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Abstract 

Background:  Various approaches to alignment-free sequence comparison are based on the length of exact or 
inexact word matches between pairs of input sequences. Haubold et al. (J Comput Biol 16:1487–1500, 2009) showed 
how the average number of substitutions per position between two DNA sequences can be estimated based on the 
average length of exact common substrings.

Results:  In this paper, we study the length distribution of k-mismatch common substrings between two sequences. 
We show that the number of substitutions per position can be accurately estimated from the position of a local maxi‑
mum in the length distribution of their k-mismatch common substrings.
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Background
Phylogenetic distances between DNA or protein 
sequences are usually estimated based on pairwise or 
multiple sequence alignments. Since sequence alignment 
is computationally expensive, alignment-free phylogeny 
approaches have become popular in recent years, see 
Vinga [1] for a review. Some of these approaches com-
pare the word composition [2–5] or spaced-word com-
position [6–9] of sequences using a fixed word length or 
patterns of match and don’t-care positions, respectively. 
Other approaches are based on the matching statistics 
[10], that is on the length of common substrings of the 
input sequences [11, 12]. All these methods are much 
faster than traditional alignment-based approaches. A 
disadvantage of most word-based approaches to phylog-
eny reconstruction is that they are not based on explicit 
models of molecular evolution. Instead of estimating 
distances in a statistically rigorous way, they only return 
rough measures of sequence similarity or dissimilarity.

The average common substring (ACS) approach [11] cal-
culates for each position in one sequence the length of the 

longest substring starting at this position that matches 
a substring of the other sequence. The average length 
of these substring matches is then used to quantify the 
similarity between two sequences based on information-
theoretical considerations; these similarity values are 
finally transformed into symmetric distance values. More 
recently, we generalized this approach by using common 
substrings with k mismatches instead of exact substring 
matches [13]. To assign distance values to sequence pairs, 
we used the same information-theoretical approach that 
is used in ACS. Since there is no exact solution to the 
k-mismatch longest common substring problem that is fast 
enough to be applied to long genomic sequences, we pro-
posed a simple heuristic: we first search for longest exact 
matches and then extend these matches until the k + 1st 
mismatch occurs. Distances are then calculated from the 
average length of these k-mismatch common substrings 
similarly as in ACS; the implementation of this approach 
is called kmacs. Various algorithms have been proposed 
in recent years to calculate exact or approximate solu-
tions for the k-mismatch average common substring prob-
lem and have been applied to phylogeny reconstruction 
[14–20]. Like ACS and kmacs, these approaches are not 
based on stochastic models.
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To our knowledge, the first alignment-free approach 
to estimate the phylogenetic distance between two DNA 
sequences in a statistically rigorous way was the pro-
gram kr by Haubold et  al. [21]. These authors showed 
that the average number of nucleotide substitutions per 
position between two DNA sequences can be estimated 
by calculating for each position i in one sequence the 
length of the shortest substring starting at i that does not 
occur in the other sequence, see also [22, 23]. This way, 
phylogenetic distances between DNA sequences can be 
accurately estimated for up to around 0.5 substitutions 
per position. Some other, more recent, alignment-free 
approaches also estimate phylogenetic distances based 
on stochastic models of molecular evolution, namely Co-
phylog [24], andi [25], an approach based on the number 
of (spaced) word matches [7] and Filtered Spaced Word 
Matches [26].

In this paper, we propose an approach to estimate 
phylogenetic distances based on the length distribution 
of k-mismatch common substrings. The manuscript is 
organized as follows. In the next section, we introduce 
some notation and the stochastic model of sequence 
evolution that we are using. In the following two sec-
tions, we recapitulate a result from [21] on the length 
distribution of longest common substrings, we general-
ize this to k-mismatch longest common substrings, and 
we study the length distribution of k-mismatch common 
substrings returned by the kmacs heuristic  [13]. Then, 
we introduce our new approach to estimate phylogenetic 
distances and explain some implementation details. In 
the final sections, we report on benchmarking results, 
discuss these results and address some possible future 
developments. We should mention that “k-mismatch 
longest common substrings” and “Heuristics used in 
kmacs” sections are not necessary to understand our new 
approach that is introduced in “Distance estimation” sec-
tion. We added these two sections for completeness, and 
since they may be used for alternative ways of phyloge-
netic distance estimation. But readers who are mainly 
interested in our approach to distance estimation can 
skip these sections.

Sequence model and notation
We use standard notation such as used in [27]. For a 
sequence S of length L over some alphabet, S(i) is the ith 
character in S. S[i..j] denotes the (contiguous) substring 
from i to j; we say that S[i..j] is a substring at i. In the fol-
lowing, we consider two DNA sequences S1 and S2 that 
are thought to have descended from an unknown com-
mon ancestor under the Jukes-Cantor model [28]. That 
is, we assume that substitutions at different positions are 
independent of each other, that we have a constant substi-
tution rate at all positions and that all substitutions occur 

with the same probability. We therefore have a match 
probability p and a background probability q such that 
P
(

S1(i) = S2(j)
)

= p if S1(i) and S2(j) descend from the 
same position in the hypothetical ancestral sequence—in 
which case S1(i) and S2(j) are called ‘homologue’—and 
P
(

S1(i) = S2(j)
)

= q otherwise (‘background’).
Moreover, we use a gap-free model of evolution where 

S1 and S2 have the same length L, to simplify the consid-
erations below. With this model, S1(i) and S2(j) are ‘hom-
ologue’ if and only if i = j, so we have

Similarly, we call a pair of equal-length substrings of S1 
and S2 homologue if they start at the same respective 
positions in S1 and S2, and background otherwise. The 
background match probability q can be easily estimated 
from the relative frequencies of the four nucleotides. The 
main goal of the present study is to estimate the prob-
ability p. The distance between S1 and S2, defined as the 
number of substitutions per position since two sequences 
diverged from their last common ancestor, can then be 
obtained from p by the usual Jukes-Cantor correction. 
Note that, with our gap-free model, it is trivial to esti-
mate p as the relative frequency of positions i where Si(i) 
equals S2(i). However, we will apply our results to real-
world sequences with insertions and deletions where 
such a trivial approach is not possible.

k‑mismatch longest common substrings
For positions i and j in sequence S1 and S2, respectively, 
we define random variables

That is, Xi,j is the length of the longest substring at i that 
exactly matches a substring at j. Next, we define

as the length of the longest substring at i that matches a 
substring of S2 anywhere in the sequence, see Fig. 1 for an 
example.

In the following, we ignore edge effects, which is justi-
fied if long sequences are compared since the probability 
of k-mismatch common substrings of length m decreases 
rapidly if m increases. With this simplification, we have

If, in addition, we assume equilibrium frequencies for the 
nucleotides, i.e. if we assume that each nucleotide occurs 
at each sequence position with probability 0.25, the 

P
(

S1(i) = S2(j)
)

=

{

p if i = j
q else

Xi,j = max{l : S1[i..i + l − 1] = S2[j..j + l − 1]}

(1)Xi = max
1≤j≤L

Xi,j

(2)

P(Xi,j < n) = 1− P(Xi,j ≥ n) =

{

1− pn if i = j
1− qn else
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random variables Xi,j and Xi′,j′ are independent of each 
other whenever j − i �= j′ − i′ holds. In this case, we have 
for n ≤ L− i + 1

and

so the expected length of the longest common substring 
at a given sequence position is

Next, we generalize the above considerations by looking at 
the average length of the k-mismatch longest common sub-
strings between two sequences for some integer k ≥ 0 . That 
is, for a position i in one of the sequences, we consider the 
longest substring starting at i that matches some substring 
in the other sequence with a Hamming distance ≤ k . Gen-
eralizing the above notation, we define random variables

where dH (·, ·) is the Hamming distance between two 
sequences. In other words, X (k)

i,j  is the length of the long-
est substring starting at position i in sequence S1 that 
matches a substring starting at position j in sequence S2 
with k mismatches. Accordingly, we define

(3)

P(Xi < n) = P(Xi,1 < n ∧ . . . ∧ Xi,L < n)

= P(Xi,1 < n) · . . . · P(Xi,L < n)

= P(Xi,1 < n) · . . . · P(Xi,L−n+1 < n)

= (1− qn)L−n · (1− pn)

P(Xi = n) = P(Xi < n+ 1)− P(Xi < n)

= (1− qn+1)L−n−1 · (1− pn+1)

− (1− qn)L−n · (1− pn)

(4)

L
∑

n=1

n ·
(

(1− qn+1)L−n−1 · (1− pn+1)

−
(

1− qn
)L−n

·
(

1− pn
)

)

X
(k)
i,j = max

{

l : dH
(

S1[i..i + l − 1], S2[j..j + l − 1]
)

= k
}

X
(k)
i = max

j
X
(k)
i,j

as the length of the longest k-mismatch substring at posi-
tion i. As pointed out by Apostolico et al.  [18], X (k)

i,j  fol-
lows a negative binomial distribution, and we can write

and

Generalizing (3), we obtain for n > k

while we have

Finally, we obtain

(5)P
(

X
(k)
i,j = n

)

=

{ (n
k

)

pn−k(1− p)k+1 if i = j
(n
k

)

qn−k(1− q)k+1 else

(6)

P
(

X
(k)
i,j ≥ n

)

=

{

∑

k ′≤k

(n
k ′

)

pn−k ′(1− p)k
′

if i = j
∑

k ′≤k

(n
k ′

)

qn−k ′(1− q)k
′

else

(7)

P
�

X
(k)
i n

�

=



1−
�

k ′≤k

�

n

k ′

�

qn−k ′(1− q)k
′





L

− n ·



1−
�

k ′≤k

�

n

k ′

�

pn−k ′(1− p)k
′





P
(

X
(k)
i < n

)

=

{

1 if n > L− i + 1
0 if n ≤ k

(8)

P
�

X
(k)
i = n

�

=



1−
�

k ′≤k

�

n+ 1

k ′

�

qn+1−k ′ (1− q)k
′





L−n−1

·



1−
�

k ′≤k

�

n+ 1

k ′

�

pn+1−k ′ (1− p)k
′





−



1−
�

k ′≤k

�

n

k ′

�

qn−k ′ (1− q)k
′





L

−n ·



1−
�

k ′≤k

�

n

k ′

�

pn−k ′ (1− p)k
′





Fig. 1  k-mismatch common substrings with k = 2. For position i = 5 in S1, kmacs searches the longest substring of S1 starting at i that exactly 
matches a substring of S2. This is the substring starting at i∗ = 2 in S2 (matching substrings shown in red). It then extends this match without gaps 
until the k + 1st mismatch is reached. In this example, the k-mismatch common substring would consist of the red, blue and green substrings and 
has length 12. In the paper, the lengths of these k-mismatch common substrings are modelled by the random variables X (k)i , defined in (1). The 
original version of kmacs uses the average length of these k-mismatch common substrings to assign a distance value to a pair of sequences. In our 
modified implementation of kmacs, we consider the k-mismatch extension of the longest common substring at i. That is, the program would return 
the length of the k-mismatch substring match that starts after the first mismatch following the longest common substring. In our example, for i = 5, 
this would be the substring match starting with ‘T’ at position 11 in S1 and at position 8 in S2, consisting of the blue, green and orange matches; the 
length of this k-mismatch substring extension would be 9. The length of these k-mismatch extensions are modelled by the random variable X̂ (k)i , 
defined in (16)
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from which one can obtain the expected length of the 
k-mismatch longest substrings.

Heuristic used in kmacs
Since exact solutions for the average k-mismatch com-
mon substring problem are too time-consuming for large 
sequence sets, the program kmacs [13] uses a heuristic. 
In a first step, the program calculates for each position 
i in one sequence, the length of the longest substring 
starting at i that exactly matches a substring of the other 
sequence. kmacs then calculates the length of the longest 
gap-free extension of this exact match to the right-hand 
side with k mismatches. Using standard indexing struc-
tures, this can be done in O(L · k) time.

For sequences S1, S2 as above and a position i in S1, let 
j∗ be a position in S2 such that the Xi-length substring 
starting at i matches the Xi-length substring at j∗ in S2. 
That is, the substring

is the longest substring of S2 that matches a substring of 
S1 at position i. In case there are several such positions 
in S2, we assume for simplicity that j∗ �= i holds (in the 
following, we only need to distinguish the cases j∗ = i 
and j∗ �= i, otherwise it does not matter how j∗ is cho-
sen). Now, let the random variable X̃ (k)

i  be defined as the 
length of the k-mismatch common substring starting at i 
and j∗, so we have

Theorem 1  For a pair of sequences as above, 1 ≤ i ≤ L 
and m ≤ L− i + 1, the probability of the heuristic kmacs 
hit of having a length of m is given as

Proof  Distinguishing between ‘homologous’ and ‘back-
ground’ matches, and using the law of total probability, 
we can write

S2[j
∗..j∗ + Xi − 1]

(9)X̃
(k)
i = X

(k)
i,j∗ = Xi + X

(k−1)
i+Xi ,j∗+Xi

+ 1

P
(

X̃
(k)
i = m

)

= pm−k+1(1− p)k+1
∑

m1+m2=m−1

(1− qm1+1)L−m1

(

m2

k − 1

)

+
∑

m1+m2=m−1

[

(1− qm1+1)L−m1 − (1− qm1 )L−m1

]

· (1− pm1 )

·

(

m2

k − 1

)

qm2−k+1(1− q)k

and with (5), we obtain

and

so with (11) and (12), the first summand in (10) becomes

Similarly, for the second summand in (10), we note that

(10)

P
(

X̃
(k)
i = m

)

= P
(

X̃
(k)
i = m

∣

∣j∗ = i
)

P(j∗ = i)

+ P
(

X̃
(k)
i = m

∣

∣j∗ �= i
)

P(j∗ �= i)

(11)

P
(

X̃
(k)
i = m

∣

∣j∗ = i
)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ = i)P

(

X
(k−1)
i+m1+1,i+m1+1

= m2

)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ = i)

(

m2

k − 1

)

pm2−k+1(1− p)k

(12)

P(Xi = m1|j
∗ = i) =

P(Xi,i = m1 ∧ j∗ = i)

P(j∗ = i)

=
P(Xi,i = m1 ∧ Xi,i ≥ Xi,j , j �= i)

P(j∗ = i)

=
P(Xi,i = m1 ∧ Xi,j ≤ m1, j �= i)

P(j∗ = i)

=
pm1(1− p) · (1− qm1+1)L−m1

P(j∗ = i)

(13)

P
(

X̃
(k)
i = m

∣

∣j∗ = i
)

P(j∗ = i)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ = i)

(

m2

k − 1

)

pm2−k+1(1− p)k · P(j∗ = i)

=
∑

m1+m2=m−1

pm1 (1− p) · (1− qm1+1)L−m1

P(j∗ = i)

·

(

m2

k − 1

)

pm2−k+1(1− p)k · P(j∗ = i)

=
∑

m1+m2=m−1

(1− qm1+1)L−m1

(

m2

k − 1

)

pm1+m2−k+1(1− p)k+1

= pm−k+1(1− p)k+1
∑

m1+m2=m−1

(1− qm1+1)L−m1

(

m2

k − 1

)

(14)

P
(

X̃
(k)
i = m|j∗ �= i

)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ �= i)

(

m2

k − 1

)

qm2−k+1(1− q)k
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and

Thus, the second summand in (10) is given as

� □
For 1 ≤ m ≤ L, the expected number of k-mismatch 

common substrings of length m returned by the kmacs 
heuristics is given as L · P

(

X̃
(k)
i = m

)

 and can be calcu-
lated using Theorem 1. Moreover, one can use the above 
considerations to calculate the length distributions of 
the homologous and background k-mismatch common 
substrings returned by kmacs. (Remember that, with 
our simple gap-free model, two substrings of S1 and S2 , 
respectively, are called homologous if they start at the 
same positions and background otherwise.) The prob-
abilities on the right-hand side of Eq. (10) can be used to 
calculate the expected number of homologous and back-
ground k-mismatch common substrings of length m 
returned by kmacs. In Fig. 2, these expected numbers are 
plotted against m for L = 100 kb, p = 0.6 and k = 20.

Distance estimation
Using Theorem 1, one could estimate the match probabil-
ity p—and thereby the average number of substitutions 
per position—from the empirical average length of the 
k-mismatch common substrings returned by kmacs in a 
moment-based approach, similar to the approach pro-
posed in [21].

(15)

P(Xi = m1|j
∗ �= i) =

P(Xi,j∗ = m1 ∧ j∗ �= i)

P(j∗ �= i)

=
P(Xi,j∗ = m1 ∧ Xi,i < Xi,j∗ )

P(j∗ �= i)

=
P(Xi,j∗ = m1 ∧ Xi,i < m1)

P(j∗ �= i)

=
P(maxj �=i Xi,j = m1 ∧ Xi,i < m1)

P(j∗ �= i)

=
P(maxj �=i Xi,j = m1) · P(Xi,i < m1)

P(j∗ �= i)

=
P(maxj �=i Xi,j = m1) · P(Xi,i < m1)

P(j∗ �= i)

=

[

(1− qm1+1)L−m1 − (1− qm1 )L−m1
]

· (1− pm1 )

P(j∗ �= i)

P
(

X̃
(k)
i = m

∣

∣j∗ �= i
)

P(j∗ �= i)

=
∑

m1+m2=m−1

P(Xi = m1|j
∗ �= i)

(

m2

k − 1

)

qm2−k+1(1− q)k · P(j∗ �= i)

=
∑

m1+m2=m−1

[

(1− qm1+1)L−m1 − (1− qm1 )L−m1

]

· (1− pm1 )

P(j∗ �= i)

(

m2

k − 1

)

qm2−k+1(1− q)k · P(j∗ �= i)

=
∑

m1+m2=m−1

[

(1− qm1+1)L−m1 − (1− qm1 )L−m1

]

· (1− pm1 )

·

(

m2

k − 1

)

qm2−k+1(1− q)k

A problem with this moment-based approach is that, for 
realistic values of L and p, one has P(j∗ = i) ≪ P(j∗ �= i) , 
so the above sum is heavily dominated by the ‘back-
ground’ part, i.e. by the second summand in (10). For the 
parameter values used in Fig. 2, for example, only 1% of 
the matches returned by kmacs represent homologies 
while 99% are background noise. There are, in principle, 
two ways to circumvent this problem. First, one could try 
to separate homologous from background matches using 
a suitable threshold value, similarly as we have done in 
our Filtered Spaced Word Matches approach [29]. But 
this is more difficult for k-mismatch common substrings, 
since there can be much more overlap between homolo-
gous and background matches than for Spaced-Word 
matches, see Fig. 2.

Fig. 2  Theoretical length distribution of k-mismatch longest 
common substrings. The expected number of homologous and 
background k-mismatch longest common substrings of length m, 
returned by the kmacs heuristic, was calculated for 20 ≤ m ≤ 80 
using Theorem 1 for an indel-free pair of sequences of length 
L = 100 kb, a match probability p = 0.6 (corresponding to 0.57 sub‑
stitutions per position) and k = 20
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There is an alternative to this moment-based approach, 
however. As can be seen in Fig.  2, the length distribu-
tion of the k-mismatch longest common substrings is 
bimodal, with a first peak in the distribution correspond-
ing to the background matches and the second peak cor-
responding to the homologous matches. We show that 
the number of substitutions per positions can be easily 
estimated from the position of this second peak.

To simplify the following calculations, we ignore the 
longest exact match in Eq. (9), and consider only the 
length of the gap-free ‘extension’ of this match, see Fig. 1 
for an illustration. To model the length of these k-mis-
match extensions, we define define random variables

In other words, for a position i in sequence S1, we are 
looking for the longest substring starting at i that exactly 
matches a substring of S2. If j∗ is the starting position 
of this substring of S2, we define X̂ (k)

i  as the length of 
the longest possible substring of S1 starting at position 
i + Xi + 1 that matches a substring of S2 starting at posi-
tion j∗ + Xi + 1 with a Hamming distance of k.

Theorem 2  Let X̂ (k)
i  be defined as in (16). Then X̂ (k)

i  is 
the sum of two unimodal distributions, a ‘homologous’ 
and a ‘background’ contribution, and the maximum of the 
‘homologous’ contribution is reached at

and the maximum of the ‘background contribution’is 
reached at

Proof  As in (5), the distribution of X̂ (k)
i  conditional on 

j∗ = i or j∗ �= i, respectively, can be easily calculated as

and

so we have

(16)X̂
(k)
i = X̃

(k+1)
i − Xi = X

(k)
i+Xi+1,j∗+Xi+1

mH =

⌈

k

1− p
− 1

⌉

mB =

⌈

k

1− q
− 1

⌉

P
(

X̂
(k)
i = m|j∗ = i

)

= P
(

X
(k)
i+Xi+1,i+Xi+1

= m
)

=

(

m

k

)

pm−k(1− p)k+1

P

(

X̂
(k)
i = m

∣

∣j∗ �= i
)

=

(

m

k

)

qm−k(1− q)k+1

For the homologous part

we obtain the recursion

so we have Hk(m) ≤ Hk(m+ 1) if and only if

Similarly, the ‘background contribution’

is increasing until

holds, which concludes the proof of the theorem. � □

The proof of Theorem  2 gives us lower and upper 
bounds for p and an easy approach to estimate p from the 
empirical length distribution of the k-mismatch exten-
sions calculated by kmacs. Let mmax be the maximum of 
the homologous part of the distribution X̂ (k)

i , i.e. we define

Then, by inserting mmax − 1 and mmax into inequality 
(18), we obtain

Finally, we use (18) to estimate p from the second maxi-
mum mE of the empirical distribution of X̂i as

For completeness, we calculate the probability P(j∗ = i). 
First we note that, by definition, for all i, we have

so with the law of total probability and Eq. (2), we obtain

(17)

P
(

X̂
(k)
i = m

)

= P(j∗ = i)

(

m

k

)

pm−k(1− p)k+1

+ P(j∗ �= i)

(

m

k

)

qm−k(1− q)k+1

Hk(m) = P(j∗ = i)

(

m

k

)

pm−k(1− p)k+1

Hk(m+ 1) =
m+ 1

m+ 1− k
· p ·Hk(m)

(18)
m+ 1− k

m+ 1
≤ p

Bk(m) = P(j∗ �= i)

(

m

k

)

qm−k(1− q)k+1

m+ 1− k

m+ 1
≤ q

mmax = argmax
m

(

m

k

)

pm−k(1− p)k+1

mmax − k

mmax
≤ p ≤

mmax + 1− k

mmax + 1

(19)p̂ ≈
mE + 1− k

mE + 1

P(j∗ = i) = P
(

Xi,j < Xi,i for all j �= i
)
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Implementation
For each position i in one of the two input sequences, 
kmacs first searches the longest substring starting at i 
that exactly matches a substring of the other sequence. 
For a user-defined parameter k, the program then cal-
culates the length of the longest possible gap-free exten-
sion with k mismatches of this exact hit. The original 
version of the program uses the average length of these 
k-mismatch common substrings (the initial exact match 
plus the k − 1-mismatch extension after the first mis-
match) to assign a distance value to a pair of sequences. 
We modified kmacs to output the length of the exten-
sions of the identified matches only, ignoring these ini-
tial exact matches. Thus, to find k-mismatch common 
substrings, we ran kmacs with parameter k + 1, and we 
consider the length of the k-mismatch extension after the 
first mismatch. For each possible length m, the modified 
program outputs the number N(m) of k-mismatch exten-
sions of length m, starting after the first mismatch after 
the respective longest exact match.

To find for each position i in one sequence the length of 
the longest string at i matching a substring of the other 
sequences, kmacs uses a standard procedure based on 
enhanced suffix arrays [30], see Fig.  3. The algorithm first 
identifies the corresponding position in the suffix array. 
It then goes in both directions, up and down, in the suffix 
array until the first entry from the respective other sequence 
is found. In both cases, the minimum of the LCP values is 
recorded. The maximum of these two minima is the length 
of the longest substring in the other sequence matching a 
substring starting at i. In Fig. 3, for example, if i is position 
3 in the string ananas, i.e. the 10th position in the concate-
nate string, the minimum LCP value until the first entry from 
banana is found, is 3 if one goes up the array and 0 if one 
goes down. Thus, the longest string in banana matching a 
substring starting at position 3 in ananas has length 3.

Note that, for a position i in one sequence, it is pos-
sible that there exists more than one maximal substring 
in the other sequence matching a substring at i. In this 
case, our modified algorithm uses all of these maximal 
substring matches, i.e. all maximal exact string matches 
are extended as described above. All these hits can be 

(20)

P(j∗ = i) = P
(

Xi,j < Xi,i for all j �= i
)

=
∑

m

P
(

Xi,j < Xi,i for all j �= i|Xi,i = m
)

P(Xi,i = m)

=
∑

m

P
(

Xi,j < m for all j �= i
)

P(Xi,i = m)

=
∑

m

∏

j �=i

P(Xi,j < m)P(Xi,i = m)

=
∑

m

(1− qm)L−1pm(1− p)

easily found in the suffix array by extending the search in 
upwards or downwards direction until the minimum of 
the LCP entries decreases. In the above example, there is 
a second occurrence of ana in banana which is found 
by moving one more position upwards (the correspond-
ing LCP value is still 3).

In addition, we modified the original kmacs to ensure 
that, for each pair (i′, j′) of positions from the two input 
sequences, the extended k-mismatch common substring 
starting at (i′, j′) is counted only once. This is necessary 
for the following reason: if S1 and S2 share a long com-
mon substring S, then there will be many positions i in S1 
within S such that j∗ is at the corresponding position of 
S in S2. In Fig. 1, for example, the red substring starting 
at positions 5 and 2, respectively, would be such a string 
S. Here, there are three positions  i in S1—positions 5, 6 
and 7—such that the respective j∗ would be at the cor-
responding positions in S1—at positions 2, 3 and 4, in 
this case. As a consequence, all maximal exact matches 
starting at these positions end before the first mismatch 
after the red substring—at positions 10 and 7—, so the 
k-mismatch extensions of all these exact matches start at 
positions i′ = 11 and j′ = 8 in S1 and S2, respectively. If 
all k-mismatches returned by kmacs would be counted, 
the extension starting after the red exact substring match 
would be counted three times. In real-world genomic 
sequences, such situations are common. Without the 
above correction, we observed isolated values m in the 
length distribution of the k-mismatch extensions, such 

Fig. 3  Enhanced suffix array. For sequences ‘banana’ and ‘ananas’, 
the enhanced suffix array is shown. Suffixes of the concatenated 
sequence are lexicographically ordered; a longest common prefix (LCP) 
array indicates the length of the longest common prefix of a suffix 
with its predecessor in the list (Figure taken from [13])
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that the number N(m) of k-mismatch extensions of 
length m is very high, while N (m′) is zero for neighbour-
ing values m′.

To further process the length distribution returned by 
the modified kmacs, we implemented a number of Perl 
scripts. First, the length distribution of the k-mismatch 
common substrings is smoothed using a window of 
length w. Next, we search for the second local maximum 
in this smoothed length distribution. This second peak 
should represent the homologous k-mismatch common 
substrings, while the first, larger peak represents the 
background matches, see Figs. 4 and 5. A simple script 
identifies the position m∗ of the second highest local 
peak under two side constraints: we require the height 
N (m∗) of the second peak to be substantially smaller 
than the global maximum, and we require that N (m∗) 
is larger than N (m∗ − x) for some suitable parameter x. 
Quite arbitrarily, we required the second peak to be 10 
times smaller than the global maximum peak, and we 
used a value of x = 4. These constraints were introduced 
to prevent the program to identify small side peaks 
within the background peak. Finally, we use the position 
m∗ of the second largest peak in the smoothed length 
distribution to estimate the match probability  p in an 
alignment of the two input sequences using expression 
(19). The usual Jukes-Cantor correction is then used to 
estimate the number of substitutions per position that 
have occurred since the two sequences separated from 
their last common ancestor.

We should mention that our algorithm is not always 
able to output a distance value for two input sequences. 

It is possible that the algorithm fails to find a second 
maximum in the length distribution of the k-mismatch 
common substrings. This can happen, for example, for 
distantly related sequences where the ‘homologue’ and 
the ‘background’ peak are too close together such that 
the ‘homologous’ peak is obscured by the ‘background’ 
peak, see Fig. 5 for an example. In this case no distance 
can be calculated by our algorithm.

Test results
To evaluate our approach, we used simulated and real-
world genome sequences. As a first set of test data, we 
generated pairs of simulated DNA sequences of with var-
ying evolutionary distances and compared the distances 
estimated with our algorithm—i.e. the estimated number 

Fig. 4  Empirical length distribution of k-mismatch common sub‑
string extensions. The number of k-mismatch extensions of length m 
was calculated with kmacs for a pair of simulated DNA sequences of 
length L = 500 kb with k = 90 and 80 ≤ m ≤ 240. The plot shows 
the raw frequencies and smoothed distribution with different values 
for for the width w of the smoothing window. The hight of the 
‘homologous’ peak is > 50,000

Fig. 5  Theoretical length distribution of k-mismatch common 
substring extensions. The expected number of k-mismatch exten‑
sions of length m returned by kmacs was calculated using Eq. (17), 
distinguishing between ‘homologous’ and ‘background’ matches, for 
a pair of sequences of length L = 500 kb with a match probability 
of p = 0.5 for k = 10 (top) and k = 70 (bottom) for 20 ≤ m ≤ 160. A 
large enough value of k is necessary to detect the second peak in the 
distribution that corresponds to the ‘homologous’ matches
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of substitutions per position—to their ‘real’ distances. For 
each distance value, we generated 100 pairs of sequences 
of length 500 kb each and calculated the average and 
standard deviation of the estimated distance values. Fig-
ure 6 shows the results of these test runs with a param-
eter k = 90 and a smoothing window size of w = 31, with 
error bars representing standard deviations. A program 

run on a pair of sequences of length 500 kb took less than 
a second.

Figure 4 shows the length distribution for one of these 
sequence pairs with various values for  w. In Fig.  6, the 
results are reported for a given distance value, if distances 
could be computed for at least 75 out of the 100 sequence 
pairs (as mentioned above, it is possible that our program 
does not output a distance value since no second maxi-
mum could be found in the length distribution of the 
k-mismatch common substrings). As can be seen in the 
figure, our approach accurately estimates evolutionary 
distances up to around 0.9 substitutions per position. For 
larger distances, the program did not return a sufficient 
number of distance values, so no results are reported 
here. To demonstrate the influence of the parameter  k, 
we plotted in Fig.  5, for a given set of parameters, the 
expected number of k-mismatch common substring 
extensions of length  m, calculated with Eq.  (17), using 
varying values of k.

As a real-word test case, we used a set of 27 mito-
chondrial genomes from primates that has been used as 
benchmark data in previous studies on alignment-free 
sequence comparison. We applied our method with dif-
ferent values of k and with different window lengths w 
for the smoothing. In addition, we ran the programs 
andi [25] and our previously published program Filtered 
Spaced-Word Matches (FSWM)  [29] on these data. As 
a reference tree, we used a tree calculated with Clustal 
�  [31] and Neighbour Joining [32]. To compare the pro-
duced trees with this reference trees, we used the Rob-
inson-Foulds distance [33] and the branch score distance 
[34] as implemented in the PHYLIP program package 
[35]. Figure  7 shows the performance of our approach 
with different parameter values and compares them to 
the results of andi and FSWM. For the parameter values 
shown in the figure, our program was able to calculate 
distances for all 

(27
2

)

= 351 pairs of sequences. The total 
run time to calculate the 351 distance values for the 27 
mitochondrial genomes was less than 6 s. Note that the 
time and memory consumption of our approach essen-
tially depend on kmacs, the scripts that process the out-
put of kmacs are negligible. For a discussion of the time 
and space complexity of our software, we therefore refer 
to our previous paper on kmacs [13].

Discussion
In this paper, we introduced a new way of estimating 
phylogenetic distances between genomic sequences. We 
showed that the average number of substitutions per 
position since two sequences have separated from their 
last common ancestor can be accurately estimated from 
the position of local maximum in the smoothed length 
distribution of k-mismatch common substrings. To 

Fig. 6  Estimated distances—i.e. estimated average number of 
substitutions per position—for simulated sequence pairs, plotted 
against the ‘real’ distances—i.e. substitution probabilities used in the 
simulations, for pairs of sequences of length L = 500 kb. We applied 
our own approach with parameters k = 90 and w = 31 (top) as well 
as Filtered Spaced Word Matches (middle) and andi (bottom)
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find this local maximum, we used a naive search proce-
dure. Two parameter values have to be specified in our 
approach, the number k of mismatches and the size w 
of the smoothing window for the length distribution. 
Table 1 shows that our distance estimates are reasonably 
stable for a range of values of k and w.

A suitable value of the parameter k is important to sep-
arate the ‘homologous’ peak from the ‘background’ peak 
in the length distribution of the k-mismatch common 

substrings. As follows from Theorem  2, the distance 
between these two peaks is proportional to k. The value 
of k must be large enough to ensure that the homologous 
peak has a sufficient distance to the background peak to 
be detectable, see Fig. 5. On the other hand, k should not 
be too large. All considerations in this paper are based 
on the assumtion that k-mismatch common substrings 
are either homologue or background, which is the case 
under our indel-free model of sequence evolution. For 
sequences with insertions and deletions, however, an 
un-gapped segment pair may contain both homologous 
and background regions, if it involves indels. If k is large, 
k-mismatch common substrings tend to be long, and 
‘mixed’ k-mismatch common substrings, including both 
background and homologue segments, will distort our 
distance estimates. This seems to be the reason why in 
Fig. 7 our results deteriorate if k becomes too large. One 
possible solution to this problem would be to recognize 
‘mixed’ k-mismatch common substrings by the distribu-
tion of their mismatches and to exclude them from the 
length statistics. This might allow us to increase k with-
out running into the above mentioned problems, so one 
could achieve a better separation of ‘background’ and 
‘homologous’ peaks. We are planning to investigate the 
effect of indels on our approach in a subsequent study.

Specifying a suitable size w of the smoothing window 
is also important to obtain accurate distance estimates; a 
large enough window is necessary to avoid ending up in 
a local maximum of the raw length distribution. For the 
data shown in Fig. 4, for example, our approach finds the 
second maximum of the length distribution at 179 if a 
window width of w = 31 is chosen. From this value, the 
match probability p is estimated as

using Eq. (18), corresponding to 0.824 substitutions per 
position according to the Jukes-Cantor formula. This 
was exactly the value that we used to generate this pair 
of sequences. With window lengths of w = 21 and w = 1 

p̂ =
179+ 1− 90

179+ 1
= 0.5

Fig. 7  Evaluation of alignment-free methods for phylogeny recon‑
struction. Various methods were evaluated on on a set of 27 primate 
mitochondrial genomes. Robinson-Foulds distances (top) and branch 
scores (bottom) were calculated to measure the difference between 
the resulting trees and a reference tree obtained with Clustal � and 
Neighbour Joining

Table 1  Distance values calculated with  our algorithm for  a pair of  simulated sequences of  length L = 500 kb with  a 
match rate of p = 0.5, corresponding to a distance of 0.824 substitutions per position

Dashes indicate that no distance value could be calculated since our algorithm could not find the second local maximum in the smoothed length distribution of the 
k-mismatch common substrings

k = 30 k = 50 k = 70 k = 90 k = 120 k = 150 k = 200

w = 1 0.665 0.809 0.935 0.897 0.794 0.781 0.995

w = 5 – 0.839 0.835 0.784 0.783 0.773 0.880

w = 11 – – 0.869 0.808 0.788 0.781 0.863

w = 21 – – 0.813 0.824 0.824 0.804 0.817

w = 31 – – 0.813 0.824 0.824 0.829 0.835

w = 51 – – – – 0.824 0.819 0.820
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(no smoothing at all), however, the second local maxima 
of the length distribution would be found at 181 and 171, 
respectively, leading to estimates of 0.808 (w = 11) and 
0.897 (w = 1) substitutions per position. If the width w of 
the smoothing window is too large, on the other hand, the 
second peak may be obscured by the first ‘background’ 
peak. In this case, no peak is found and no distance can 
be calculated. In Fig. 4, for example, this happens with if a 
window width w = 51 is used. Further studies are neces-
sary to find out suitable values for w and k, depending on 
the length of the input sequences.

Finally, we should say that we used a rather naive way 
to identify possible homologies that are then extended to 
find k-mismatch common substrings. As becomes obvi-
ous from the size of the homologous and background 
peaks in our plots, our approach finds far more back-
ground matches than homologous matches. Reducing 
the noise of background matches should help to find the 
position of the homologous peak in the length distribu-
tions. We will therefore explore alternative ways to find 
possible homologies that can be used as starting points 
for k-mismatch common substrings.
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