
Morgenstern et al. Algorithms Mol Biol (2017) 12:27
https://doi.org/10.1186/s13015-017-0118-8

RESEARCH

Phylogeny reconstruction based on the
length distribution of k‑mismatch common
substrings
Burkhard Morgenstern*  , Svenja Schöbel and Chris‑André Leimeister

Abstract 

Background:  Various approaches to alignment-free sequence comparison are based on the length of exact or
inexact word matches between pairs of input sequences. Haubold et al. (J Comput Biol 16:1487–1500, 2009) showed
how the average number of substitutions per position between two DNA sequences can be estimated based on the
average length of exact common substrings.

Results:  In this paper, we study the length distribution of k-mismatch common substrings between two sequences.
We show that the number of substitutions per position can be accurately estimated from the position of a local maxi‑
mum in the length distribution of their k-mismatch common substrings.

Keywords:  Alignment-free, Phylogeny, Kmacs, Average common substring, Pattern matching

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Phylogenetic distances between DNA or protein
sequences are usually estimated based on pairwise or
multiple sequence alignments. Since sequence alignment
is computationally expensive, alignment-free phylogeny
approaches have become popular in recent years, see
Vinga [1] for a review. Some of these approaches com-
pare the word composition [2–5] or spaced-word com-
position [6–9] of sequences using a fixed word length or
patterns of match and don’t-care positions, respectively.
Other approaches are based on the matching statistics
[10], that is on the length of common substrings of the
input sequences [11, 12]. All these methods are much
faster than traditional alignment-based approaches. A
disadvantage of most word-based approaches to phylog-
eny reconstruction is that they are not based on explicit
models of molecular evolution. Instead of estimating
distances in a statistically rigorous way, they only return
rough measures of sequence similarity or dissimilarity.

The average common substring (ACS) approach [11] cal-
culates for each position in one sequence the length of the

longest substring starting at this position that matches
a substring of the other sequence. The average length
of these substring matches is then used to quantify the
similarity between two sequences based on information-
theoretical considerations; these similarity values are
finally transformed into symmetric distance values. More
recently, we generalized this approach by using common
substrings with k mismatches instead of exact substring
matches [13]. To assign distance values to sequence pairs,
we used the same information-theoretical approach that
is used in ACS. Since there is no exact solution to the
k-mismatch longest common substring problem that is fast
enough to be applied to long genomic sequences, we pro-
posed a simple heuristic: we first search for longest exact
matches and then extend these matches until the k + 1st
mismatch occurs. Distances are then calculated from the
average length of these k-mismatch common substrings
similarly as in ACS; the implementation of this approach
is called kmacs. Various algorithms have been proposed
in recent years to calculate exact or approximate solu-
tions for the k-mismatch average common substring prob-
lem and have been applied to phylogeny reconstruction
[14–20]. Like ACS and kmacs, these approaches are not
based on stochastic models.

Open Access

Algorithms for
Molecular Biology

*Correspondence: bmorgen@gwdg.de
Department of Bioinformatics, Institute of Microbiology and Genetics,
University of Goettingen, Goldschmidtstr. 1, 37077 Göttingen, Germany

http://orcid.org/0000-0002-7431-2862
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0118-8&domain=pdf

Page 2 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

To our knowledge, the first alignment-free approach
to estimate the phylogenetic distance between two DNA
sequences in a statistically rigorous way was the pro-
gram kr by Haubold et al. [21]. These authors showed
that the average number of nucleotide substitutions per
position between two DNA sequences can be estimated
by calculating for each position i in one sequence the
length of the shortest substring starting at i that does not
occur in the other sequence, see also [22, 23]. This way,
phylogenetic distances between DNA sequences can be
accurately estimated for up to around 0.5 substitutions
per position. Some other, more recent, alignment-free
approaches also estimate phylogenetic distances based
on stochastic models of molecular evolution, namely Co-
phylog [24], andi [25], an approach based on the number
of (spaced) word matches [7] and Filtered Spaced Word
Matches [26].

In this paper, we propose an approach to estimate
phylogenetic distances based on the length distribution
of k-mismatch common substrings. The manuscript is
organized as follows. In the next section, we introduce
some notation and the stochastic model of sequence
evolution that we are using. In the following two sec-
tions, we recapitulate a result from [21] on the length
distribution of longest common substrings, we general-
ize this to k-mismatch longest common substrings, and
we study the length distribution of k-mismatch common
substrings returned by the kmacs heuristic [13]. Then,
we introduce our new approach to estimate phylogenetic
distances and explain some implementation details. In
the final sections, we report on benchmarking results,
discuss these results and address some possible future
developments. We should mention that “k-mismatch
longest common substrings” and “Heuristics used in
kmacs” sections are not necessary to understand our new
approach that is introduced in “Distance estimation” sec-
tion. We added these two sections for completeness, and
since they may be used for alternative ways of phyloge-
netic distance estimation. But readers who are mainly
interested in our approach to distance estimation can
skip these sections.

Sequence model and notation
We use standard notation such as used in [27]. For a
sequence S of length L over some alphabet, S(i) is the ith
character in S. S[i..j] denotes the (contiguous) substring
from i to j; we say that S[i..j] is a substring at i. In the fol-
lowing, we consider two DNA sequences S1 and S2 that
are thought to have descended from an unknown com-
mon ancestor under the Jukes-Cantor model [28]. That
is, we assume that substitutions at different positions are
independent of each other, that we have a constant substi-
tution rate at all positions and that all substitutions occur

with the same probability. We therefore have a match
probability p and a background probability q such that
P
(

S1(i) = S2(j)
)

= p if S1(i) and S2(j) descend from the
same position in the hypothetical ancestral sequence—in
which case S1(i) and S2(j) are called ‘homologue’—and
P
(

S1(i) = S2(j)
)

= q otherwise (‘background’).
Moreover, we use a gap-free model of evolution where

S1 and S2 have the same length L, to simplify the consid-
erations below. With this model, S1(i) and S2(j) are ‘hom-
ologue’ if and only if i = j, so we have

Similarly, we call a pair of equal-length substrings of S1
and S2 homologue if they start at the same respective
positions in S1 and S2, and background otherwise. The
background match probability q can be easily estimated
from the relative frequencies of the four nucleotides. The
main goal of the present study is to estimate the prob-
ability p. The distance between S1 and S2, defined as the
number of substitutions per position since two sequences
diverged from their last common ancestor, can then be
obtained from p by the usual Jukes-Cantor correction.
Note that, with our gap-free model, it is trivial to esti-
mate p as the relative frequency of positions i where Si(i)
equals S2(i). However, we will apply our results to real-
world sequences with insertions and deletions where
such a trivial approach is not possible.

k‑mismatch longest common substrings
For positions i and j in sequence S1 and S2, respectively,
we define random variables

That is, Xi,j is the length of the longest substring at i that
exactly matches a substring at j. Next, we define

as the length of the longest substring at i that matches a
substring of S2 anywhere in the sequence, see Fig. 1 for an
example.

In the following, we ignore edge effects, which is justi-
fied if long sequences are compared since the probability
of k-mismatch common substrings of length m decreases
rapidly if m increases. With this simplification, we have

If, in addition, we assume equilibrium frequencies for the
nucleotides, i.e. if we assume that each nucleotide occurs
at each sequence position with probability 0.25, the

P
(

S1(i) = S2(j)
)

=

{

p if i = j
q else

Xi,j = max{l : S1[i..i + l − 1] = S2[j..j + l − 1]}

(1)Xi = max
1≤j≤L

Xi,j

(2)

P(Xi,j < n) = 1− P(Xi,j ≥ n) =

{

1− pn if i = j
1− qn else

Page 3 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

random variables Xi,j and Xi′,j′ are independent of each
other whenever j − i �= j′ − i′ holds. In this case, we have
for n ≤ L− i + 1

and

so the expected length of the longest common substring
at a given sequence position is

Next, we generalize the above considerations by looking at
the average length of the k-mismatch longest common sub-
strings between two sequences for some integer k ≥ 0 . That
is, for a position i in one of the sequences, we consider the
longest substring starting at i that matches some substring
in the other sequence with a Hamming distance ≤ k . Gen-
eralizing the above notation, we define random variables

where dH (·, ·) is the Hamming distance between two
sequences. In other words, X (k)

i,j is the length of the long-
est substring starting at position i in sequence S1 that
matches a substring starting at position j in sequence S2
with k mismatches. Accordingly, we define

(3)

P(Xi < n) = P(Xi,1 < n ∧ . . . ∧ Xi,L < n)

= P(Xi,1 < n) · . . . · P(Xi,L < n)

= P(Xi,1 < n) · . . . · P(Xi,L−n+1 < n)

= (1− qn)L−n · (1− pn)

P(Xi = n) = P(Xi < n+ 1)− P(Xi < n)

= (1− qn+1)L−n−1 · (1− pn+1)

− (1− qn)L−n · (1− pn)

(4)

L
∑

n=1

n ·
(

(1− qn+1)L−n−1 · (1− pn+1)

−
(

1− qn
)L−n

·
(

1− pn
)

)

X
(k)
i,j = max

{

l : dH
(

S1[i..i + l − 1], S2[j..j + l − 1]
)

= k
}

X
(k)
i = max

j
X
(k)
i,j

as the length of the longest k-mismatch substring at posi-
tion i. As pointed out by Apostolico et al. [18], X (k)

i,j fol-
lows a negative binomial distribution, and we can write

and

Generalizing (3), we obtain for n > k

while we have

Finally, we obtain

(5)P
(

X
(k)
i,j = n

)

=

{ (n
k

)

pn−k(1− p)k+1 if i = j
(n
k

)

qn−k(1− q)k+1 else

(6)

P
(

X
(k)
i,j ≥ n

)

=

{

∑

k ′≤k

(n
k ′

)

pn−k ′(1− p)k
′

if i = j
∑

k ′≤k

(n
k ′

)

qn−k ′(1− q)k
′

else

(7)

P
�

X
(k)
i n

�

=



1−
�

k ′≤k

�

n

k ′

�

qn−k ′(1− q)k
′





L

− n ·



1−
�

k ′≤k

�

n

k ′

�

pn−k ′(1− p)k
′





P
(

X
(k)
i < n

)

=

{

1 if n > L− i + 1
0 if n ≤ k

(8)

P
�

X
(k)
i = n

�

=



1−
�

k ′≤k

�

n+ 1

k ′

�

qn+1−k ′ (1− q)k
′





L−n−1

·



1−
�

k ′≤k

�

n+ 1

k ′

�

pn+1−k ′ (1− p)k
′





−



1−
�

k ′≤k

�

n

k ′

�

qn−k ′ (1− q)k
′





L

−n ·



1−
�

k ′≤k

�

n

k ′

�

pn−k ′ (1− p)k
′





Fig. 1  k-mismatch common substrings with k = 2. For position i = 5 in S1, kmacs searches the longest substring of S1 starting at i that exactly
matches a substring of S2. This is the substring starting at i∗ = 2 in S2 (matching substrings shown in red). It then extends this match without gaps
until the k + 1st mismatch is reached. In this example, the k-mismatch common substring would consist of the red, blue and green substrings and
has length 12. In the paper, the lengths of these k-mismatch common substrings are modelled by the random variables X (k)i , defined in (1). The
original version of kmacs uses the average length of these k-mismatch common substrings to assign a distance value to a pair of sequences. In our
modified implementation of kmacs, we consider the k-mismatch extension of the longest common substring at i. That is, the program would return
the length of the k-mismatch substring match that starts after the first mismatch following the longest common substring. In our example, for i = 5,
this would be the substring match starting with ‘T’ at position 11 in S1 and at position 8 in S2, consisting of the blue, green and orange matches; the
length of this k-mismatch substring extension would be 9. The length of these k-mismatch extensions are modelled by the random variable X̂ (k)i ,
defined in (16)

Page 4 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

from which one can obtain the expected length of the
k-mismatch longest substrings.

Heuristic used in kmacs
Since exact solutions for the average k-mismatch com-
mon substring problem are too time-consuming for large
sequence sets, the program kmacs [13] uses a heuristic.
In a first step, the program calculates for each position
i in one sequence, the length of the longest substring
starting at i that exactly matches a substring of the other
sequence. kmacs then calculates the length of the longest
gap-free extension of this exact match to the right-hand
side with k mismatches. Using standard indexing struc-
tures, this can be done in O(L · k) time.

For sequences S1, S2 as above and a position i in S1, let
j∗ be a position in S2 such that the Xi-length substring
starting at i matches the Xi-length substring at j∗ in S2.
That is, the substring

is the longest substring of S2 that matches a substring of
S1 at position i. In case there are several such positions
in S2, we assume for simplicity that j∗ �= i holds (in the
following, we only need to distinguish the cases j∗ = i
and j∗ �= i, otherwise it does not matter how j∗ is cho-
sen). Now, let the random variable X̃ (k)

i be defined as the
length of the k-mismatch common substring starting at i
and j∗, so we have

Theorem 1  For a pair of sequences as above, 1 ≤ i ≤ L
and m ≤ L− i + 1, the probability of the heuristic kmacs
hit of having a length of m is given as

Proof  Distinguishing between ‘homologous’ and ‘back-
ground’ matches, and using the law of total probability,
we can write

S2[j
∗..j∗ + Xi − 1]

(9)X̃
(k)
i = X

(k)
i,j∗ = Xi + X

(k−1)
i+Xi ,j∗+Xi

+ 1

P
(

X̃
(k)
i = m

)

= pm−k+1(1− p)k+1
∑

m1+m2=m−1

(1− qm1+1)L−m1

(

m2

k − 1

)

+
∑

m1+m2=m−1

[

(1− qm1+1)L−m1 − (1− qm1)L−m1

]

· (1− pm1)

·

(

m2

k − 1

)

qm2−k+1(1− q)k

and with (5), we obtain

and

so with (11) and (12), the first summand in (10) becomes

Similarly, for the second summand in (10), we note that

(10)

P
(

X̃
(k)
i = m

)

= P
(

X̃
(k)
i = m

∣

∣j∗ = i
)

P(j∗ = i)

+ P
(

X̃
(k)
i = m

∣

∣j∗ �= i
)

P(j∗ �= i)

(11)

P
(

X̃
(k)
i = m

∣

∣j∗ = i
)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ = i)P

(

X
(k−1)
i+m1+1,i+m1+1

= m2

)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ = i)

(

m2

k − 1

)

pm2−k+1(1− p)k

(12)

P(Xi = m1|j
∗ = i) =

P(Xi,i = m1 ∧ j∗ = i)

P(j∗ = i)

=
P(Xi,i = m1 ∧ Xi,i ≥ Xi,j , j �= i)

P(j∗ = i)

=
P(Xi,i = m1 ∧ Xi,j ≤ m1, j �= i)

P(j∗ = i)

=
pm1(1− p) · (1− qm1+1)L−m1

P(j∗ = i)

(13)

P
(

X̃
(k)
i = m

∣

∣j∗ = i
)

P(j∗ = i)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ = i)

(

m2

k − 1

)

pm2−k+1(1− p)k · P(j∗ = i)

=
∑

m1+m2=m−1

pm1 (1− p) · (1− qm1+1)L−m1

P(j∗ = i)

·

(

m2

k − 1

)

pm2−k+1(1− p)k · P(j∗ = i)

=
∑

m1+m2=m−1

(1− qm1+1)L−m1

(

m2

k − 1

)

pm1+m2−k+1(1− p)k+1

= pm−k+1(1− p)k+1
∑

m1+m2=m−1

(1− qm1+1)L−m1

(

m2

k − 1

)

(14)

P
(

X̃
(k)
i = m|j∗ �= i

)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ �= i)

(

m2

k − 1

)

qm2−k+1(1− q)k

Page 5 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

and

Thus, the second summand in (10) is given as

� □
For 1 ≤ m ≤ L, the expected number of k-mismatch

common substrings of length m returned by the kmacs
heuristics is given as L · P

(

X̃
(k)
i = m

)

 and can be calcu-
lated using Theorem 1. Moreover, one can use the above
considerations to calculate the length distributions of
the homologous and background k-mismatch common
substrings returned by kmacs. (Remember that, with
our simple gap-free model, two substrings of S1 and S2 ,
respectively, are called homologous if they start at the
same positions and background otherwise.) The prob-
abilities on the right-hand side of Eq. (10) can be used to
calculate the expected number of homologous and back-
ground k-mismatch common substrings of length m
returned by kmacs. In Fig. 2, these expected numbers are
plotted against m for L = 100 kb, p = 0.6 and k = 20.

Distance estimation
Using Theorem 1, one could estimate the match probabil-
ity p—and thereby the average number of substitutions
per position—from the empirical average length of the
k-mismatch common substrings returned by kmacs in a
moment-based approach, similar to the approach pro-
posed in [21].

(15)

P(Xi = m1|j
∗ �= i) =

P(Xi,j∗ = m1 ∧ j∗ �= i)

P(j∗ �= i)

=
P(Xi,j∗ = m1 ∧ Xi,i < Xi,j∗)

P(j∗ �= i)

=
P(Xi,j∗ = m1 ∧ Xi,i < m1)

P(j∗ �= i)

=
P(maxj �=i Xi,j = m1 ∧ Xi,i < m1)

P(j∗ �= i)

=
P(maxj �=i Xi,j = m1) · P(Xi,i < m1)

P(j∗ �= i)

=
P(maxj �=i Xi,j = m1) · P(Xi,i < m1)

P(j∗ �= i)

=

[

(1− qm1+1)L−m1 − (1− qm1)L−m1
]

· (1− pm1)

P(j∗ �= i)

P
(

X̃
(k)
i = m

∣

∣j∗ �= i
)

P(j∗ �= i)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ �= i)

(

m2

k − 1

)

qm2−k+1(1− q)k · P(j∗ �= i)

=
∑

m1+m2=m−1

[

(1− qm1+1)L−m1 − (1− qm1)L−m1

]

· (1− pm1)

P(j∗ �= i)

(

m2

k − 1

)

qm2−k+1(1− q)k · P(j∗ �= i)

=
∑

m1+m2=m−1

[

(1− qm1+1)L−m1 − (1− qm1)L−m1

]

· (1− pm1)

·

(

m2

k − 1

)

qm2−k+1(1− q)k

A problem with this moment-based approach is that, for
realistic values of L and p, one has P(j∗ = i) ≪ P(j∗ �= i) ,
so the above sum is heavily dominated by the ‘back-
ground’ part, i.e. by the second summand in (10). For the
parameter values used in Fig. 2, for example, only 1% of
the matches returned by kmacs represent homologies
while 99% are background noise. There are, in principle,
two ways to circumvent this problem. First, one could try
to separate homologous from background matches using
a suitable threshold value, similarly as we have done in
our Filtered Spaced Word Matches approach [29]. But
this is more difficult for k-mismatch common substrings,
since there can be much more overlap between homolo-
gous and background matches than for Spaced-Word
matches, see Fig. 2.

Fig. 2  Theoretical length distribution of k-mismatch longest
common substrings. The expected number of homologous and
background k-mismatch longest common substrings of length m,
returned by the kmacs heuristic, was calculated for 20 ≤ m ≤ 80
using Theorem 1 for an indel-free pair of sequences of length
L = 100 kb, a match probability p = 0.6 (corresponding to 0.57 sub‑
stitutions per position) and k = 20

Page 6 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

There is an alternative to this moment-based approach,
however. As can be seen in Fig. 2, the length distribu-
tion of the k-mismatch longest common substrings is
bimodal, with a first peak in the distribution correspond-
ing to the background matches and the second peak cor-
responding to the homologous matches. We show that
the number of substitutions per positions can be easily
estimated from the position of this second peak.

To simplify the following calculations, we ignore the
longest exact match in Eq. (9), and consider only the
length of the gap-free ‘extension’ of this match, see Fig. 1
for an illustration. To model the length of these k-mis-
match extensions, we define define random variables

In other words, for a position i in sequence S1, we are
looking for the longest substring starting at i that exactly
matches a substring of S2. If j∗ is the starting position
of this substring of S2, we define X̂ (k)

i as the length of
the longest possible substring of S1 starting at position
i + Xi + 1 that matches a substring of S2 starting at posi-
tion j∗ + Xi + 1 with a Hamming distance of k.

Theorem 2  Let X̂ (k)
i be defined as in (16). Then X̂ (k)

i is
the sum of two unimodal distributions, a ‘homologous’
and a ‘background’ contribution, and the maximum of the
‘homologous’ contribution is reached at

and the maximum of the ‘background contribution’is
reached at

Proof  As in (5), the distribution of X̂ (k)
i conditional on

j∗ = i or j∗ �= i, respectively, can be easily calculated as

and

so we have

(16)X̂
(k)
i = X̃

(k+1)
i − Xi = X

(k)
i+Xi+1,j∗+Xi+1

mH =

⌈

k

1− p
− 1

⌉

mB =

⌈

k

1− q
− 1

⌉

P
(

X̂
(k)
i = m|j∗ = i

)

= P
(

X
(k)
i+Xi+1,i+Xi+1

= m
)

=

(

m

k

)

pm−k(1− p)k+1

P

(

X̂
(k)
i = m

∣

∣j∗ �= i
)

=

(

m

k

)

qm−k(1− q)k+1

For the homologous part

we obtain the recursion

so we have Hk(m) ≤ Hk(m+ 1) if and only if

Similarly, the ‘background contribution’

is increasing until

holds, which concludes the proof of the theorem. � □

The proof of Theorem 2 gives us lower and upper
bounds for p and an easy approach to estimate p from the
empirical length distribution of the k-mismatch exten-
sions calculated by kmacs. Let mmax be the maximum of
the homologous part of the distribution X̂ (k)

i , i.e. we define

Then, by inserting mmax − 1 and mmax into inequality
(18), we obtain

Finally, we use (18) to estimate p from the second maxi-
mum mE of the empirical distribution of X̂i as

For completeness, we calculate the probability P(j∗ = i).
First we note that, by definition, for all i, we have

so with the law of total probability and Eq. (2), we obtain

(17)

P
(

X̂
(k)
i = m

)

= P(j∗ = i)

(

m

k

)

pm−k(1− p)k+1

+ P(j∗ �= i)

(

m

k

)

qm−k(1− q)k+1

Hk(m) = P(j∗ = i)

(

m

k

)

pm−k(1− p)k+1

Hk(m+ 1) =
m+ 1

m+ 1− k
· p ·Hk(m)

(18)
m+ 1− k

m+ 1
≤ p

Bk(m) = P(j∗ �= i)

(

m

k

)

qm−k(1− q)k+1

m+ 1− k

m+ 1
≤ q

mmax = argmax
m

(

m

k

)

pm−k(1− p)k+1

mmax − k

mmax
≤ p ≤

mmax + 1− k

mmax + 1

(19)p̂ ≈
mE + 1− k

mE + 1

P(j∗ = i) = P
(

Xi,j < Xi,i for all j �= i
)

Page 7 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

Implementation
For each position i in one of the two input sequences,
kmacs first searches the longest substring starting at i
that exactly matches a substring of the other sequence.
For a user-defined parameter k, the program then cal-
culates the length of the longest possible gap-free exten-
sion with k mismatches of this exact hit. The original
version of the program uses the average length of these
k-mismatch common substrings (the initial exact match
plus the k − 1-mismatch extension after the first mis-
match) to assign a distance value to a pair of sequences.
We modified kmacs to output the length of the exten-
sions of the identified matches only, ignoring these ini-
tial exact matches. Thus, to find k-mismatch common
substrings, we ran kmacs with parameter k + 1, and we
consider the length of the k-mismatch extension after the
first mismatch. For each possible length m, the modified
program outputs the number N(m) of k-mismatch exten-
sions of length m, starting after the first mismatch after
the respective longest exact match.

To find for each position i in one sequence the length of
the longest string at i matching a substring of the other
sequences, kmacs uses a standard procedure based on
enhanced suffix arrays [30], see Fig. 3. The algorithm first
identifies the corresponding position in the suffix array.
It then goes in both directions, up and down, in the suffix
array until the first entry from the respective other sequence
is found. In both cases, the minimum of the LCP values is
recorded. The maximum of these two minima is the length
of the longest substring in the other sequence matching a
substring starting at i. In Fig. 3, for example, if i is position
3 in the string ananas, i.e. the 10th position in the concate-
nate string, the minimum LCP value until the first entry from
banana is found, is 3 if one goes up the array and 0 if one
goes down. Thus, the longest string in banana matching a
substring starting at position 3 in ananas has length 3.

Note that, for a position i in one sequence, it is pos-
sible that there exists more than one maximal substring
in the other sequence matching a substring at i. In this
case, our modified algorithm uses all of these maximal
substring matches, i.e. all maximal exact string matches
are extended as described above. All these hits can be

(20)

P(j∗ = i) = P
(

Xi,j < Xi,i for all j �= i
)

=
∑

m

P
(

Xi,j < Xi,i for all j �= i|Xi,i = m
)

P(Xi,i = m)

=
∑

m

P
(

Xi,j < m for all j �= i
)

P(Xi,i = m)

=
∑

m

∏

j �=i

P(Xi,j < m)P(Xi,i = m)

=
∑

m

(1− qm)L−1pm(1− p)

easily found in the suffix array by extending the search in
upwards or downwards direction until the minimum of
the LCP entries decreases. In the above example, there is
a second occurrence of ana in banana which is found
by moving one more position upwards (the correspond-
ing LCP value is still 3).

In addition, we modified the original kmacs to ensure
that, for each pair (i′, j′) of positions from the two input
sequences, the extended k-mismatch common substring
starting at (i′, j′) is counted only once. This is necessary
for the following reason: if S1 and S2 share a long com-
mon substring S, then there will be many positions i in S1
within S such that j∗ is at the corresponding position of
S in S2. In Fig. 1, for example, the red substring starting
at positions 5 and 2, respectively, would be such a string
S. Here, there are three positions i in S1—positions 5, 6
and 7—such that the respective j∗ would be at the cor-
responding positions in S1—at positions 2, 3 and 4, in
this case. As a consequence, all maximal exact matches
starting at these positions end before the first mismatch
after the red substring—at positions 10 and 7—, so the
k-mismatch extensions of all these exact matches start at
positions i′ = 11 and j′ = 8 in S1 and S2, respectively. If
all k-mismatches returned by kmacs would be counted,
the extension starting after the red exact substring match
would be counted three times. In real-world genomic
sequences, such situations are common. Without the
above correction, we observed isolated values m in the
length distribution of the k-mismatch extensions, such

Fig. 3  Enhanced suffix array. For sequences ‘banana’ and ‘ananas’,
the enhanced suffix array is shown. Suffixes of the concatenated
sequence are lexicographically ordered; a longest common prefix (LCP)
array indicates the length of the longest common prefix of a suffix
with its predecessor in the list (Figure taken from [13])

Page 8 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

that the number N(m) of k-mismatch extensions of
length m is very high, while N (m′) is zero for neighbour-
ing values m′.

To further process the length distribution returned by
the modified kmacs, we implemented a number of Perl
scripts. First, the length distribution of the k-mismatch
common substrings is smoothed using a window of
length w. Next, we search for the second local maximum
in this smoothed length distribution. This second peak
should represent the homologous k-mismatch common
substrings, while the first, larger peak represents the
background matches, see Figs. 4 and 5. A simple script
identifies the position m∗ of the second highest local
peak under two side constraints: we require the height
N (m∗) of the second peak to be substantially smaller
than the global maximum, and we require that N (m∗)
is larger than N (m∗ − x) for some suitable parameter x.
Quite arbitrarily, we required the second peak to be 10
times smaller than the global maximum peak, and we
used a value of x = 4. These constraints were introduced
to prevent the program to identify small side peaks
within the background peak. Finally, we use the position
m∗ of the second largest peak in the smoothed length
distribution to estimate the match probability p in an
alignment of the two input sequences using expression
(19). The usual Jukes-Cantor correction is then used to
estimate the number of substitutions per position that
have occurred since the two sequences separated from
their last common ancestor.

We should mention that our algorithm is not always
able to output a distance value for two input sequences.

It is possible that the algorithm fails to find a second
maximum in the length distribution of the k-mismatch
common substrings. This can happen, for example, for
distantly related sequences where the ‘homologue’ and
the ‘background’ peak are too close together such that
the ‘homologous’ peak is obscured by the ‘background’
peak, see Fig. 5 for an example. In this case no distance
can be calculated by our algorithm.

Test results
To evaluate our approach, we used simulated and real-
world genome sequences. As a first set of test data, we
generated pairs of simulated DNA sequences of with var-
ying evolutionary distances and compared the distances
estimated with our algorithm—i.e. the estimated number

Fig. 4  Empirical length distribution of k-mismatch common sub‑
string extensions. The number of k-mismatch extensions of length m
was calculated with kmacs for a pair of simulated DNA sequences of
length L = 500 kb with k = 90 and 80 ≤ m ≤ 240. The plot shows
the raw frequencies and smoothed distribution with different values
for for the width w of the smoothing window. The hight of the
‘homologous’ peak is > 50,000

Fig. 5  Theoretical length distribution of k-mismatch common
substring extensions. The expected number of k-mismatch exten‑
sions of length m returned by kmacs was calculated using Eq. (17),
distinguishing between ‘homologous’ and ‘background’ matches, for
a pair of sequences of length L = 500 kb with a match probability
of p = 0.5 for k = 10 (top) and k = 70 (bottom) for 20 ≤ m ≤ 160. A
large enough value of k is necessary to detect the second peak in the
distribution that corresponds to the ‘homologous’ matches

Page 9 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

of substitutions per position—to their ‘real’ distances. For
each distance value, we generated 100 pairs of sequences
of length 500 kb each and calculated the average and
standard deviation of the estimated distance values. Fig-
ure 6 shows the results of these test runs with a param-
eter k = 90 and a smoothing window size of w = 31, with
error bars representing standard deviations. A program

run on a pair of sequences of length 500 kb took less than
a second.

Figure 4 shows the length distribution for one of these
sequence pairs with various values for w. In Fig. 6, the
results are reported for a given distance value, if distances
could be computed for at least 75 out of the 100 sequence
pairs (as mentioned above, it is possible that our program
does not output a distance value since no second maxi-
mum could be found in the length distribution of the
k-mismatch common substrings). As can be seen in the
figure, our approach accurately estimates evolutionary
distances up to around 0.9 substitutions per position. For
larger distances, the program did not return a sufficient
number of distance values, so no results are reported
here. To demonstrate the influence of the parameter k,
we plotted in Fig. 5, for a given set of parameters, the
expected number of k-mismatch common substring
extensions of length m, calculated with Eq. (17), using
varying values of k.

As a real-word test case, we used a set of 27 mito-
chondrial genomes from primates that has been used as
benchmark data in previous studies on alignment-free
sequence comparison. We applied our method with dif-
ferent values of k and with different window lengths w
for the smoothing. In addition, we ran the programs
andi [25] and our previously published program Filtered
Spaced-Word Matches (FSWM) [29] on these data. As
a reference tree, we used a tree calculated with Clustal
� [31] and Neighbour Joining [32]. To compare the pro-
duced trees with this reference trees, we used the Rob-
inson-Foulds distance [33] and the branch score distance
[34] as implemented in the PHYLIP program package
[35]. Figure 7 shows the performance of our approach
with different parameter values and compares them to
the results of andi and FSWM. For the parameter values
shown in the figure, our program was able to calculate
distances for all

(27
2

)

= 351 pairs of sequences. The total
run time to calculate the 351 distance values for the 27
mitochondrial genomes was less than 6 s. Note that the
time and memory consumption of our approach essen-
tially depend on kmacs, the scripts that process the out-
put of kmacs are negligible. For a discussion of the time
and space complexity of our software, we therefore refer
to our previous paper on kmacs [13].

Discussion
In this paper, we introduced a new way of estimating
phylogenetic distances between genomic sequences. We
showed that the average number of substitutions per
position since two sequences have separated from their
last common ancestor can be accurately estimated from
the position of local maximum in the smoothed length
distribution of k-mismatch common substrings. To

Fig. 6  Estimated distances—i.e. estimated average number of
substitutions per position—for simulated sequence pairs, plotted
against the ‘real’ distances—i.e. substitution probabilities used in the
simulations, for pairs of sequences of length L = 500 kb. We applied
our own approach with parameters k = 90 and w = 31 (top) as well
as Filtered Spaced Word Matches (middle) and andi (bottom)

Page 10 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

find this local maximum, we used a naive search proce-
dure. Two parameter values have to be specified in our
approach, the number k of mismatches and the size w
of the smoothing window for the length distribution.
Table 1 shows that our distance estimates are reasonably
stable for a range of values of k and w.

A suitable value of the parameter k is important to sep-
arate the ‘homologous’ peak from the ‘background’ peak
in the length distribution of the k-mismatch common

substrings. As follows from Theorem 2, the distance
between these two peaks is proportional to k. The value
of k must be large enough to ensure that the homologous
peak has a sufficient distance to the background peak to
be detectable, see Fig. 5. On the other hand, k should not
be too large. All considerations in this paper are based
on the assumtion that k-mismatch common substrings
are either homologue or background, which is the case
under our indel-free model of sequence evolution. For
sequences with insertions and deletions, however, an
un-gapped segment pair may contain both homologous
and background regions, if it involves indels. If k is large,
k-mismatch common substrings tend to be long, and
‘mixed’ k-mismatch common substrings, including both
background and homologue segments, will distort our
distance estimates. This seems to be the reason why in
Fig. 7 our results deteriorate if k becomes too large. One
possible solution to this problem would be to recognize
‘mixed’ k-mismatch common substrings by the distribu-
tion of their mismatches and to exclude them from the
length statistics. This might allow us to increase k with-
out running into the above mentioned problems, so one
could achieve a better separation of ‘background’ and
‘homologous’ peaks. We are planning to investigate the
effect of indels on our approach in a subsequent study.

Specifying a suitable size w of the smoothing window
is also important to obtain accurate distance estimates; a
large enough window is necessary to avoid ending up in
a local maximum of the raw length distribution. For the
data shown in Fig. 4, for example, our approach finds the
second maximum of the length distribution at 179 if a
window width of w = 31 is chosen. From this value, the
match probability p is estimated as

using Eq. (18), corresponding to 0.824 substitutions per
position according to the Jukes-Cantor formula. This
was exactly the value that we used to generate this pair
of sequences. With window lengths of w = 21 and w = 1

p̂ =
179+ 1− 90

179+ 1
= 0.5

Fig. 7  Evaluation of alignment-free methods for phylogeny recon‑
struction. Various methods were evaluated on on a set of 27 primate
mitochondrial genomes. Robinson-Foulds distances (top) and branch
scores (bottom) were calculated to measure the difference between
the resulting trees and a reference tree obtained with Clustal � and
Neighbour Joining

Table 1  Distance values calculated with our algorithm for a pair of simulated sequences of length L = 500 kb with a
match rate of p = 0.5, corresponding to a distance of 0.824 substitutions per position

Dashes indicate that no distance value could be calculated since our algorithm could not find the second local maximum in the smoothed length distribution of the
k-mismatch common substrings

k = 30 k = 50 k = 70 k = 90 k = 120 k = 150 k = 200

w = 1 0.665 0.809 0.935 0.897 0.794 0.781 0.995

w = 5 – 0.839 0.835 0.784 0.783 0.773 0.880

w = 11 – – 0.869 0.808 0.788 0.781 0.863

w = 21 – – 0.813 0.824 0.824 0.804 0.817

w = 31 – – 0.813 0.824 0.824 0.829 0.835

w = 51 – – – – 0.824 0.819 0.820

Page 11 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

(no smoothing at all), however, the second local maxima
of the length distribution would be found at 181 and 171,
respectively, leading to estimates of 0.808 (w = 11) and
0.897 (w = 1) substitutions per position. If the width w of
the smoothing window is too large, on the other hand, the
second peak may be obscured by the first ‘background’
peak. In this case, no peak is found and no distance can
be calculated. In Fig. 4, for example, this happens with if a
window width w = 51 is used. Further studies are neces-
sary to find out suitable values for w and k, depending on
the length of the input sequences.

Finally, we should say that we used a rather naive way
to identify possible homologies that are then extended to
find k-mismatch common substrings. As becomes obvi-
ous from the size of the homologous and background
peaks in our plots, our approach finds far more back-
ground matches than homologous matches. Reducing
the noise of background matches should help to find the
position of the homologous peak in the length distribu-
tions. We will therefore explore alternative ways to find
possible homologies that can be used as starting points
for k-mismatch common substrings.

Authors’ contributions
BM conceived the approach, implemented the scripts to estimate phyloge‑
netic distances from the lengths of the k-mismatch common substrings, did
some of the program evaluation and wrote the manuscript. SS contributed to
the program evaluation. CL adapted the program kmacs as described in the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Our software is freely available under the GNU license at http://www.gobics.
de/burkhard/lendis.tar.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
The project was partially funded by the VW Foundation, project VWZN3157.
We acknowledge support by the German Research Foundation and the Open
Access Publication Funds of the Göttingen University.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 4 October 2017 Accepted: 28 November 2017

References
	1.	 Vinga S. Editorial: Alignment-free methods in computational biology.

Brief Bioinform. 2014;15:341–2.

	2.	 Höhl M, Rigoutsos I, Ragan MA. Pattern-based phylogenetic distance
estimation and tree reconstruction. Evol Bioinform Online. 2006;2:359–75.

	3.	 Sims GE, Jun S-R, Wu GA, Kim S-H. Alignment-free genome comparison
with feature frequency profiles (FFP) and optimal resolutions. Proc Natl
Acad Sci USA. 2009;106:2677–82.

	4.	 Chor B, Horn D, Levy Y, Goldman N, Massingham T. Genomic DNA k-mer
spectra: models and modalities. Genome Biol. 2009;10:108.

	5.	 Vinga S, Carvalho AM, Francisco AP, Russo LMS, Almeida JS. Pattern matching
through Chaos Game Representation: bridging numerical and discrete data
structures for biological sequence analysis. Algorithms Mol Biol. 2012;7:10.

	6.	 Leimeister C-A, Boden M, Horwege S, Lindner S, Morgenstern B. Fast
alignment-free sequence comparison using spaced-word frequencies.
Bioinformatics. 2014;30:1991–9.

	7.	 Morgenstern B, Zhu B, Horwege S, Leimeister C-A. Estimating evolution‑
ary distances between genomic sequences from spaced-word matches.
Algorithms Mol Biol. 2015;10:5.

	8.	 Hahn L, Leimeister C-A, Ounit R, Lonardi S, Morgenstern B. Rasb‑
hari: optimizing spaced seeds for database searching, read map‑
ping and alignment-free sequence comparison. PLOS Comput Biol.
2016;12(10):1005107.

	9.	 Noé L. Best hits of 11110110111: model-free selection and parameter-free
sensitivity calculation of spaced seeds. Algorithms Mol Biol. 2017;12:1.

	10.	 Chang WI, Lawler EL. Sublinear approximate string matching and biologi‑
cal applications. Algorithmica. 1994;12:327–44.

	11.	 Ulitsky I, Burstein D, Tuller T, Chor B. The average common sub‑
string approach to phylogenomic reconstruction. J Comput Biol.
2006;13:336–50.

	12.	 Comin M, Verzotto D. Alignment-free phylogeny of whole genomes
using underlying subwords. Algorithms Mol Biol. 2012;7:34.

	13.	 Leimeister C-A, Morgenstern B. kmacs: the k-mismatch average common
substring approach to alignment-free sequence comparison. Bioinfor‑
matics. 2014;30:2000–8.

	14.	 Aluru S, Apostolico A, Thankachan SV. Efficient alignment free sequence
comparison with bounded mismatches. In: International conference on
research in computational molecular biology; 2015. p. 1–12

	15.	 Thankachan SV, Chockalingam SP, Liu Y, Apostolico A, Aluru S. ALFRED:
a practical method for alignment-free distance computation. J Comput
Biol. 2016;23:452–60.

	16.	 Pizzi C. MissMax: alignment-free sequence comparison with mismatches
through filtering and heuristics. Algorithms Mol Biol. 2016;11:6.

	17.	 Thankachan SV, Apostolico A, Aluru S. A provably efficient algorithm for
the k-mismatch average common substring problem. J Comput Biol.
2016;23:472–82.

	18.	 Apostolico A, Guerra C, Landau GM, Pizzi C. Sequence similarity
measures based on bounded hamming distance. Theor Comput Sci.
2016;638:76–90.

	19.	 Thankachan SV, Chockalingam SP, Liu Y, Krishnan A, Aluru S. A greedy
alignment-free distance estimator for phylogenetic inference. BMC Bioin‑
form. 2017;18:238.

	20.	 Petrillo UF, Guerra C, Pizzi C. A new distributed alignment-free approach
to compare whole proteomes. Theor Comput Sci. 2017;698:100–12.

	21.	 Haubold B, Pfaffelhuber P, Domazet-Loso M, Wiehe T. Estimating mutation
distances from unaligned genomes. J Comput Biol. 2009;16:1487–500.

	22.	 Haubold B, Pierstorff N, Möller F, Wiehe T. Genome comparison without
alignment using shortest unique substrings. BMC Bioinform. 2005;6:123.

	23.	 Haubold B, Wiehe T. How repetitive are genomes? BMC Bioinform.
2006;7:541.

	24.	 Yi H, Jin L. Co-phylog: an assembly-free phylogenomic approach for
closely related organisms. Nucleic Acids Res. 2013;41:75.

	25.	 Haubold B, Klötzl F, Pfaffelhuber P. andi: Fast and accurate estimation of
evolutionary distances between closely related genomes. Bioinformatics.
2015;31:1169–75.

	26.	 Leimeister CA, Dencker T, Morgenstern B. Anchor points for genome
alignment based on filtered spaced word matches. arXiv:1703.08792
[q-bio.GN]; 2017.

	27.	 Gusfield D. Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge: Cambridge University
Press; 1997.

	28.	 Jukes TH, Cantor CR. Evolution of protein molecules. New York: Academy
Press; 1969.

http://www.gobics.de/burkhard/lendis.tar
http://www.gobics.de/burkhard/lendis.tar
http://arxiv.org/abs/1703.08792

Page 12 of 12Morgenstern et al. Algorithms Mol Biol (2017) 12:27

	29.	 Leimeister C-A, Sohrabi-Jahromi S, Morgenstern B. Fast and accurate phy‑
logeny reconstruction using filtered spaced-word matches. Bioinformat‑
ics. 2017;33:971–9.

	30.	 Manber U, Myers G. Suffix arrays: a new method for on-line string
searches. In: Proceedings of the first annual ACM-SIAM symposium on
discrete algorithms SODA ’90; 1990. p. 319–27.

	31.	 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam
H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable genera‑
tion of high-quality protein multiple sequence alignments using Clustal
Omega. Mol Syst Biol. 2011;7:539.

	32.	 Saitou N, Nei M. The neighbor-joining method: a new method for recon‑
structing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

	33.	 Robinson D, Foulds L. Comparison of phylogenetic trees. Math Biosci.
1981;53:131–47.

	34.	 Kuhner MK, Felsenstein J. A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Mol Biol Evol.
1994;11:459–68.

	35.	 Felsenstein J. PHYLIP-phylogeny inference package (version 3.2). Cladis‑
tics. 1989;5:164–6.

	Phylogeny reconstruction based on the length distribution of k-mismatch common substrings
	Abstract
	Background:
	Results:

	Background
	Sequence model and notation
	k-mismatch longest common substrings
	Heuristic used in kmacs
	Distance estimation
	Implementation
	Test results
	Discussion
	Authors’ contributions
	References

