
Carriço et al. Algorithms Mol Biol (2018) 13:4
https://doi.org/10.1186/s13015-017-0119-7

RESEARCH

Fast phylogenetic inference from typing
data
João A. Carriço1, Maxime Crochemore2, Alexandre P. Francisco3,4*  , Solon P. Pissis2, Bruno Ribeiro‑Gonçalves1
and Cátia Vaz3,5

Abstract 

Background:  Microbial typing methods are commonly used to study the relatedness of bacterial strains. Sequence-
based typing methods are a gold standard for epidemiological surveillance due to the inherent portability of
sequence and allelic profile data, fast analysis times and their capacity to create common nomenclatures for strains
or clones. This led to development of several novel methods and several databases being made available for many
microbial species. With the mainstream use of High Throughput Sequencing, the amount of data being accumulated
in these databases is huge, storing thousands of different profiles. On the other hand, computing genetic evolution‑
ary distances among a set of typing profiles or taxa dominates the running time of many phylogenetic inference
methods. It is important also to note that most of genetic evolution distance definitions rely, even if indirectly, on
computing the pairwise Hamming distance among sequences or profiles.

Results:  We propose here an average-case linear-time algorithm to compute pairwise Hamming distances among a
set of taxa under a given Hamming distance threshold. This article includes both a theoretical analysis and extensive
experimental results concerning the proposed algorithm. We further show how this algorithm can be successfully
integrated into a well known phylogenetic inference method, and how it can be used to speedup querying local
phylogenetic patterns over large typing databases.

Keywords:  Computational biology, Phylogenetic inference, Hamming distance

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Introduction
The evolutionary relationships between different species
or taxa are usually inferred through known phylogenetic
analysis techniques. Some of these techniques rely on the
inference of phylogenetic trees, which can be computed
from DNA or Protein sequences, or from allelic profiles
where the sequences of defined loci are abstracted to
categorical indexes. The most popular method is Mul-
tiLocus sequence typing (MLST) [1] that typically uses
seven 450–700 bp fragments of housekeeping genes for
a given species. Phylogenetic trees are also used in other
contexts, such as to understand the evolutionary history
of gene families, to allow phylogenetic foot-printing, to

trace the origin and transmission of infectious diseases,
or to study the co-evolution of hosts and parasites [2, 3].

In traditional phylogenetic methods, the process of
phylogenetic inference starts with a multiple alignment
of the sequences under study that is then corrected
using models of DNA or Protein evolution. Tree-build-
ing methodologies can then be applied on the resulting
distance matrix. These methods rely on some distance-
based analysis of sequences or profiles [4].

Distance-based methods for phylogenetic analysis
rely on a measure of genetic evolution distance, which
is often defined directly or indirectly from the fraction
of mismatches at aligned positions, with gaps either
ignored or counted as mismatches. A first step of these
methods is to compute this distance between all pairs of
sequences. The simplest approach is to use the Hamming
distance, also known as observed p-distance, defined as
the number of positions at which two aligned sequences
differ. Note that the Hamming distance between two

Open Access

Algorithms for
Molecular Biology

*Correspondence: aplf@ist.utl.pt
3 INESC-ID Lisboa, Rua Alves Redol 9, 1000‑029 Lisboa, Portugal
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4852-1641
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0119-7&domain=pdf

Page 2 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

sequences underestimates their true evolutionary dis-
tance and, thus, a correction formula based on some
model of evolution is often used [2, 4]. Although dis-
tance-based methods not always produce the best tree
for the data, usually they also incorporate an optimality
criterion into the distance model for getting more plau-
sible phylogenetic reconstructions, such as the minimum
evolution criterion [5], the least squares criterion [6] or
the clonal complexes expansion and diversification [7].
Nevertheless, this category of methods are much faster
than Maximum likelihood or Bayesian inference methods
[8], making them excellent choices for the primary analy-
sis of large data sets.

Most of the distance-based methods are agglomerative
methods. They start with each sequence being a singleton
cluster and, at each step, they join two clusters. The itera-
tive process stops when all sequences are part of a single
cluster, resulting in a phylogenetic tree. At each step the
candidate pair is selected taking into account the distance
among clusters as well as the optimality criterion chosen
to adjust it.

The computation of a distance matrix (2D array con-
taining the pairwise distances between the elements of a
set) is a common first step for distance-based methods,
such as eBURST [9], goeBURST [10], Neighbor Join-
ing [11] and UPGMA [12]. This particular step dominates
the running time of most methods, taking �(md2) time
in general, d being the number of sequences or profiles
and m the length of each sequence or profile. For large-
scale datasets this running time may be quite problem-
atic. And nowadays, with the mainstream use of High
Throughput Sequencing, the amount of data being accu-
mulated in typing databases is huge. It is common to find
databases storing thousands of different profiles for a sin-
gle microbial species, with each profile having thousands
of loci [13, 14].

However, depending on application, on the underlying
model of evolution and on the optimality criterion, it may
not be strictly necessary to be aware of the complete dis-
tance matrix. There are methods that continue to provide
optimal solutions without a complete matrix. For such
methods, one may still consider a truncated distance
matrix and several heuristics, combined with final local
searches through topology rearrangements, to improve
the running time [6]. The goeBURST algorithm, one of
our use cases in this article, is an example of a method
that can work with truncated distance matrices by con-
struction, i.e., one needs only to know which pairs are at
Hamming distance at most k.

Our results
We propose here an average-case O(md)-time and O(md)

-space algorithm to compute the pairs of sequences,

among d sequences of length m, that are at distance at
most k, when k <

(m−k−1)·log σ
logmd , where σ is the size of the

sequences alphabet. We support our result with both a
theoretical analysis and an experimental evaluation on
synthetic and real datasets of different data types (MLST,
cgMLST, wgMLST and SNP). We further show that our
method improves goeBURST, and that we can use it to
speedup querying local phylogenetic patterns over large
typing databases.

A preliminary version of this paper was presented at
the Workshop on Algorithms in Bioinformatics (WABI)
2017 [15].

Methods
Closest pairs in linear time
Let P be the set of profiles (or sequences) each of
length m, defined over an integer alphabet �, (i.e.,
� = {1, . . . ,mO(1)}), with d = |P| and σ = |�|. Let also
H : P × P → {0, . . . ,m} be the function such that H(u, v)
is the Hamming distance between profiles u, v ∈ P.
Given an integer threshold 0 < k < m, the problem is
to compute all pairs u, v ∈ P such that H(u, v) ≤ k, and
the corresponding H(u, v) value, faster than the �(md2)
time required to compute naïvely the complete distance
matrix for the d profiles of length m.

We address this problem by indexing all profiles P
using the suffix array (denoted by SA) and the longest
common prefix (denoted by LCP) array [16]. We rely also
on a range minimum queries (RMQ) data structure [17,
18] over the LCP array (denoted by RMQLCP). The prob-
lem is then solved in three main steps:

1.	 Index all profiles using the SA data structure.
2.	 Enumerate all candidate profile pairs given the maxi-

mum Hamming distance k.
3.	 Verify each candidate profile pair by checking if the

associated Hamming distance is no more than k.

Table 1 summarizes the data structures and strategies fol-
lowed in each step. Profiles are concatenated and indexed
using SA. Depending on the strategy to be used, we further
process the SA and build the LCP array and pre-process it
for fast RMQ. This allows for enumerating candidate pro-
file pairs and computing distances faster. In what follows,
we detail the above steps and show how the data structures
are used to improve the overall running time.

Table 1  Data structures used in our approach for each step

Profile indexing Candidate profile pairs enu-
meration

Pairs verification

Suffix array Binary search Naïve

LCP based clusters RMQLCP

Page 3 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

Step 1: Profile indexing
Profiles are concatenated and indexed in an SA in O(md)
time and space [19, 20]. Let us denote this string by s.
Since we only need to compute the distances between
profiles that are at Hamming distance at most k, we can
conceptually split each profile into k non-overlapping
blocks of length L = ⌊ m

k+1
⌋ each. It is then folklore knowl-

edge that if two profiles are within distance k, they must
share at least one such block of length L. Our approach is
based on using the SA of s to efficiently identify match-
ing blocks among profile pairs. This lets us quickly filter
in candidate profile pairs and filter out the ones that can
never be part of the output.

Step 2: Candidate profile pairs enumeration
The candidate profile pairs enumeration step provides
the pairs of profiles that do not differ in more than k posi-
tions, but it may include spurious pairs. Since SA is an
ordered structure, a simple solution is to use a binary
search approach. For each block of each profile, we can
obtain in O(L log n) time, where n = md, all the suf-
fixes that have that block as a prefix. If a given match is
not aligned with the initial block, i.e., it does not occur
at the same position in the respective profile, then it
should be discarded. Otherwise, a candidate profile
pair is reported. This searching procedure is done in
O(dkL log n) = O(n log n) time.

Another solution relies on computing the LCP array:
the longest common prefix between each pair of consec-
utive elements within the SA. This information can also
be computed in O(n) time and space [21]. Since SA is an
ordered structure, for the contiguous suffixes si, si+1, si+2
of s, with 0 ≤ i < n− 2, we have that the common pre-
fix between si and si+1 is at least as long as the common
prefix of si and si+2. By construction, it is possible to get
the position of each suffix in the corresponding profile in
constant time. Then, we cluster the corresponding pro-
files of contiguous pairs if they have an LCP value greater
than or equal to L and they are also aligned. This cluster-
ing procedure can be done in O(kd2) time.

Step 3: Pairs verification
After getting the set of candidate profile pairs, a naïve
solution would be to compute the distance for each pair
of profiles by comparing them in linear time, i.e., O(m)
time. However, if we compute the LCP array of s, we can
then perform a sequence of O(k) RMQ over the LCP
array for checking if a pair of profiles is at distance at
most k. These RMQ over the LCP array correspond to
longest common prefix queries between a pair of suffixes
of s. Since after a linear-time pre-processing over the
LCP array, RMQ can be answered in constant time per
query [17], we obtain a faster approach for computing the
distances. This alternative approach takes O(k) time to
verify each candidate profile pair instead of O(m) time.

Average‑case analysis
Algorithm 1 below details the solution based on LCP
clusters; and Theorem 1 shows that this algorithm runs
in linear time on average using linear space. We rely here
on well-known results concerning the linear-time con-
struction of the SA [19, 20] and the LCP array [21], as
well as the linear-time pre-processing for the RMQ data
structure [18].

In what follows, LCP[i], i > 0, stores the length of the
longest common prefix of suffixes si−1 and si of s, and
RMQLCP(i, j) returns the index of the smallest element
in the subarray LCP[i . . . j] in constant time [18]. We rely
also on some auxiliary subroutines; let L = ⌊ m

k+1
⌋:

Aligned(i) Let ℓ = i mod m, i.e., the starting position
of the suffix si within a profile. Then this subroutine
returns ℓ/L if ℓ is multiple of L, and −1 otherwise.
HD(pi , pj , ℓ) Given two profiles pi and pj which share
a substring of length L, starting at index ℓL, this sub-
routine computes the minimum of k and the Hamming
distance between pi and pj. This subroutine relies on
RMQLCP to find matches between pi and pj and, hence,
it runs in O(k) time since it can terminate after k mis-
matches.

Page 4 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

Theorem 1  Given d profiles of length m each over an
integer alphabet � of size σ > 1 with the letters of the pro-
files being independent and identically distributed ran-
dom variables uniformly distributed over �, and the max-
imum Hamming distance 0 < k < m, Algorithm 1 runs in
O(md) average-case time and space if

Proof  Let us denote by s the string of length md obtained
after concatenating the d profiles. The time and space

k <
(m− k − 1) · log σ

logmd
.

required for constructing the SA and the LCP arrays for s
and the RMQ data structure over the LCP array is O(md).

Let us denote by B the total number of blocks over s
and by L the block length. We set L = ⌊ m

k+1
⌋ and thus we

have that B = d⌊m
L
⌋. Let us also denote by C a maximal

set of indices over x satisfying the following:

1.	 The length of the longest common prefix between any
two suffixes of s starting at these indices is at least L;

2.	 both of these suffixes start at the starting position of
a block;

Algorithm 1: Algorithm using LCP clusters.

1 Input: A set P of d profiles of length m each; an integer threshold 0 < k < m.

2 Output: The set X of distinct pairs of profiles that are at Hamming distance at most k, i.e.,

X = {(u, v) ∈ P × P | u < v and H(u, v) ≤ k}.
3 Initialization: Let s = s[0 . . . n− 1] be the string of length n = md obtained after concatenating

the d profiles, and L = m
k+1 . Construct the SA S for s, the LCP array for s and RMQLCP.

Initialize a hash table HT to track verified pairs.

4 Candidate pairs enumeration:

5 X := ∅; p := −1; Ct := ∅, for 0 ≤ t ≤ k

6 foreach 1 ≤ i < n do

7 := LCP[i]

8 if ≥ L then

9 pi := [i]/m

10 x := Aligned(i)

11 if x = −1 then

12 Cx := Cx ∪ {pi}

13 if p = −1 then

14 pi−1 := [i− 1]/m

15 x := Aligned(i− 1)

16 if x = −1 then

17 Cx := Cx ∪ {pi−1}

18 p :=

19 else if p = −1 then

20 Pairs enumeration:

21 foreach Ct, with 0 ≤ t ≤ k do

22 foreach (p, q) ∈ Ct × Ct : p < q do

23 if (p, q) /∈ HT then

24 HT := HT ∪ {(p, q)}
25 δ := HD(p, q, t)

26 if δ ≤ k then

27 X := X ∪ {(p, q)}

28 p := −1; Ct := ∅, for 0 ≤ t ≤ k

29 Finalize: Return the set X.

Page 5 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

3.	 and both indices correspond to the starting position
of the ith block in their profiles.

This can be done in O(md) time using the LCP array
(lines 7–17). Processing all such sets C (lines 21–27)
requires total time

where PROCi,j is the time required to process a pair i, j
of elements of a set C, and Pairs is the sum of |C|2 over all
such sets C. We have that PROCi,j = O(k) by using RMQ
over the LCP array. Additionally, by the stated assump-
tion on the d profiles, the expected value for Pairs is no
more than Bd

σL
: we have B blocks in total and each block

can only match at most d other blocks by the conditions
above. Hence, the algorithm requires on average the fol-
lowing running time

Let us analyze this further to obtain the relevant condi-
tion on k. We have the following:

Since 0 < k < m by hypothesis, we have the following:

By some simple rearrangements we have that:

Consequently, in the case when

the algorithm requires O(md) time on average. The extra
space usage is clearly O(md). � �

Use case 1: goeBURST algorithm
The distance matrix computation is a main step in dis-
tance-based methods for phylogenetic inference. This
step dominates the running time of most methods, taking
�(md2) time, for d sequences of length m, since it must
compute the distance among all sequence pairs. But for
some methods, or when we are only interested in local
phylogenies for sequences or profiles of interest, one does
not need to know all pairwise distances for reconstruct-
ing a phylogenetic tree. The problem addressed in this

PROCi,j × Pairs

O

(

md + k ·
Bd

σL

)

.

k ·
Bd

σL
=

k · ⌊ m
⌊m/(k+1)⌋

⌋ · d2

σ
⌊ m
k+1

⌋
≤

k ·

(

m
⌊m/(k+1)⌋

)

· d2

σ
m

k+1
−1

.

k ·

(

m
⌊m/(k+1)⌋

)

· d2

σ
m

k+1
−1

≤
(md)2

σ
m

k+1
−1

.

(md)2

σ
m

k+1
−1

=
(md)2

(md)
log σ
logmd

(

m
k+1

−1
) = (md)

2−
(m−k−1) log σ
(k+1) logmd .

k <
(m− k − 1) · log σ

logmd

article was motivated by the goeBURST algorithm [10],
our use case 1. goeBURST is one of such methods for
which one must know only the pairs of sequences that
are at Hamming distance at most k. The solution pro-
posed here can however be extended to other distance-
based phylogenetic inference methods, that rely directly
or indirectly on Hamming distance computations. Note
that most methods either consider the Hamming dis-
tance or its correction accordingly to some formula
based on some model of evolution [2, 4]. In both cases we
must start by computing the Hamming distance among
sequences, but not necessarily all of them [6].

The underlying model of goeBURST is as follows: a
given genotype increases in frequency in the population as
a consequence of a fitness advantage or of random genetic
drift, becoming a founder clone in the population; and this
increase is accompanied by a gradual diversification of
that genotype, by mutation and recombination, forming a
cluster of phylogenetic closely-related strains. This diver-
sification of the “founding” genotype is reflected in the
appearance of genetic profiles differing only in one house-
keeping gene sequence from this genotype—single locus
variants (SLVs). Further diversification of those SLVs will
result in the appearance of variations of the original gen-
otype with more than one difference in the allelic profile,
e.g., double and triple locus variants (DLVs and TLVs).

The problem solved by goeBURST can be stated as
a graphic matroid optimization problem and, hence,
it follows a classic greedy approach [22]. Given the
maximum Hamming distance k, we can define a
graph G = (V ,E), where V = P (set of profiles) and
E = {(u, v) ∈ V 2 | H(u, v) ≤ k}. The main goal of goe-
BURST is then to compute a minimum spanning forest
for G taking into account the distance H and a total order
on links. It starts with a forest of singleton trees (each
sequence/profile is a tree). Then it constructs the optimal
forest by adding links connecting profiles in different trees
in increasing order accordingly to the total order, similarly
to what is done in the Kruskal’s algorithm [23]. In the cur-
rent implementation, a total order for links is implicitly
defined based on the distance between sequences, on the
number of SLVs, DLVs, TLVs, on the occurrence frequency
of sequences, and on the assigned sequence identifier.
With this total order, the construction of the tree consists
of building a minimum spanning forest in a graph [23],
where each sequence is a node and the link weights are
defined by the total order. By construction, the pairs at dis-
tance δ will be joined before the pairs at distance δ + 1.

Use case 2: querying typing databases
A related problem is querying typing databases for simi-
lar typing profiles. Given a set P of d profiles of length m
each, a profile u not necessarily in P but with the same

Page 6 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

length m as those in P, and k such that 0 < k < m, the
problem is to find all profiles v ∈ P such that H(u, v) ≤ k .
One may be also interested on local phylogenetic pat-
terns, but those can be inferred from found profiles using
for instance the goeBURST algorithm.

Once we define the value for k, we can address this
problem as follows. We index all d profiles in the data-
base as before in linear time O(md), and given a query
profile u, we enumerate all candidate profiles v. We then
verify as before all candidate pairs and we return only
those satisfying H(u, v) ≤ k.

For indexing set P, we make use of the suffix tree data
structure. The suffix tree T (x) of a string x is a compact
trie representing all suffixes of x. It is known that the suf-
fix tree of a string of length n, over an integer alphabet,
can be computed in time and space O(n) [24]. For integer
alphabets, in order to access the children of an explicit
node of the suffix tree by the first letter of their edge label
in O(1) time, we make use of perfect hashing [25].

By using the suffix tree we find candidate matches
through forward search: spelling blocks of u from the
root. Specifically, given the k + 1 non-overlapping blocks
of length L = ⌊ m

k+1
⌋ of u, we search (without reporting)

for each one of them in O(L) time. Since we have k + 1
blocks, it takes O(kL) = O(m) time to search for all k + 1
blocks of u. Finally, we can verify and report all candidate
profiles v ∈ P as detailed in Algorithm 2.

Although, in the worst case, Algorithm 2 runs in time
O(md +m logmd), as we may have d matches at most,
we can prove a similar average case as in Theorem 1.

Theorem 2  Given a profile u and a set of d profiles
of length m each, all over an integer alphabet � of size
σ > 1, with the letters of the profiles being independent
and identically distributed random variables uniformly
distributed over �, the T (s) for the string s of length md
obtained after concatenating the d profiles, and the maxi-
mum Hamming distance 0 < k < m, Algorithm 2 runs in
O(m) average-case time if

Proof  Let us denote by B the total number of blocks
over s and by L the block length. We set L = ⌊ m

k+1
⌋ and

thus we have that B = d⌊m
L
⌋.

By the stated assumption on the profiles, the expected
value for the number of profiles matching u is no more
than B

σL
: we have B blocks in total and each block can

only match at most one other block in u (since they must
be aligned; line 8).

k <
(m− k − 1) · log σ

logmd
.

Algorithm 2:

Page 7 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

Moreover, since we are not relying on the LCP array in
this case (profile u is not indexed), the verification step
(line 12) takes O(m) time using letter comparisons.
Hence, the algorithm requires on average the following
running time

Let us analyze this further to obtain the relevant condi-
tion on k. We have the following:

By some simple rearrangements we have that:

Consequently, in the case when

the algorithm requires O(m) time on average.� �

This algorithm was implemented using a suffix array
and then integrated in INNUENDO Platform, which is
publicly available [24]. The INNUENDO Platform is an
infrastructure that provides the required framework for
data analyses from bacterial raw reads sequencing data
quality insurance to the integration of epidemiological
data and visualization. As such, rapid methods for classi-
fication and search for closely related strains are a neces-
sity for quick navigation through the platform database
entries. More information about the project can be found
at its website [25].

As a starting point and for the purpose of this study,
a subset of 2312 wgMLST profiles of Escherichia coli
retrieved from Enterobase [13] were included in the
INNUENDO database as well as their ancillary data and
predefined core-genome cluster classification. Two tab-
separated files containing the wgMLST and cgMLST
profiles for the E. coli strains were also created to allow
storing information on the currently available profiles
and for updating with profiles that will become available
upon the platform analyses.

One of two index files are used depending on the type
of search we want to perform: classification or search for
k-closest. The cgMLST index file is used for strain classi-
fication, which relies on a nomenclature designed for the
cgMLST profiles. As such, and since a pre-classification

O(m+m ·
B

σL
).

m ·
B

σL
=

m · ⌊ m

⌊m/(k+1)⌋
⌋ · d

σ
⌊ m

k+1
⌋

≤
m · (m

⌊m/(k+1)⌋
) · d

σ
m

k+1
−1

≤
m2d

σ
m

k+1
−1

.

m2d

σ
m

k+1
−1

=
m2d

(md)
log σ
logmd

(m
k+1

−1)
= m(md)

1−
(m−k−1) log σ
(k+1) logmd .

k <
(m− k − 1) · log σ

logmd

was performed on the database of E. coli strains, we con-
tinued using it for comparison purposes. However, when
searching for the k-closest profiles, we take into consid-
eration all targets available in the wgMLST profiles using
the wgMLST index file for a higher discriminatory power.

Each time a new profile is generated from the platform,
it requires classification. The INNUENDO Platform
performs the classification step based on the approach
described in our "Use case 2: querying typing databases"
with a given maximum of k differences over core genes.
It uses the cgMLST index file for the search since the
classification is constructed based on those number of
loci. If the method returns at least one match, it classi-
fies the new profile with the classification of the closest.
If not, a new classification is assigned. A new entry is
then added to the INNUENDO database as well as to the
cgMLST and wgMLST profiles files and the index files
are updated.

In the case of the search for the k-closest, it is useful
to define the input data for visualization methods accord-
ing to a defined number of differences on close strains.
For each profile used as input for the search, the method
searches for the k-closest strains considering at most
k differences among all wgMLST loci. Since duplicate
matches can occur between the profiles used for each
search, the final file used as input for the visualization
methods is the intersection of the results of the k-closest
profiles between each input strain. The set of strain iden-
tifiers are then used to query the INNUENDO database
to get the profiles and ancillary data to be sent to PHY-
LOViZ Online [26] for further analysis, namely with the
goeBURST algorithm.

The drawback of using this method for classification
and search is the need for rebuilding the index each time
there is a new profile, which will depend on the number
of profile entries on the database. Nevertheless, the num-
ber of updates is rather smaller compared to the number
of queries and the index can be build in the background,
with search functionalities still using the old index during
the process. In our implementation, the index and related
data structures are serialized in secondary memory and
they are accessed by mapping them into memory. The
implementation of the underlying tool is made publicly
available [27].

The above described approaches in combination with
the features offered by the INNUENDO Platform allow
microbiologists to quickly and efficiently search for
strains close to their strain of interest, allowing a more
targeted, focused and simple visualization of results.

Page 8 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

Experimental evaluation
We evaluated the proposed approach to compute the
pairs of profiles at distance at most k using both real
and synthetic datasets. We used real datasets obtained
through different typing schemas, namely whole-genome
multi-locus sequence typing (wgMLST) data, core-
genome multi-locus sequence typing (cgMLST) data,
and single-nucleotide polymorphism (SNP) data. Table 2
summarizes the real datasets used. We should note that
wgMLST and cgMLST datasets contain sequences of
integers, where each column corresponds to a locus
and different values in the same column denote differ-
ent alleles. Synthetic datasets comprise sets of binary
sequences of variable length, uniformly sampled, allow-
ing us to validate our theoretical findings.

We implemented both versions described above in
the C programming language: one based on binary
search over the SA; and another one based on find-
ing clusters in the LCP array. Since allelic profiles can
be either string of letters or sequences of integers, we
relied on libdivsufsort library [28] and qsuf-
sort code [29, 30], respectively. For RMQ over the LCP
array, we implemented a fast well-known solution that
uses constant time per query and linearithmic space for
pre-processing [17].

All tests were conducted on a machine running Linux,
with an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz (8
cores, cache 32 KB/4096 KB) and with 32 GB of RAM.
All binaries where produced using GCC 5.3 with full
optimization enabled.

Synthetic datasets
We first present results with synthetic data for different
values of d, m and k. All synthetic sequences are binary
sequences uniformly sampled. Results presented in this
section were averaged over ten runs and for five different
sets of synthetic data.

The bound proved in Theorem 1 was verified in prac-
tice. For k satisfying the conditions in Theorem 1, the
running time of our implementation grows almost line-
arly with n, the size of the input. We can observe in Fig. 1
a growth slightly above linear. Since we included the time
for constructing the SA, the LCP array and the RMQ data

structure, with the last one in linearithmic time, that was
expected.

We also tested our method for values of k exceeding
the bound shown in Theorem 1. For d = m = 4096 and a
binary alphabet, the bound for k given in Theorem 1 is no
more than ⌊m/(2 logm)⌋ = 170. For k above this bound
we expect that proposed approaches are no longer com-
petitive with the naïve approach. As shown in Fig. 2, for
k > 250 and k > 270 respectively, both limits above the
predicted bound, the running time for both computing
pairwise distances by finding lower and higher bounds in
the SA, and by processing LCP based clusters, becomes
slower than the running time of the naïve approach.

In Fig. 3 we have the running time as a function of the
number d of profiles, for different values of m and for k
satisfying the bound given in Theorem 1. The running
time for the naïve approach grows quadratically with d,
while it grows linearly for both computing pairwise dis-
tances by finding lower and higher bounds in the SA, and
by processing LCP based clusters. Hence, for synthetic
data, as described by Theorem 1, the result holds.

Real datasets
For each dataset in Table 2, we ranged the threshold k
accordingly and compared the approaches discussed in
"Methods" section with the naïve approach that com-
putes the distance for all sequence pairs. Results are pro-
vided in Table 3.

In most cases, the approach based on the LCP clusters
is the fastest up to two orders of magnitude compared to
the naïve approach. As expected, in the case when data
are not uniformly random, our method works reasonably
well for smaller values of k than the ones implied by the
bound in Theorem 1. As an example, the upper bound on
k for C. jejuni would be around 200, but the running time
for the naïve approach is already better for k = 64. We
should note however that the number of candidate profile
pairs at Hamming distance at most k is much higher than
the expected number when data are uniformly random.
This tells us that we can design a simple hybrid scheme
that chooses a strategy (naïve or the proposed method)
depending on the nature of the input data. It seems also
to point out clustering effects on profile dissimilarities,

Table 2  Real datasets used in the experimental evaluation

(*) Dataset provided by the Molecular Microbiology and Infection Unit, IMM

 Dataset Typing method Profile length Number of distinct elements References

 Campylobacter jejuni wgMLST 5446 5669 (*)

 Salmonella enterica wgMLST 3002 6861 [13]

 Salmonella typhi SNP 22,143 1534 [36]

 Streptococcus pneumoniae cgMLST 235 1968 [37–39]

Page 9 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

t (
s)

n = d*m (#/106)

Binary search

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140
t (

s)

n = d*m (#/106)

LCP based clusters

Fig. 1  Synthetic datasets, with σ = 2 and k = ⌊m/(2 logm)⌋ according to Theorem 1. Running time for computing pairwise distances by finding
lower and higher bounds in the SA, and by processing LCP based clusters, as function of the input size n = dm

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6 7 8 9

t (
s)

d (#/103)

Binary search

k=170
k=190
k=210
k=230
k=250
k=270
k=290
k=310
k=330
Naive

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9

t (
s)

d (#/103)

LCP based clusters

k=170
k=190
k=210
k=230
k=250
k=270
k=290
k=310
k=330
Naive

Fig. 2  Synthetic datasets, with σ = 2 and m = 4096. Running time for computing pairwise distances by finding lower and higher bounds in the SA,
and by processing LCP based clusters, as function of the number d of profiles and for different values of k

Page 10 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=256

Naive
Bin search

LCP clusters

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=512

Naive
Bin search

LCP clusters

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=1024

Naive
Bin search

LCP clusters

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=2048

Naive
Bin search

LCP clusters

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=4096

Naive
Bin search

LCP clusters

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=8192

Naive
Bin search

LCP clusters

Fig. 3  Synthetic datasets, with σ = 2 and k = ⌊m/(2 logm)⌋ according to Theorem 1. Running time for computing pairwise distances naïvely, by
finding lower and higher bounds in the SA, and by processing LCP based clusters, as a function of the number d of profiles

Page 11 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

which we may exploit to improve our results. We leave
both tasks as future work for the full version of this
article.

We incorporated the approach based on finding lower
and higher bounds in the SA in the implementation of
goeBURST algorithm, discussed in "Methods" section.
We did not incorporate the approach based on the LCP
clusters as the running time did not improve much as
observed above. Since running times are similar to those
reported in Table 3, we discuss only the running time
for C. jejuni. We need only to index the input once. We
can then use the index in the different stages of the algo-
rithm and for different values of k. In the particular case
of goeBURST, we use the index twice: once for comput-
ing the number of neighbors at a given distance, used
for untying links according to the total order discussed
in the description of goeBURST algorithm in methods
section, and a second time for enumerating pairs at dis-
tance below a given threshold. Note that the goeBURST
algorithm does not aim to link all nodes, but to identify
clonal complexes (or connected components) for a given
threshold on the distance among profiles [10]. In the case
of C. jejuni dataset, and for k = 52, the running time is
around 36 s, while the naïve approach takes around 115
s, yielding a threefold speedup. In this case we get sev-
eral connected components, i.e., several trees, connect-
ing the most similar profiles. We provide the tree for the
largest component in Fig. 4, where each node represents
a profile. The nodes are colored according to one of the
loci for which profiles in this cluster differ. Note that this
tree is optimal with respect to the criterion used by the

goeBURST algorithm, not being affected by the threshold
on the distance. In fact, since this problem is a graphic
matroid, the trees found for a given threshold will be
always subtrees of the trees found for larger thresh-
olds [22]. Comparing this tree with other inference meth-
ods is beyond the scope of this article; the focus here was
on the faster computation of an optimal tree under this
model.

In many studies, the computation of trees based on
pairwise distances below a given threshold, usually small
compared with the total number of loci, combined with
ancillary data, such as antibiotic resistance and host
information, allows microbiologists to uncover evolution
patterns and study the mechanisms underlying the trans-
mission of infectious diseases [31].

Conclusions
Most distance-based phylogenetic inference methods
rely directly or indirectly on Hamming distance compu-
tations. The computation of a distance matrix is a com-
mon first step for such methods, taking �(md2) time in
general, with d being the number of sequences or profiles
and m the length of each sequence or profile. For large-
scale datasets this running time may be problematic;
however, for some methods, we can avoid to compute all-
pairs distances [6].

We addressed this problem when only a truncated dis-
tance matrix is needed, i.e., one needs to know only which
pairs are at Hamming distance at most k. This problem
was motivated by the goeBURST algorithm [10], which
relies on a truncated distance matrix by construction.

Table 3  Time and percentage of pairs processed for each method and dataset

The minimum time for each row is highlighted in italic

 Dataset k Naïve Binary search LCP clusters

 t (s) Pairs (%) t (s) Pairs (%) t (s) Pairs (%)

C. jejuni 8 108.59 100 0.22 0.06 0.17 0.06

16 109.30 100 0.48 0.32 0.34 0.32

32 108.60 100 3.52 5.45 2.67 5.45

64 108.60 100 231.05 99.98 162.36 99.98

S. enterica 8 89.85 100 1.04 2.37 0.95 2.37

16 87.26 100 7.16 12.69 6.73 12.69

32 85.36 100 36.29 33.22 30.76 33.22

64 84.63 100 254.45 82.44 187.15 82.44

S. typhi 89 28.83 100 16.63 91.48 12.02 91.48

178 28.32 100 46.98 99.91 32.03 99.91

890 30.04 100 113.57 100 129.14 100

S. pneumoniae 8 0.56 100 0.02 0.93 0.02 0.93

16 0.57 100 0.05 1.71 0.04 1.71

32 0.56 100 0.20 4.42 0.15 4.42

64 0.58 100 5.63 73.36 5.01 73.36

Page 12 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

Fig. 4  The tree inferred for the largest connected component found with k = 52 for the C. jejuni dataset. Image produced by PHYLOViZ [35]

Page 13 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

Both the problem and techniques discussed here are
related to average-case approximate string matching [32,
33]. We proposed here an average-case linear-time and
linear-space algorithm to compute the pairs of sequences
or profiles that are at Hamming distance at most k, when
k <

(m−k−1)·log σ
logmd , where σ is the size of the alphabet. We

integrated our solution in goeBURST demonstrating its
effectiveness using both real and synthetic datasets.

We must note however that our analysis holds for uni-
formly random sequences and, hence, as observed with
real data, the presented bound may be optimistic. It is
thus interesting to investigate how to address this prob-
lem taking into account local conserved regions within
sequences. Moreover, it might be interesting to consider
in the analysis null models such as those used to evalu-
ate the accuracy of distance-based phylogenetic inference
methods [4].

The proposed approach is particularly useful when one
is interested in local phylogenies, i.e., local patterns of
evolution, such as searching for similar sequences or pro-
files in large typing databases, as in our "Use case 2: que-
rying typing databases". In this case we do not need to
construct full phylogenetic trees, with tens of thousands
of taxa. We can focus our search on the most similar
sequences or profiles, within a given threshold k. There
are however some issues to be solved in this scenario,
namely, dynamic updating of the data structures used
in our algorithm. Note that after querying a database, if
new sequences or profiles are identified, then we should
be able to add them while keeping our data structures
updated. Although more complex and dynamic data
structures are known, a technique proposed recently for
adding dynamism to otherwise static data structures can
be useful to address this issue [34]. This and other chal-
lenges raised above are left as future work.

Authors’ contributions
MC, APF, SPP and CV conceived the study and contributed for the design and
analysis of the methods and experimental evaluation. APF, SPP and CV imple‑
mented Algorithm 1 and run the experiments. JAC conceived the case study 2
and contributed with the biological background. APF and BRG implemented
Algorithm 2 and integrated it in INNUENDO Platform. All authors contributed
to the writing of the manuscript. All authors read and approved the final
manuscript.

Author details
1 Faculdade de Medicina, Instituto de Microbiologia and Instituto de Medicina
Molecular, Universidade de Lisboa, Lisboa, Portugal. 2 Department of Informat‑
ics, King’s College London, London, UK. 3 INESC-ID Lisboa, Rua Alves Redol
9, 1000‑029 Lisboa, Portugal. 4 Instituto Superior Técnico, Universidade de
Lisboa, Lisboa, Portugal. 5 Instituto Superior de Engenharia de Lisboa, Instituto
Politécnico de Lisboa, Lisboa, Portugal.

Acknowledgements
This work was partly supported by the Royal Society International Exchanges
Scheme, and by the following projects: BacGenTrack (TUBITAK/0004/2014)
funded by FCT (Fundação para a Ciência e a Tecnologia) / Scientific and
Technological Research Council of Turkey (Türkiye Bilimsel ve Teknolojik
Araşrrma Kurumu, TÜBİTAK), PRECISE (LISBOA-01-0145-FEDER-016394)

and ONEIDA (LISBOA-01-0145-FEDER-016417) projects co-funded by FEEI
(Fundos Europeus Estruturais e de Investimento) from “Programa Operacional
Regional Lisboa 2020” and by national funds from FCT, UID/CEC/500021/2013
funded by national funds from FCT, and INNUENDO project [25] co-funded
by the European Food Safety Authority (EFSA), grant agreement GP/EFSA/
AFSCO/2015/01/CT2 (“New approaches in identifying and characterizing
microbial and chemical hazards”). The conclusions, findings, and opinions
expressed in this review paper reflect only the view of the authors and not the
official position of the European Food Safety Authority (EFSA).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 31 October 2017 Accepted: 22 December 2017

References
	1.	 Maiden MC, Bygraves JA, Feil EJ, Morelli G, Russell JE, Urwin R, Zhang Q,

Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. Multilo‑
cus sequence typing: a portable approach to the identification of clones
within populations of pathogenic microorganisms. Proc Natl Acad Sci
USA. 1998;95(6):3140–5.

	2.	 Huson DH, Rupp R, Scornavacca C. Phylogenetic networks: concepts,
algorithms and applications. New York: Cambridge University Press; 2010.
https://doi.org/10.1017/CBO9780511974076.

	3.	 Robinson DA, Feil EJ. Bacterial population genetics in infectious disease.
Hoboken: Wiley; 2010. https://doi.org/10.1002/9780470600122.

	4.	 Saitou N. Introduction to evolutionary genomics. London: Springer; 2013.
https://doi.org/10.1007/978-1-4471-5304-7.

	5.	 Desper R, Gascuel O. Fast and accurate phylogeny reconstruction
algorithms based on the minimum-evolution principle. J Comput Biol.
2002;9(5):687–705. https://doi.org/10.1089/106652702761034136.

	6.	 Pardi F, Gascuel O. Distance-based methods in phylogenetics. In: Encyclo‑
pedia of evolutionary biology. Oxford: Elsevier; 2016. p. 458–65. https://
doi.org/10.1016/B978-0-12-800049-6.00206-7.

	7.	 Feil EJ, Holmes EC, Bessen DE, Chan M-S, Day NP, Enright MC, Goldstein R,
Hood DW, Kalia A, Moore CE, et al. Recombination within natural popula‑
tions of pathogenic bacteria: short-term empirical estimates and long-
term phylogenetic consequences. Proc Natl Acad Sci. 2001;98(1):182–7.
https://doi.org/10.1073/pnas.98.1.182.

	8.	 Yang Z, Rannala B. Molecular phylogenetics: principles and practice. Nat
Rev Genet. 2012;13(5):303–14.

	9.	 Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring
patterns of evolutionary descent among clusters of related bacte‑
rial genotypes from multilocus sequence typing data. J Bacteriol.
2004;186(5):1518–30. https://doi.org/10.1128/JB.186.5.1518-1530.2004.

	10.	 Francisco AP, Bugalho M, Ramirez M. Global optimal eBURST analysis of
multilocus typing data using a graphic matroid approach. BMC Bioin‑
form. 2009;10(1):152. https://doi.org/10.1186/1471-2105-10-152.

	11.	 Saitou N, Nei M. The neighbor-joining method: a new method for recon‑
structing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. https://doi.
org/10.1093/oxfordjournals.molbev.a040454.

	12.	 Sokal RR. A statistical method for evaluating systematic relationships.
Univ Kans Sci Bull. 1958;38:1409–38.

	13.	 Sergean M, Zhou Z, Alikhan NF, Achtman M. EnteroBase. https://enter‑
obase.warwick.ac.uk/. Accessed 31 Oct 2017.

	14.	 Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome
variation at the population level. BMC Bioinform. 2010;11:595.

	15.	 Crochemore M, Francisco AP, Pissis SP, Vaz C. Towards distance-based phy‑
logenetic inference in average-case linear-time. In: Schwartz R, Reinert K
(eds.) 17th international workshop on algorithms in bioinformatics (WABI
2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 88,
p. 9–1914. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

https://doi.org/10.1017/CBO9780511974076
https://doi.org/10.1002/9780470600122
https://doi.org/10.1007/978-1-4471-5304-7
https://doi.org/10.1089/106652702761034136
https://doi.org/10.1016/B978-0-12-800049-6.00206-7
https://doi.org/10.1016/B978-0-12-800049-6.00206-7
https://doi.org/10.1073/pnas.98.1.182
https://doi.org/10.1128/JB.186.5.1518-1530.2004
https://doi.org/10.1186/1471-2105-10-152
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://enterobase.warwick.ac.uk/
https://enterobase.warwick.ac.uk/

Page 14 of 14Carriço et al. Algorithms Mol Biol (2018) 13:4

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Germany. 2017. https://doi.org/10.4230/LIPIcs.WABI.2017.9. http://drops.
dagstuhl.de/opus/volltexte/2017/7652.

	16.	 Manber U, Myers G. Suffix arrays: a new method for on-line
string searches. SIAM J Comput. 1993;22(5):935–48. https://doi.
org/10.1137/0222058.

	17.	 Bender MA, Farach-Colton M. The LCA problem revisited. In: LATIN 2000:
theoretical informatics: 4th Latin American symposium. Lecture notes in
computer Sscience, vol. 1776, p. 88–94. Springer, Berlin, Heidelberg. 2000.
https://doi.org/10.1007/10719839_9.

	18.	 Bender MA, Farach-Colton M, Pemmasani G, Skiena S, Sumazin P. Lowest
common ancestors in trees and directed acyclic graphs. J Algorithms.
2005;57(2):75–94. https://doi.org/10.1016/j.jalgor.2005.08.001.

	19.	 Kärkkäinen J, Sanders P, Burkhardt S. Linear work suffix array construction.
J ACM. 2006;53(6):918–36. https://doi.org/10.1145/1217856.1217858.

	20.	 Ko P, Aluru S. Space efficient linear time construction of suffix arrays. In:
Annual symposium on combinatorial pattern matching. Lecture notes in
computer science, vol. 2676, p. 200–10. Springer, Berlin, Heidelberg. 2003.
https://doi.org/10.1016/j.jda.2004.08.002.

	21.	 Kasai T, Lee G, Arimura H, Arikawa S, Park K. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In: Annual sym‑
posium on combinatorial pattern matching. Springer. 2001. p. 181–92.
https://doi.org/10.1007/3-540-48194-X.

	22.	 Papadimitriou CH, Steiglitz K. Combinatorial optimization: algorithms and
complexity. Upper Saddle River: Prentice-Hall Inc; 1982.

	23.	 Kruskal JB. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc Am Math Soc. 1956;7(1):48–50. https://doi.
org/10.2307/2033241.

	24.	 B-UMMI: INNUENDO platform. https://github.com/B-UMMI/INNUENDO.
Accessed 31 Oct 2017.

	25.	 INNUENDO: a novel cross-sectorial platform for the integration of genom‑
ics in surveillance of foodborne pathogens. http://www.innuendoweb.
org/. Accessed 31 Oct 2017.

	26.	 Ribeiro-Gonçalves B, Francisco AP, Vaz C, Ramirez M, Carriço JA. PHY‑
LOViZ online: web-based tool for visualization, phylogenetic inference,
analysis and sharing of minimum spanning trees. Nucleic Acids Res.
2016;44(Webserver–Issue):246–51. https://doi.org/10.1093/nar/gkw359.

	27.	 B-UMMI: fast MLST searching and querying. https://github.com/B-UMMI/
fast-mlst. Accessed 31 Oct 2017.

	28.	 Mori Y. A lightweight suffix-sorting library. https://github.com/y-256/
libdivsufsort. Accessed 31 Oct 2017.

	29.	 Larsson NJ, Sadakane K. Suffix sorting implementation to accompany
the paper Faster Suffix Sorting. http://www.larsson.dogma.net/qsufsort.c.
Accessed 31 Oct 2017.

	30.	 Larsson NJ, Sadakane K. Faster suffix sorting. Theor Comput Sci.
2007;387(3):258–72. https://doi.org/10.1016/j.tcs.2007.07.017.

	31.	 Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA.
PHYLOViZ: phylogenetic inference and data visualization for sequence
based typing methods. BMC Bioinform. 2012;13(1):87. https://doi.
org/10.1186/1471-2105-13-87.

	32.	 Fredriksson K. Average-optimal single and multiple approximate
string matching. ACM J Exp Algorithm. 2004;9:1–4. https://doi.
org/10.1145/1005813.1041513.

	33.	 Barton C, Iliopoulos CS, Pissis SP. Fast algorithms for approximate
circular string matching. Algorithms Mol Biol. 2014;9:9. https://doi.
org/10.1186/1748-7188-9-9.

	34.	 Munro JI, Nekrich Y, Vitter JS. Dynamic data structures for document
collections and graphs. In: Proceedings of the 34th ACM symposium on
principles of database systems. ACM, New York, NY, USA. 2015. https://
doi.org/10.1145/2745754.2745778.

	35.	 Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA, Vaz C. PHY‑
LOViZ 2.0: providing scalable data integration and visualization for mul‑
tiple phylogenetic inference methods. Bioinformatics. 2017;33(1):128–9.
https://doi.org/10.1093/bioinformatics/btw582.

	36.	 Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR.
SNP-sites: rapid efficient extraction of SNPs from multi-FASTA align‑
ments. Microbial Genom. 2016;2(4):e000056. https://doi.org/10.1099/
mgen.0.000056.

	37.	 Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J,
Bentley SD, Hanage WP, Lipsitch M. Population genomics of post-vaccine
changes in pneumococcal epidemiology. Nat Genet. 2013;45(6):656–63.
https://doi.org/10.1038/ng.2625.

	38.	 Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L,
Pessia A, Aanensen DM, Mather AE, Page AJ, Salter SJ, Harris D, Nosten F,
Goldblatt D, Corander J, Parkhill J, Turner P, Bentley SD. Dense genomic
sampling identifies highways of pneumococcal recombination. Nat
Genet. 2014;46(3):305–9. https://doi.org/10.1038/ng.2895.

	39.	 National Center for Biotechnology Information: GeneBank. ftp://ftp.ncbi.
nih.gov/genomes/archive/old_genbank/Bacteria/. Accessed 31 Oct 2017.

https://doi.org/10.4230/LIPIcs.WABI.2017.9
http://drops.dagstuhl.de/opus/volltexte/2017/7652
http://drops.dagstuhl.de/opus/volltexte/2017/7652
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1007/10719839_9
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1007/3-540-48194-X
https://doi.org/10.2307/2033241
https://doi.org/10.2307/2033241
https://github.com/B-UMMI/INNUENDO
http://www.innuendoweb.org/
http://www.innuendoweb.org/
https://doi.org/10.1093/nar/gkw359
https://github.com/B-UMMI/fast-mlst
https://github.com/B-UMMI/fast-mlst
https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
http://www.larsson.dogma.net/qsufsort.c
https://doi.org/10.1016/j.tcs.2007.07.017
https://doi.org/10.1186/1471-2105-13-87
https://doi.org/10.1186/1471-2105-13-87
https://doi.org/10.1145/1005813.1041513
https://doi.org/10.1145/1005813.1041513
https://doi.org/10.1186/1748-7188-9-9
https://doi.org/10.1186/1748-7188-9-9
https://doi.org/10.1145/2745754.2745778
https://doi.org/10.1145/2745754.2745778
https://doi.org/10.1093/bioinformatics/btw582
https://doi.org/10.1099/mgen.0.000056
https://doi.org/10.1099/mgen.0.000056
https://doi.org/10.1038/ng.2625
https://doi.org/10.1038/ng.2895
ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/
ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/

	Fast phylogenetic inference from typing data
	Abstract
	Background:
	Results:

	Background
	Introduction
	Our results

	Methods
	Closest pairs in linear time
	Step 1: Profile indexing
	Step 2: Candidate profile pairs enumeration
	Step 3: Pairs verification
	Average-case analysis

	Use case 1: goeBURST algorithm
	Use case 2: querying typing databases

	Experimental evaluation
	Synthetic datasets
	Real datasets

	Conclusions
	Authors’ contributions
	References

