient algorithms for a single string according to the related literature. We also show the effect of disk caching 
managed by the operating system on our algorithm.

Conclusions:  The proposed algorithm was validated through performance tests using real datasets from different 
domains, in various combinations, and showed a competitive performance. Our algorithm can also construct the gen-
eralized Burrows-Wheeler transform of a string collection with no additional cost except by the output time.
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Introduction
Suffix arrays  [40] (also known as PAT arrays [23]) may 
be used for the solution of string processing problems in 
several areas, including pattern matching, data compres-
sion and information retrieval [24, 39, 47]. Combining a 
suffix array with the longest common prefix (LCP) array 
and with the Burrows–Wheeler transform (BWT) [12] 
provides a data structure, an enhanced suffix array (ESA) 
[2], that enables solving many string processing problems 
in optimal time and space.

Using such structures in the solution of problems 
involving strings is usually done in two steps: the struc-
ture is first constructed and then it is queried. This article 
is about the construction of generalized enhanced suffix 

arrays for a collection of strings using external memory. 
This is motivated by the rising number of applications 
that deal with huge sets of strings, such as those in Bio-
informatics and Internet searching. Moreover, recent 
advancements in non-volatile storage technologies have 
substantially narrowed the gap between internal and 
external memory access times, making the querying of 
external suffix arrays significantly faster.

Different algorithms have been proposed for internal 
memory suffix array construction (see [17, 49]), including 
algorithms with linear running time [30, 33, 46]. Gonnet 
et al.  [23] proposed the first external memory algorithm 
for constructing suffix arrays. Later, Crauser and Ferra-
gina  [14] adapted internal memory algorithms to work 
in external memory. Dementiev et al.  [16] observed that 
these algorithms do not scale well and presented a pipe-
lined version of the internal memory algorithm DC3 [30] 
to external memory. Nong et  al.   [44, 45] adapted the 
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internal memory algorithms SA-DS and SA-IS  [46] 
to external memory, and Liu et  al.   [34] presented an 
enhanced version of SA-IS to external memory. Kärk-
käinen and Kempa [25] presented the SAscan algorithm, 
improving on the earlier proposal by Gonnet et al.  [23], 
and later, Kärkkäinen et al.  presented a parallel external 
version of SAscan algorithm [27].
BWT can be either obtained from the suffix array 

or constructed directly in internal memory in linear 
time  [48]. Ferragina et  al.   [18] proposed an external 
memory algorithm to construct the BWT for a single 
string, and Bauer et  al.   [5] presented external memory 
algorithms to compute and decode the BWT for a string 
collection.
LCP construction in internal memory is also possible 

in linear time during the suffix array construction  [19, 
35] or afterwards, given the suffix array [29, 31, 41] or the 
BWT as input  [7, 22]. Kärkkäinen and Kempa  [26] pre-
sented the LCPscan, an external memory algorithm to 
construct LCP arrays given the suffix array as input, and 
Bauer et al.   [6] proposed the extLCP algorithm to con-
struct both BWT and LCP arrays for large collections of 
equally sized strings in external memory, and later, Cox 
et  al.   [13] presented an extended version of extLCP to 
deal with strings with different sizes.

The suffix and the LCP arrays are constructed together 
in external memory by eSAIS, proposed by Bingmann 
et  al. [10], one of the most efficient external memory 
algorithm to date. There exists alternatives to compute 
suffix and LCP arrays in parallel  [20] and using small 
space [37, 42].

In this article we present and analyze the algorithm 
eGSA (introduced in [38]) in depth. To our knowl-
edge this is the first algorithm to construct generalized 
enhanced suffix arrays in external memory. We compared 
eGSA with the most efficient related algorithms in the 
literature, eSAIS [10] and SAscan [25]. Although eSAIS 
and SAscan can easily be applied to the concatenation 
of a string collection, our method is shown to run faster 
in practice. In addition to the LCP array, our method 
also constructs the BWT for the collection. eGSA uses a 
heap and a combination of optimization procedures that 
are shown to be very effective in practice. The optimiz-
ing strategies that we propose in this article are based on 
nice properties of strings and their relation with the LCP 
array, and are applied across the nodes of a heap.

Theoreticallly, eSAIS runs in O(n logM/B(n/B)) time 
and O((n/B)logM/B(n/B)) I/Os, where n is the length of 
the input string, B is the disk block size and M is the RAM 
size. SAscan runs in O((n2/M) log(2+ logσ / log log n)) 
time and O(n2 log σ/(MB log n)+ (n/B) logM/B(n/B)) I/
Os. Our algorithm runs in O((N logm)maxlcp) time and 
O(N logm|Tℓ|) I/Os, where N is the sum of the m string 

lengths in the input, maxlcp is the length of the longest 
common prefix between suffixes of the input strings, |Tℓ| 
is the length of the longest string in the collection.

The rest of the article is organized as follows.   "Back-
ground" section introduces concepts and nota-
tion, "eGSA" section describes the algorithm and presents 
a theoretical analysis, "Performance evaluation" section 
details the experiments, results and investigates limita-
tions of the algorithm. "Conclusions" section concludes 
the article.

Background
Let � be an ordered alphabet of symbols. We denote the 
set of every string of symbols in � by �∗ and the con-
catenation of strings or symbols by the dot operator (·). 
Let $ be a symbol not in � that precedes every symbol 
in � with respect to the alphabetical order. We define 
�$ = {T · $|T ∈ �∗}. We use the symbol < for the lexico-
graphic order relation between strings.

The ith symbol in a string T of length n is 
denoted T[i], 1 ≤ i ≤ n. A substring of T is denoted 
T [i, j] = T [i] · . . . · T [j], 1 ≤ i ≤ j ≤ n. A prefix of T is a 
substring of the form T[1, k] and a suffix is a substring of 
the form T[k, n], 1 ≤ k ≤ n.

A suffix array for a string T ∈ �$ of size n, denoted 
SA, is an array of integers SA = [i1, i2, . . . , in] such that 
T [i1, n] < T [i2, n] < · · · < T [in, n]. Thus, a suffix array 
provides the lexicographic order for all suffixes of a string.

Let pos(T [k , n]) denote the mapping of suffix T[k,  n] 
to its position in SA, i.e. the reverse suffix array, and let 
suff (j) denote the mapping of position j of SA to the suf-
fix represented at j, namely T [SA[j], n].

Let lcp(S,T ) be the length of the longest com-
mon prefix of two strings S and T in �$. The 
LCP array for T is an array of integers such that 
LCP[i] = lcp(T [SA[i], n],T [SA[i − 1], n]) and 
LCP[1] = 0.

The BWT is a reversible transformation obtained 
through cyclic rotations of a string, and results in another 
string that is easier to compress  [12]. The BWT has a 
close relationship to the suffix array and can be trivially 
obtained from it. Let the BWT of a string T be denoted 
BWT and defined as BWT[i] = T [SA[i] − 1] if SA[i] �= 1 
or BWT[i] = $ otherwise.

We will refer to the structure formed by SA, LCP, BWT 
as an enhanced suffix array, denoted ESA [2]. Table  1 
shows the enhanced  suffix array for T1 = GATAGA$ and 
for T2 = TAGAGA$.

Let T  be a collection of m strings {T1, . . . ,Tm} from �$ 
having lengths n1, . . . , nm. We extend the lexicographic 
relation among strings to deal with unit length suffixes of 
T : let < be augmented for pairs of suffixes of length 1 of 
strings in T  by Ti[ni, ni] < Tj[nj , nj] if i < j.
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The generalized suffix array of T , denoted GSA, 
is an array of pairs of integers (a,  b) that speci-
fies the lexicographic order of all suffixes Ta[b, na] 
of strings in T . We denote the first component of 
GSA[j] as GSA[j].str ∈ [1,m] and the second as 
GSA[j].suf ∈ [1,max{n1, . . . , nm}]. Also, we extend the 
function suff (j) to map the suffix represented at position 
j of GSA, namely TGSA[j].str[GSA[j].suf , nGSA[j].str].

The generalized LCP of T  is defined as 
LCP[j] = lcp(suff (j), suff (j − 1)) and LCP[1] = 0, 
and the generalized BWT of T  is defined as 
BWT[j] = TGSA[j].str[GSA[j].suf − 1] if GSA[j].suf �= 1 
or BWT[j] = $ otherwise.

The generalized suffix array of T  together with its cor-
responding LCP array and BWT will be called generalized 
enhanced suffix array and denoted GESA. Table 2 shows 
the generalized enhanced suffix array for T = {T1,T2}, 
where T1 = GATAGA$ and T2 = TAGAGA$.

eGSA
The External Generalized Enhanced Suffix Array Con-
struction Algorithm (eGSA) resembles a two-phase 
multiway merge-sort [32]. Algorithm 1 illustrates eGSA 
without the otimizing strategies introduced in Phase 2. 
Phase 1 builds the enhanced suffix arrays for the input 
strings and Phase 2 merges the respective arrays using an 
improved string comparison method on memory buffers. 
We detail each phase below.

Phase 1: internal sorting
The input for eGSA is a collection T  of m strings 
T = {T1, . . . ,Tm} having lengths n1, . . . , nm with total 
length N and stored in external memory.

In Phase 1 the suffix array SAi, the LCP array LCPi, the 
Burrows–Wheeler transform BWTi and the auxiliary array 
PREFIXi are built for each Ti and stored in external mem-
ory (lines 1–9 of Algorithm  1). Any internal or external 
memory suffix and LCP array construction algorithm may 

Table 1  Enhanced suffix arrays for T1 = GATAGA$ and  for 
T2 = TAGAGA$

Table 2  Generalized enhanced suffix array for  
T = {GATAGA$, TAGAGA$}

The suff  column illustrates, in bold, prefixes shared between consecutive 
positions in the array
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be used by eGSA to build SAi and LCPi (line 2). As they 
are constructed, both BWTi (line 5) and PREFIXi (lines 
6) can be computed and written sequentially to external 
memory with no need to store in internal memory.
PREFIX arrays are used to reduce external memory 

accesses in Phase 2: starting from a position j and con-
catenating PREFIXi successively for adjacent preceding 
positions will render a prefix of Ti[j, ni], up to a position 
with lcp equal to zero. In other words, PREFIXi[j] will 
store symbols from the string, such that the contents of 
PREFIXi[j] concatenated to parts of preceding positions 
of PREFIX is equal to a starting portion of the suffix at 
position SAi[j]. More formally, let p be a given integer 
constant. Let h0 = 0 and hj = min(LCPi[j], hj−1 + p). 
We define PREFIXi[j] = Ti[SAi[j] + hj ,SAi[j] + hj + p]. 
As a boundary condition, whenever the length of Ti is 
exceeded, sufficient $ symbols are added to the right of 
PREFIXi[j]. An example for the ESAs from Table 1 with 
p = 3 is shown in Table  3. Notice that it is possible to 
recall the strings with the aid of PREFIX. Our construc-
tion is similar to the left-justified approach by Sinha 
et al.  [50] and relates to the work of Barsky et al.  [4].

We will denote a tuple of elements in the same posi-
tion of an ESA augmented with the PREFIX array by 
ESAi[j] = �SAi[j], LCPi[j],BWTi[j],PREFIXi[j]�, and 
we will use a dot to refer to a component, for instance 
ESAi[j].SAi. The product of Phase 1 is ESA1, . . . ,ESAm.

Phase 2: external merging
Phase 2 merges the enhanced suffix arrays computed in 
Phase 1 to obtain a GESA for T .

Each ESA is partitioned into consecutive blocks having e 
consecutive elements, except perhaps for the last block. For 
each ESAi the algorithm uses two internal memory buff-
ers: a string buffer Si, with capacity for at most s symbols of 
Ti, and an enhanced-array buffer Ei, large enough to store 
a block of ESAi. It also uses two other buffers: an output 
buffer Bufferout for at most o elements of the GESA, and 
an induced buffer I, of size |�| × c pair of integers, which 
stores data needed by the inducing strategy discussed 

below. The values of s, e, o and c are constants that deter-
mine the amount of internal memory used in this phase.

The overall strategy used in Phase 2 (lines 10–20 of 
Algorithm 1) is the following. The first block of each ESAi 
is loaded into the respective enhanced-array buffer Ei (line 
11). Then the heading element of each Ei is inserted into 
a lexicographic minimum binary heap (line 12). Assume 
that the smallest suffix in the heap originates from Ek (line 
15). Then the suffix is moved to the output buffer (line 16), 
which is written to disk as it gets full (line 17–19), and the 
heap is filled with the next element in the buffer Ek .

Recall that during such comparisons the suffixes them-
selves are stored in external memory. Comparing suf-
fixes in the heap may then require many random external 
memory accesses. To reduce external memory accesses, 
we propose an enhanced comparison method composed 
by three strategies: (a) prefix assembly, (b) lcp compari-
son, and (c) suffix induction.

Prefix assembly
Prefix assembly uses PREFIX arrays to retrieve portions of 
strings with no external memory accesses. These characters 
are those more likely to be needed to compare suffixes. Let 
j be the index of the smallest element in the enhanced-array 
buffer Ei. The initial prefix of Ti[SAi[j], ni] may be loaded 
into Si by concatenating previous positions of PREFIXi[k], 
for k = 1, 2, . . . , j. As j changes, buffer Si is updated such 
that Si[1, hj + p+ 1] = Si[1, hj] · PREFIXi[j] · #, where 
hj = min(LCPi[j], hj−1 + p), h0 = 0, and # is an end-of-
buffer marker not in �. Thus, if a string comparison does 
not involve more than hj + p symbols, an external memory 
access is not necessary. Otherwise # is reached and a por-
tion of Ti must be retrieved from the external memory. 
However, the part of Ti that can be reconstructed from 
PREFIX is often long enough such that the first distinct 
characters can be accessed without I/O operations. In addi-
tion, the string buffer can easily and without great costs be 
adjusted to accommodate the relevant parts of PREFIX, 
i.e. hj + p. Algorithm  2 illustrates prefix assembling 
applied to reconstruct the initial part of Ti[SAi[k], ni], for 
k = 1, 2, . . . , j, into the string buffer Si[1, s].

Table 3  Prefix array examples

The suff  column illustrates, in bold, the prefixes recovered without external 
access during the merging phase of our algorithm, as detailed in "Phase 2: 
external merging" section
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Column suff  in Table  3 illustrates the prefixes recov-
ered by prefix assembly in bold. For example, for 
ESA1 shown in Table  4, when j = 5 then h5 = 0 and, 
since LCP1[5] = 0, S1 stores GA$. When j = 6 then 
h6 = min(LCP1[6], h5 + p) = min(2, 0+ 3) = 2, and  
S1[3, 3+ 3− 1] = S1[3, 5] receives PREFIX1[5] = TAG.  
In this case, S1 = S1[1, 2] · S1[3, 5] · # = GA · TAG · # =

GATAG#.

LCP comparison
lcp values can be used to speed up suffix comparisons [9, 
43] and to avoid external memory accesses in heap inser-
tions. The following lemma formalizes the idea. The 
proof is simple, based on the cases illustrated in Fig.  1, 
and will be omitted.

Lemma 1  Let S1,S2 and S3 be strings, such that S1 < S2 
and S1 < S3.  If lcp(S1, S2) > lcp(S1, S3) then S2 < S3 (case 
1). If lcp(S1, S2) < lcp(S1, S3) then S2 > S3 (case 2). Oth-
erwise, if lcp(S1, S2) = lcp(S1, S3) = ℓ then lcp(S2, S3) ≥ ℓ 
(case 3).

Let X, Y and Z be nodes in the binary heap storing 
Ea[i], Eb[j] and Ec[k], respectively. Let X, Y and Z be also 
the suffixes stored by such heap nodes. Suppose that 

node X is the parent of Y and Z. Because X < Y  and 
X < Z it follows that Ta[SAa[i], na] < Tb[SAb[j], nb] and 
Ta[SAa[i], na] < Tc[SAc[k], nc]. Assume that the heap 
also stores lcp values between a node and its children and 
between a node and its sibling.

As X is removed from the heap, Ea[i] is moved to the 
output buffer and X is replaced by another node W stor-
ing Ea[i + 1]. The order of W with respect to its children 
Y and Z can be determined without character compari-
sons when case 1 or case 2 of Lemma 1 applies, and if case 
3 applies then the character comparison can be started 
from symbol ℓ = lcp(X ,W ), recalling that lcp(X ,W ) is 
stored in Ea[i + 1]. In the same way the order between 
Y and Z can be determined using Lemma 1. Algorithm 3 
illustrates this procedure to compare the nodes W, Y and 
Z in the heap.

lcp values between nodes in the heap are updated as 
nodes are compared and swapped. Suppose that node 
W is swapped with Y (meaning Y < W  and Y < Z). The 
lcp of W with respect to its new children are also deter-
mined using Lemma 1, taking the minimum lcp between 
two suffixes (in cases 1 and 2) or through direct charac-
ter comparisons (case 3). Hence, by using lcp values many 
direct comparisons of strings that are in external mem-
ory are avoided.

Table 4  An example of a part of ESA1 illustrating the prefix 
assembly strategy

Symbols in bold highlight the substring of suffix T1[SA[6], n1] stored in PREFIX1

Fig. 1  Illustration of Lemma 1. Illustration of the cases in the proof of Lemma 1: a case 1, b case 2 and c case 3
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For instance, consider merging ESA1 and ESA2 
in Table  1. First, comparing the elements ESA1[4] 
and ESA2[3] we conclude that suff 2(3) = AGA$ 
is less than suff 1(4) = ATAGA$. The next com-
parison involves ESA1[4] and ESA2[4]. As already 
stated, without comparing any symbols we see that 
lcp(suff 2(3), suff 2(4)) > lcp(suff 2(3), suff 1(4)) and that 
suff 2(4) = AGAGA$ is less than suff 1(4) = ATAGA$.

Suffix induction
The induced sorting principle corresponds to deduce the 
order of unsorted suffixes from already sorted suffixes. 
This strategy is used by many suffix array construction 
algorithms  [49]. We apply an induced sorting approach 
that relies on the following lemma. Let a suffix starting 
with a symbol α be denoted α-suffix and let suff

T
 be the 

set of all suffixes of strings in T .

Lemma 2  If Ti[j, ni] is the smallest suffix in suff
T

 then 
Ti[j − 1, ni] = α · Ti[j, ni] is the smallest α-suffix in 
suff

T
\ {Ti[j, ni]}.

Proof  Suppose that there is a α-suffix Tℓ[k , nℓ] in suff
T

 
that precedes Ti[j − 1, ni]. Then Tℓ[k + 1, nℓ] must be 
smaller than Ti[j, ni], a contradiction.

Lemma 2 can be used for sorting the suffixes of a string 
T of length n as follows. Let an α-bucket be a block of a 
partition of SA that contains only α-suffixes. suff

T
 is ini-

tialized with every suffix of T and an empty bucket for 
each symbol in � is created. While suff

T
 is not empty, 

the smallest suffix T [j, n] = α · T [j + 1, n] in suff
T

 is 
moved to the leftmost available position in the α-bucket 
and, if α < β then T [j − 1, n] = β · T [j, n] is added to the 
leftmost available position in the β-bucket (it is induced). 
The induced suffix T [j − 1, n] cannot be removed from 
suff

T
 yet because it may induce T [j − 2, ni] as well. When 

a suffix that is already in a bucket is also the smallest in 
suff

T
, the suffix itself and those that succeed it in the 

bucket are used to induce another suffix and are removed 
from suff

T
 at once. Note that if α > β then the suffix 

T [j − 1, ni] was already sorted and if α = β then reading 
induced suffixes from the β-bucket can cause the induc-
tion of already induced suffixes. So no induction is done 
when α ≥ β .

This approach is not efficient to sort the suffixes of a 
single string T, since it is often necessary to find a small-
est suffix. But in merging previously sorted suffixes the 
smallest one can be determined efficiently using the 
heap. Suppose that Ei[k] is at the root of the heap. Then 
Ti[j, ni] is the smallest suffix in suff

T
 and Ti[j − 1, ni] 

can be induced if Ti[j] < Ti[j − 1]. This later test may be 

performed using BWTi and, as a consequence, to deter-
mine whether Ti[j − 1, ni] can be induced or not.

Induced suffixes are added to the induced buffer I, par-
titioned into buckets Iα , one for each α ∈ �. When an α
-suffix from string Ti is induced, the value i is inserted 
into the first available position of Iα , which is written 
to an external memory file Fα as it gets full. When the 
smallest α-suffix is at the root of the heap, Fα is read 
sequentially to retrieve string indexes. Each string index 
i indicates that the smallest suffix in Ei may be written to 
the output directly, since such suffix has been induced, 
bypassing operations in the heap and saving many com-
parisons. When every index in Fα has been processed 
the heap must be reconstructed. Algorithm  4 illustrates 
Phase 2 (see Algorithm  1) augmented for suffix induc-
tion. Whenever the first suffix starting with α = Ta[b] is 
returned from the heap, eGSA induces the output buffer 
the suffixes in Fα .

lcp values for induced suffixes must also be induced, 
since induced suffixes are not compared in the heap. 
Suppose that Ta[i, na] induces an α-suffix and sup-
pose that Tb[j, nb] induces the next α-suffix. Then 
LCP(Ta[i − 1, na],Tb[j − 1, nb]) = LCP(Ta[i, na],Tb[j, nb])+ 1. 
But since Ta[i, na] and Tb[j, nb] may not be consecu-
tive in GSA, LCP(Ta[i, na],Tb[j, nb]) may not be 
obtained directly. Such value may be obtained from 
the range minimum query on the LCP, defined as 
rmq(x, y) = minx≤k≤y{LCP[k]}. It is easy to see 
that as Ta[i, na] and Tb[j, nb] are already sorted  
and LCP(Ta[j, na],Tb[j, nb]) = rmq(pos(Ta[j, na] + 1),

pos(Tb[j, nb])) the rmq value may be computed as LCP 
values are moved to the output buffer.

Therefore, when a suffix Ti[j, ni] is induced in the sec-
ond phase, its corresponding LCP is also induced. As 
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induced suffixes may also induce further suffixes, the cor-
responding LCP must be stored in the induced buffer Iα 
and in the respective file as well. As induced suffixes are 
recovered from external memory, LCP values are recov-
ered to update the rmq computation.

For instance, suppose that T1[6, n1] = A$ is the small-
est suffix in the heap during the merge of ESA1 and 
ESA2 in Table  1. Because ESA1[2].BWT = G > A, 
T1[6− 1 = 5, n1] = GA$ is induced as the smallest G-suf-
fix in suff

T
. Then the pair (1, 0) is written to the buffer IG 

to indicate that a suffix from string 1 was induced with 
lcp = 0. The lcp value in GESA between T1[5, n1] and the 
next induced G-suffix (T2[5, n2]) is computed by the mini-
mum lcp value from the suffixes passing through the heap 
until T2[5, n2] is induced. This happens when T2[6, n2] is 
the smallest element in the heap and T2[5, n2] is induced 
together with the lcp(T1[6, n1],T2[6, n2])+ 1 = 2, 
obtained by the current minimum lcp value. When 
T1[5, n1] is the smallest suffix in the heap, FG is read 
sequentially and the induced G-suffixes are recovered 
together with their lcp values.

Using prefix assembly together with induction requires 
additional care. Since induced suffixes are not compared 
in the heap, they do not participate in the prefix assem-
bly. Thus during the evaluation of PREFIX in Phase 1, 
hj must be equal to 0 for every last α-suffix that will be 
induced, then the prefix of the first non-induced α-suf-
fix will start at its initial position. To this end, we set 0 
as the LCP[pos(Ti[j, ni])] of every suffix Ti[j, ni] that will 
be induced, i.e. when Ti[j] > Ti[j + 1]. Recall that all such 
lcp values will be also induced.

For instance, Table  5 illustrates the construction of 
ESA1 in the first phase of eGSA, for j = 2. When j = 2, 
SA[j = 2] = 6 and T1[6] > T1[6+ 1], then the suffix 
T1[6, n1] will be induced and LCP1[2+ 1 = 3] receives 
0. Next, j = 3, SA[j = 3] = 4 and T1[4] < T1[4 + 1], the 
suffix T1[4, n1] will not be induced. It means that, in the 
second phase, T1[6, n1] will be induced and bypassed in 
the heap, thus the prefix assembling of suffix T1[4, n1] 

must start from scratch in S1. From this point, prefix 
assembly continues normally. 

Theoretical costs
Phase 1 of eGSA is dominated by the algorithms used to 
construct SA and LCP. The other columns of the general-
ized suffix array are evaluated when the output is written 
to disk, using constant time and memory per item. The 
construction of SA and LCP may be done in linear time 
and space  [29, 46]. Thus, for m input strings with total 
length N and Tℓ the longest string, Phase 1 is O(m|Tℓ|) 
time plus O(N) I/O operations using O(|Tℓ|) memory.

In Phase 2, the number of node swaps in the heap is 
bounded by N logm. Each node swap requires compar-
ing a number of characters that is at most the maximum 
value of lcp for T  (maxlcp). The time cost of this phase 
is then O((N logm)maxlcp). I/O operations in Phase 2 
include loading portions of suffix arrays and of strings 
from disk, and writing output buffers to disk. Suffix 
arrays are loaded in blocks to the enhanced-array buffers. 
In the worst case each comparison in the heap will trig-
ger a character comparison, and the string buffers will be 
loaded when exhausted. Provided that the string buffer is 
at least as large as maxlcp, each suffix will cause at most 
one I/O operation and the worst case for the number of 
string buffer load operations is O(N). The number of I/O 
operations on enhanced-array and output buffers is lim-
ited by N divided by the respective buffer sizes. Then the 
number of I/O operations in Phase 2 is bounded by O(N). 
The memory usage in Phase 2 is bounded by the sum of 
buffer sizes, which can be tailored as necessary.

Such bounds for I/O operations are prohibitive, but it is 
much lower in practice due to the optimizing strategies, 
as shown in the next sections. An easy to devise limita-
tion of eGSA is the case of datasets whose strings are large 
and highly repetitive, for instance, a dataset composed by 
human genomes of different individuals. For these data-
sets the practical performance will approach the theoretical 
bound. Another limitation is when maxlcp is larger than the 
string buffer size, when the number of I/O operations is as 
bad as O(N logm(|Tℓ|/s)), where s is the string buffer size.

Performance evaluation
We used four real datasets of different domains, including 
DNA and protein sequences, and natural language texts 
as described in Table 6. The table includes the total size of 
each dataset in GB, the number of strings, the average string 
length, and the average and maximum lcp values, which 
provide an approximation of suffix sorting difficulty [16].

The experiments were conducted on Debian GNU/
Linux 6.0.3/64 bits operating system using an Intel(R) 
Xeon(R) CPU E3-1230 V2 @ 3.30 GHz processor 8 MB 
cache, with 32 GB of internal memory and a 2.0 TB 

Table 5  Prefix assembly and inducing suffixes

Symbols in bold illustrate the substring of suffix T1[SA[3], n1] stored in PREFIX
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SATA hard disk with 7200 RPM and 64 MB cache (Sea-
gate Desktop HDD ST2000DM001). Our algorithm was 
implemented in ANSI/C and compiled by GNU GCC 
version 4.6.3, with optimizing option -O3. The source 
code is freely available at https://github.com/felipelouza/
egsa/.

In Phase 1 we partitioned the collection of strings T  
into k groups, such that when the strings in each group 
are concatenated the resulting string Tcat may be given to 
internal memory SA and LCP construction algorithms. 
After concatenating the strings in a group a new termina-
tor symbol # that is smaller than $ is added to the end of 
Tcat . For the first phase we used gSACA-K [36] combined 
with �-algorithm  [29]. gSACA-K guarantees that the 
order of equal suffixes from different strings in a group 
will be defined by the rank of their strings in T . Given the 
SA of Tcat , we compute GSA for the string group using 
an additional integer array DA of size |Tcat | that stores 
in DA[i] the string to which suffix Tcat [i, |Tcat |] belongs 
in T . DA can be computed easily by scanning Tcat . Then, 
each value SA[i] is mapped to GSA[i].str and GSA[i].suff , 
and the GSA for the string group is written to exter-
nal memory. ESA[i], that will be used in Phase 2, will 
be composed by �GSA[i], LCP[i],BWT[i],PREFIX[i]�. 
The �-algorithm was adapted to stop the comparison in 
Tcat when it reaches $ symbols, thus correctly evaluating 
the LCP between suffixes in the same group. Together, 
these algorithms use 13× |Tcat | bytes. In this experi-
ments, when Tcat is composed by only one string Tℓ and 
13× |Tcat | is larger than the available internal memory, 
the algorithm truncates Tℓ, such that 13× |Tcat | fits in 
memory. The sizes reported in Table 6 refer to the data-
sets after truncations, that happened only with dna.

In Phase 2 we used p = 10 for the prefix array size, 
which provided a good tradeoff between time and disk 
usage space, as shown in "eGSA internals" section. Each 
buffer Si were set to use 20 KB of internal memory, 
whereas all buffers B, Bufferout and I were set to use 1 GB, 

64 MB and 16 MB, respectively, in total. We remark that 
eGSA uses 1 byte to store each character in memory. The 
output produced by eGSA was validated using a trivial 
checking algorithm.

In "Relative performance" section we investigate the 
behavior of eGSA with respect to eSAIS   [10] and 
SAscan   [27]. In "eGSA internals" section we evaluate 
eGSA in detail, showing the influence of each phase and 
of the improving strategies used in Phase 2 on the total 
running time. In "Limitations" section we investigate 
limitations of our algorithm related to the effect of disk 
cache managed by the operating system when the inter-
nal memory (RAM) size is restricted at boot time.

Relative performance
To assess the performance of eGSA we compared it to 
eSAIS   [11], which is the fastest algorithm to date to 
compute both suffix and LCP arrays in external memory. 
We also compared eGSA to SAscan   [28], which com-
putes only the suffix array with small peak disk usage. We 
configured the algorithms to use the same disk for input 
and output. We are aware of the existence of the algo-
rithms by Bauer et al.  [5, 6] and by Cox et al.  [13] that 
aim at indexing collections of small strings in external 
memory. However, we did not consider comparing them 
with eGSA because they were designed to solve a differ-
ent problem, namely building the BWT and the LCP array 
with small memory footprint. Moreover, a comparison in 
the article [13] have shown that eGSA is faster and uses 
more space in external memory.

Although eSAIS and SAscan are aimed at index-
ing only one string, we can concatenate all strings and 
use eSAIS or SAscan to construct the generalized suf-
fix arrays. All strings in T  were concatenated and a final 
terminator # was added, such that # < $. This concatena-
tion strategy will not guarantee that equal suffixes will be 
sorted by string rank and the values in LCP may be larger 
than the actual lcp of consecutive suffixes in GESA, 

Table 6  Datasets used in the experiments

dna:a  collection of large DNA chromosomes from organisms (Homo sapiens, Oryzias latipes, Danio rerio, Bos taurus, Mus musculus and Gallus gallus) of Ensembl 
dataset (ftp://ftp.ensembl.org/pub/release-84/fasta/). We removed any occurrences of the character N (unknown) from the strings

protein: the collection of protein sequences from Uniprot/TrEMBL, release 2016_5 (http://www.ebi.ac.uk/uniprot/download-center/)

gutenberg: a collection of documents from Gutenberg Project, release 2012_09 (http://algo2.iti.kit.edu/bingmann/esais-corpus/). We processed each line of the 
input as a single string

enwiki: a collection of pages from a snapshot of the English language edition of Wikipedia release 2016_05 (https://dumps.wikimedia.org/enwiki/20160501/). We 
processed each line of the input as a single string

Dataset Size (GB) Number of strings Total length Avg. length Max. lcp Avg. lcp

dna 9.85 153 10,580,043,054 69,150,608 2,282,187 1122

protein 18.68 62,148,086 20,056,474,339 323 31,815 88

gutenberg 22.32 407,864,056 23,962,356,903 59 11,946 18

enwiki 24.50 351,363,467 25,648,226,940 75 111,273 33

https://github.com/felipelouza/egsa/
https://github.com/felipelouza/egsa/
ftp://ftp.ensembl.org/pub/release-84/fasta/
http://www.ebi.ac.uk/uniprot/download-center/
http://algo2.iti.kit.edu/bingmann/esais-corpus/
https://dumps.wikimedia.org/enwiki/20160501/


Page 9 of 16Louza et al. Algorithms Mol Biol  (2017) 12:26 

but will not impose the growth of the alphabet size and 
still allows eSAIS and SAscan to use 1 byte per input 
character.

We remark that the results presented in this section 
depends on the RAM size available in the experiments, 
that is, 32 GB. As we show in "Limitations" section, the 
performance and efficiency of eGSA degrades as the 
total RAM size is reduced.

Running time and efficiency
Figure  2 shows the running time in microseconds per 
input byte and the efficiency of eGSA, eSAIS and 
SAscan. Efficiency is the proportion of time for which 
the CPU is busy, not waiting for I/O. Except for dna, 
eSAIS was interrupted for datasets with more than 12 
GB due to the large amount of time to process these 
instances. For example, eSAIS took 9 days to run on 
enwiki with 12 GB. The experiments took about 70 
days of computing to finish.

The amount of internal memory used by the algo-
rithms is an input parameter. We configured them to 
use 2 GB. Although the comparison is not totally fair 
because eSAIS and SAscan were not designed for mul-
tiple strings, eGSA have outperformed eSAIS and pre-
sented a competitive performance compared to SAscan, 
which computes only the SA. Moreover, eGSA can also 
construct the generalized BWT of the collection T  with 
no additional cost except by the output time.

The long running times of eSAIS prevented the analy-
sis of its efficiency trend. In the extreme case, enwiki 
with 12 GB, the running time of eSAIS is almost 35 times 
larger than the time spent by eGSA. The running times 
of eGSA and SAscan are very close, with larger differ-
ences only for the dna dataset. SAscan presents the best 
efficiency, which is mostly unaffected by the size of the 
dataset. The efficiency of eGSA is comparable to SAscan 
for small datasets and better than the efficiency of eSAIS. 
The efficiency of eGSA drops with the size of the data-
set. For larger datasets it becomes apparent that the effi-
ciency of eGSA is strongly affected by the effect of the 
disk cache managed by the operating system, since the 
size of the available internal memory decreases as the 
dataset increases (we evaluate this issue in "Limitations" 
section).

I/O volume and peak disk usage
The I/O volume (in bytes per input byte) and the peak 
disk usage (in GB) of each algorithm are reported in 
Fig.  3. eGSA makes a larger volume of I/O transfer. In 
the extreme case, protein with 12 GB, eGSA transfer 
more than 6 times data than eSAIS and eGSA transfers 
150 times more data than SAscan. eGSA uses 39n bytes 
(8n bytes for GSA, 4n bytes for LCP, and 27n bytes for 

auxiliary structures) plus by the size of the temporary 
files used to store induced suffixes. As can be seen in 
Fig.   5, the average number of induced suffixes is about 
43%, and is almost constant for all dataset sizes. eSAIS 
uses 54n bytes to compute SA and LCP arrays, whereas 
SAscan uses 7.5n bytes to compute SA. Overall, the peak 
disk usage is much smaller for SAscan.

Although eSAIS and SAscan do not take care of the 
peculiarities of a generalized suffix array, eGSA still 
shows faster or comparable running times. Therefore, 
eGSA is a good alternative for the construction of the 
generalized enhanced suffix array in external memory.

eGSA internals
We have evaluated the behavior of eGSA in terms of the 
performance of each phase and the effect of each heap 
strategy used in Phase 2.

Figure  4 shows the percentage of time spent by each 
phase of eGSA and its efficiency. We can see that the 
percentage of the time spent by Phase 2 increases as the 
dataset increases and dominates the time of eGSA. We 
can see that the efficiency of Phase 1 is almost constant 
and the efficiency of Phase 2 is better for small alphabets 
(dna).

Figure 5 shows the percentage of induced suffixes and 
the number of partitions created by eGSA in the pre-
processing step. In the average, 42% of the suffixes were 
induced. This indicates that the algorithm is avoiding 
many string comparisons. The number of partitions 
grows linearly with the dataset size, and the figure shows 
Phase 1 using less than 2 GB.

Prefix array size
We have analyzed the effect of the value of the parameter 
p on the running time. We used the first 8 GB of  each 
dataset for these experiments. Recall that p is the num-
ber of symbols in each position of PREFIX arrays and has 
a major impact on external memory usage and access. 
As the value of p grows the external memory access 
decreases but the peak disk space usage increases. We 
evaluated some values for p with fixed memory usage, 
that is, increasing p implied an reduction of the number 
of elements in the partition buffers Bi, guaranteeing that 
all versions use the same amount of internal memory. 
Table  7 shows the effect of p on the total running time 
and the efficiency of eGSA, for p varying between 0 and 
25. The value p = 10 resulted in a good tradeoff between 
the peak disk space used by the algorithm and the run-
ning time.

Effect of optimizations
In order to evaluate the effect of strategies that help to 
avoid character comparisons in eGSA, namely (a) prefix 
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Fig. 2  Running time. Running time in microseconds per input byte and the efficiency of eGSA, eSAIS and SAscan. Efficiency is the proportion 
of time for which the CPU is busy, not waiting for I/O. The running time of eGSA is consistently smaller than that of eSAIS and comparable to 
SAscan. Recall that SAscan computes only the SA
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assembly, (b) LCP comparison and (c) suffix induction, 
every possible combination of them was tested. Again, 

we used the first 8 GB of each dataset. The running time 
and the efficiency for each  dataset is shown in Table  8.
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Fig. 3  I/O volume. I/O volume (in bytes per input byte) and the peak disk usage (in GB) of eGSA, eSAIS and SAscan
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We can see that the complete version of eGSA (col-
umn {a, b, c}) was the best in the majority of the cases. 
The dataset gutenberg.8GB was faster using {a, b} 
with a difference of about 10%. Comparing with the ∅ 
version, optimization strategies reduced the time by a 
factor of 1.9−2.22. Note that all strategies individually 
improved performance with respect to the ∅ version. 
Thus, we may conclude that the use of heap strategies 
heavily improves the performance of eGSA. As a final 
remark, we note that, except for dna.8GB, the ∅ version 
reduced the time by a factor of up to 6.10 compared with 
eSAIS (Fig. 2).

Limitations
We have investigated the effect of the disk caching in the 
performance of eGSA, eSAIS and SAscan. We restricted 
both the internal memory available to our algorithm (2 
GB) as well as the total system memory at boot time (8−24 
GB).

Table  9 shows the running time and the efficiency of 
each algorithm set to use 2 GB of internal memory to 
process the first 8  GB of the dataset dna in a machine 
whose total RAM was restricted to 24, 16, 12, 10 and 8 
GB at boot time. The values in the last column (32 GB) 
are the same presented in "Relative performance" and 
"eGSA internals" sections. We also tested the datasets 
protein.8GB, gutenberg.8GB and enwiki.8GB 
and we obtained very close results, which were omitted.

The running time and efficiency of each algorithm 
degrade as the total RAM size reduces. This happens as 
an effect of the reduction of free memory available for 
disk caching managed by the operating system, which 
reduces the number of disk accesses. Comparing to the 
original setting (32 GB), the running time of eGSA was 
about 25 times larger with the RAM size restricted to 8 
GB, whereas for eSAIS and SAscan their running times 
were about 1.3 larger.

For eGSA, disk caching reduces disk accesses to the 
input strings as suffixes are moved along the heap, which 
displays a “random” pattern. This is where the worst case 
complexity stated in "Theoretical costs" section shows its 
claws. On the other hand, eGSA takes advantage of the 
disk cache system, which might be a favorable aspect in 
practical setups. Recall that the total size of the output 
data structure is 12 times the dataset size, which is 96 GB 
for the dataset dna.8GB.

The experiments show that eGSA depends on the 
availability of a large amount of free RAM to be effi-
cient, which can be seen as a feature of a semi-external 
algorithm  [8]. However, eGSA works purely in exter-
nal memory. We believe that the optimizing strategies 
applied on the heap are interesting per se, and, as the disk 
access pattern is not actually random, may be there is still 
room for improving the overall strategy based on a heap, 
what could improve the performance of eGSA with less 
support of disk caching.

Table 7  Time spent by eGSA according to the prefix array 
size

The experiment with p = 10 is the same presented in Figs.  2, 3, 4 and 5 and 
p = 0 means that the prefix assembly strategy was not used by the algorithm

Dataset p = 0 p = 5 p = 10 p = 15 p = 20

Time in µs/byte

 dna.8GB 5.68 4.97 4.91 4.48 5.03

 protein.8GB 2.58 2.00 2.04 2.00 2.12

 gutenberg.8GB 2.33 1.66 1.46 1.48 1.33

 enwiki.8GB 2.25 1.87 1.54 1.64 1.48

Efficiency

 dna.8GB 0.97 0.81 0.93 0.93 0.83

 protein.8GB 0.92 0.87 0.83 0.82 0.76

 gutenberg.8GB 0.92 0.78 0.75 0.69 0.74

 enwiki.8GB 0.92 0.80 0.82 0.70 0.74

Table 8  Effect of each heap strategies on time

All possible combinations of (a) prefix assembly, (b) LCP comparison and (c) suffix induction are plotted for the datasets. ∅ is the case when none of them is used, and 
{b, c} and {a, b, c} are the same presented in columns p = 0 and p = 10 of Table 7

Dataset ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}

Time in µs/byte

 dna.8GB 10.08 8.13 8.52 6.79 6.43 5.60 5.68 4.91

 protein.8GB 3.88 2.74 3.49 2.76 2.26 2.15 2.58 2.04

 gutenberg.8GB 3.18 1.48 2.96 2.47 1.35 1.55 2.33 1.46

 enwiki.8GB 3.28 1.87 3.04 2.42 1.73 1.82 2.25 1.54

Efficiency

 dna.8GB 0.98 0.97 0.98 0.98 0.95 0.95 0.97 0.93

 protein.8GB 0.95 0.88 0.96 0.94 0.89 0.87 0.92 0.83

 gutenberg.8GB 0.95 0.83 0.95 0.93 0.77 0.77 0.92 0.75

 enwiki.8GB 0.96 0.86 0.95 0.91 0.78 0.76 0.92 0.82



Page 15 of 16Louza et al. Algorithms Mol Biol  (2017) 12:26 

Conclusions
In this article we proposed eGSA, which is the first exter-
nal memory algorithm to construct generalized suffix 
arrays enhanced with the longest common prefix array 
(LCP) and the Burrows–Wheeler transform (BWT) for a 
collection of strings. The proposed algorithm was vali-
dated through performance tests using real datasets from 
different domains, in various combinations. Compared to 
eSAIS and SAscan, eGSA showed a competitive perfor-
mance. Moreover, our algorithm can also constructs the 
generalized BWT of a collection of strings with no addi-
tional cost except by the output time.

Another advantage of eGSA is that it may be employed 
to build generalized enhanced suffix arrays from arrays 
that have already been computed individually for strings 
in a dataset. Moreover, eGSA may be used to construct 
the core data structures used by LOF-SA [50] and ROSA 
search algorithms [21], or to build generalized suffix trees 
in external memory  [4]. Furthermore, it may be applied 
to solve the longest common substring problem [1, 3] and 
to construct the Longest Previous Factor array, which is 
used in text compression and for detecting motifs and 
repeats [15].
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