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Abstract 

Background:  Microbial typing methods are commonly used to study the relatedness of bacterial strains. Sequence-
based typing methods are a gold standard for epidemiological surveillance due to the inherent portability of 
sequence and allelic profile data, fast analysis times and their capacity to create common nomenclatures for strains 
or clones. This led to development of several novel methods and several databases being made available for many 
microbial species. With the mainstream use of High Throughput Sequencing, the amount of data being accumulated 
in these databases is huge, storing thousands of different profiles. On the other hand, computing genetic evolution‑
ary distances among a set of typing profiles or taxa dominates the running time of many phylogenetic inference 
methods. It is important also to note that most of genetic evolution distance definitions rely, even if indirectly, on 
computing the pairwise Hamming distance among sequences or profiles. 

Results:  We propose here an average-case linear-time algorithm to compute pairwise Hamming distances among a 
set of taxa under a given Hamming distance threshold. This article includes both a theoretical analysis and extensive 
experimental results concerning the proposed algorithm. We further show how this algorithm can be successfully 
integrated into a well known phylogenetic inference method, and how it can be used to speedup querying local 
phylogenetic patterns over large typing databases.
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Background
Introduction
The evolutionary relationships between different species 
or taxa are usually inferred through known phylogenetic 
analysis techniques. Some of these techniques rely on the 
inference of phylogenetic trees, which can be computed 
from DNA or Protein sequences, or from allelic profiles 
where the sequences of defined loci are abstracted to 
categorical indexes. The most popular method is Mul-
tiLocus sequence typing (MLST) [1] that typically uses 
seven 450–700 bp fragments of housekeeping genes for 
a given species. Phylogenetic trees are also used in other 
contexts, such as to understand the evolutionary history 
of gene families, to allow phylogenetic foot-printing, to 

trace the origin and transmission of infectious diseases, 
or to study the co-evolution of hosts and parasites [2, 3].

In traditional phylogenetic methods, the process of 
phylogenetic inference starts with a multiple alignment 
of the sequences under study that is then corrected 
using models of DNA or Protein evolution. Tree-build-
ing methodologies can then be applied on the resulting 
distance matrix. These methods rely on some distance-
based analysis of sequences or profiles [4].

Distance-based methods for phylogenetic analysis 
rely on a measure of genetic evolution distance, which 
is often defined directly or indirectly from the fraction 
of mismatches at aligned positions, with gaps either 
ignored or counted as mismatches. A first step of these 
methods is to compute this distance between all pairs of 
sequences. The simplest approach is to use the Hamming 
distance, also known as observed p-distance, defined as 
the number of positions at which two aligned sequences 
differ. Note that the Hamming distance between two 
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sequences underestimates their true evolutionary dis-
tance and, thus, a correction formula based on some 
model of evolution is often used  [2, 4]. Although dis-
tance-based methods not always produce the best tree 
for the data, usually they also incorporate an optimality 
criterion into the distance model for getting more plau-
sible phylogenetic reconstructions, such as the minimum 
evolution criterion  [5], the least squares criterion  [6] or 
the clonal complexes expansion and diversification  [7]. 
Nevertheless, this category of methods are much faster 
than Maximum likelihood or Bayesian inference methods 
[8], making them excellent choices for the primary analy-
sis of large data sets.

Most of the distance-based methods are agglomerative 
methods. They start with each sequence being a singleton 
cluster and, at each step, they join two clusters. The itera-
tive process stops when all sequences are part of a single 
cluster, resulting in a phylogenetic tree. At each step the 
candidate pair is selected taking into account the distance 
among clusters as well as the optimality criterion chosen 
to adjust it.

The computation of a distance matrix (2D array con-
taining the pairwise distances between the elements of a 
set) is a common first step for distance-based methods, 
such as eBURST  [9], goeBURST  [10], Neighbor Join-
ing [11] and UPGMA [12]. This particular step dominates 
the running time of most methods, taking �(md2) time 
in general, d being the number of sequences or profiles 
and m the length of each sequence or profile. For large-
scale datasets this running time may be quite problem-
atic. And nowadays, with the mainstream use of High 
Throughput Sequencing, the amount of data being accu-
mulated in typing databases is huge. It is common to find 
databases storing thousands of different profiles for a sin-
gle microbial species, with each profile having thousands 
of loci [13, 14].

However, depending on application, on the underlying 
model of evolution and on the optimality criterion, it may 
not be strictly necessary to be aware of the complete dis-
tance matrix. There are methods that continue to provide 
optimal solutions without a complete matrix. For such 
methods, one may still consider a truncated distance 
matrix and several heuristics, combined with final local 
searches through topology rearrangements, to improve 
the running time  [6]. The goeBURST algorithm, one of 
our use cases in this article, is an example of a method 
that can work with truncated distance matrices by con-
struction, i.e., one needs only to know which pairs are at 
Hamming distance at most k.

Our results
We propose here an average-case O(md)-time and O(md)

-space algorithm to compute the pairs of sequences, 

among d sequences of length m, that are at distance at 
most k, when k <

(m−k−1)·log σ
logmd , where σ is the size of the 

sequences alphabet. We support our result with both a 
theoretical analysis and an experimental evaluation on 
synthetic and real datasets of different data types (MLST, 
cgMLST, wgMLST and SNP). We further show that our 
method improves goeBURST, and that we can use it to 
speedup querying local phylogenetic patterns over large 
typing databases.

A preliminary version of this paper was presented at 
the Workshop on Algorithms in Bioinformatics (WABI) 
2017 [15].

Methods
Closest pairs in linear time
Let P be the set of profiles (or sequences) each of 
length m, defined over an integer alphabet �, (i.e., 
� = {1, . . . ,mO(1)}), with d = |P| and σ = |�|. Let also 
H : P × P → {0, . . . ,m} be the function such that H(u, v) 
is the Hamming distance between profiles u, v ∈ P. 
Given an integer threshold 0 < k < m, the problem is 
to compute all pairs u, v ∈ P such that H(u, v) ≤ k, and 
the corresponding H(u, v) value, faster than the �(md2) 
time required to compute naïvely the complete distance 
matrix for the d profiles of length m.

We address this problem by indexing all profiles P 
using the suffix array (denoted by SA) and the longest 
common prefix (denoted by LCP) array [16]. We rely also 
on a range minimum queries (RMQ) data structure [17, 
18] over the LCP array (denoted by RMQLCP). The prob-
lem is then solved in three main steps:

1.	 Index all profiles using the SA data structure.
2.	 Enumerate all candidate profile pairs given the maxi-

mum Hamming distance k.
3.	 Verify each candidate profile pair by checking if the 

associated Hamming distance is no more than k.

Table 1 summarizes the data structures and strategies fol-
lowed in each step. Profiles are concatenated and indexed 
using SA. Depending on the strategy to be used, we further 
process the SA and build the LCP array and pre-process it 
for fast RMQ. This allows for enumerating candidate pro-
file pairs and computing distances faster. In what follows, 
we detail the above steps and show how the data structures 
are used to improve the overall running time.

Table 1  Data structures used in our approach for each step

Profile indexing Candidate profile pairs enu-
meration

Pairs verification

Suffix array Binary search Naïve

LCP based clusters RMQLCP
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Step 1: Profile indexing
Profiles are concatenated and indexed in an SA in O(md) 
time and space  [19, 20]. Let us denote this string by s. 
Since we only need to compute the distances between 
profiles that are at Hamming distance at most k, we can 
conceptually split each profile into k non-overlapping 
blocks of length L = ⌊ m

k+1
⌋ each. It is then folklore knowl-

edge that if two profiles are within distance k, they must 
share at least one such block of length L. Our approach is 
based on using the SA of s to efficiently identify match-
ing blocks among profile pairs. This lets us quickly filter 
in candidate profile pairs and filter out the ones that can 
never be part of the output.

Step 2: Candidate profile pairs enumeration
The candidate profile pairs enumeration step provides 
the pairs of profiles that do not differ in more than k posi-
tions, but it may include spurious pairs. Since SA is an 
ordered structure, a simple solution is to use a binary 
search approach. For each block of each profile, we can 
obtain in O(L log n) time, where n = md, all the suf-
fixes that have that block as a prefix. If a given match is 
not aligned with the initial block, i.e., it does not occur 
at the same position in the respective profile, then it 
should be discarded. Otherwise, a candidate profile 
pair is reported. This searching procedure is done in 
O(dkL log n) = O(n log n) time.

Another solution relies on computing the LCP array: 
the longest common prefix between each pair of consec-
utive elements within the SA. This information can also 
be computed in O(n) time and space [21]. Since SA is an 
ordered structure, for the contiguous suffixes si, si+1, si+2 
of s, with 0 ≤ i < n− 2, we have that the common pre-
fix between si and si+1 is at least as long as the common 
prefix of si and si+2. By construction, it is possible to get 
the position of each suffix in the corresponding profile in 
constant time. Then, we cluster the corresponding pro-
files of contiguous pairs if they have an LCP value greater 
than or equal to L and they are also aligned. This cluster-
ing procedure can be done in O(kd2) time.

Step 3: Pairs verification
After getting the set of candidate profile pairs, a naïve 
solution would be to compute the distance for each pair 
of profiles by comparing them in linear time, i.e., O(m) 
time. However, if we compute the LCP array of s, we can 
then perform a sequence of O(k) RMQ over the LCP 
array for checking if a pair of profiles is at distance at 
most k. These RMQ over the LCP array correspond to 
longest common prefix queries between a pair of suffixes 
of s. Since after a linear-time pre-processing over the 
LCP array, RMQ can be answered in constant time per 
query [17], we obtain a faster approach for computing the 
distances. This alternative approach takes O(k) time to 
verify each candidate profile pair instead of O(m) time.

Average‑case analysis
Algorithm  1 below details the solution based on LCP 
clusters; and Theorem  1 shows that this algorithm runs 
in linear time on average using linear space. We rely here 
on well-known results concerning the linear-time con-
struction of the SA  [19, 20] and the LCP array  [21], as 
well as the linear-time pre-processing for the RMQ data 
structure [18].

In what follows, LCP[i], i > 0, stores the length of the 
longest common prefix of suffixes si−1 and si of s, and 
RMQLCP(i, j) returns the index of the smallest element 
in the subarray LCP[i . . . j] in constant time [18]. We rely 
also on some auxiliary subroutines; let L = ⌊ m

k+1
⌋:

Aligned(i) Let ℓ = i mod m, i.e., the starting position 
of the suffix si within a profile. Then this subroutine 
returns ℓ/L if ℓ is multiple of L, and −1 otherwise.
HD( pi , pj , ℓ) Given two profiles pi and pj which share 
a substring of length L, starting at index ℓL, this sub-
routine computes the minimum of k and the Hamming 
distance between pi and pj. This subroutine relies on 
RMQLCP to find matches between pi and pj and, hence, 
it runs in O(k) time since it can terminate after k mis-
matches.
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Theorem  1  Given d profiles of length m each over an 
integer alphabet � of size σ > 1 with the letters of the pro-
files being independent and identically distributed ran-
dom variables uniformly distributed over �, and the max-
imum Hamming distance 0 < k < m, Algorithm 1 runs in 
O(md) average-case time and space if

Proof  Let us denote by s the string of length md obtained 
after concatenating the d profiles. The time and space 

k <
(m− k − 1) · log σ

logmd
.

required for constructing the SA and the LCP arrays for s 
and the RMQ data structure over the LCP array is O(md).

Let us denote by B the total number of blocks over s 
and by L the block length. We set L = ⌊ m

k+1
⌋ and thus we 

have that B = d⌊m
L
⌋. Let us also denote by C a maximal 

set of indices over x satisfying the following:

1.	 The length of the longest common prefix between any 
two suffixes of s starting at these indices is at least L;

2.	 both of these suffixes start at the starting position of 
a block;

Algorithm 1: Algorithm using LCP clusters.

1 Input: A set P of d profiles of length m each; an integer threshold 0 < k < m.

2 Output: The set X of distinct pairs of profiles that are at Hamming distance at most k, i.e.,

X = {(u, v) ∈ P × P | u < v and H(u, v) ≤ k}.
3 Initialization: Let s = s[0 . . . n− 1] be the string of length n = md obtained after concatenating

the d profiles, and L = m
k+1 . Construct the SA S for s, the LCP array for s and RMQLCP.

Initialize a hash table HT to track verified pairs.

4 Candidate pairs enumeration:

5 X := ∅; p := −1; Ct := ∅, for 0 ≤ t ≤ k

6 foreach 1 ≤ i < n do

7 := LCP[i]

8 if ≥ L then

9 pi := [i]/m

10 x := Aligned(i)

11 if x = −1 then

12 Cx := Cx ∪ {pi}

13 if p = −1 then

14 pi−1 := [i− 1]/m

15 x := Aligned(i− 1)

16 if x = −1 then

17 Cx := Cx ∪ {pi−1}

18 p :=

19 else if p = −1 then

20 Pairs enumeration:

21 foreach Ct, with 0 ≤ t ≤ k do

22 foreach (p, q) ∈ Ct × Ct : p < q do

23 if (p, q) /∈ HT then

24 HT := HT ∪ {(p, q)}
25 δ := HD(p, q, t)

26 if δ ≤ k then

27 X := X ∪ {(p, q)}

28 p := −1; Ct := ∅, for 0 ≤ t ≤ k

29 Finalize: Return the set X.
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3.	 and both indices correspond to the starting position 
of the ith block in their profiles.

This can be done in O(md) time using the LCP array 
(lines 7–17). Processing all such sets C (lines 21–27) 
requires total time

where PROCi,j is the time required to process a pair i,  j 
of elements of a set C, and Pairs is the sum of |C|2 over all 
such sets C. We have that PROCi,j = O(k) by using RMQ 
over the LCP array. Additionally, by the stated assump-
tion on the d profiles, the expected value for Pairs is no 
more than Bd

σL
: we have B blocks in total and each block 

can only match at most d other blocks by the conditions 
above. Hence, the algorithm requires on average the fol-
lowing running time

Let us analyze this further to obtain the relevant condi-
tion on k. We have the following:

Since 0 < k < m by hypothesis, we have the following:

By some simple rearrangements we have that:

Consequently, in the case when

the algorithm requires O(md) time on average. The extra 
space usage is clearly O(md). � �

Use case 1: goeBURST algorithm
The distance matrix computation is a main step in dis-
tance-based methods for phylogenetic inference. This 
step dominates the running time of most methods, taking 
�(md2) time, for d sequences of length m, since it must 
compute the distance among all sequence pairs. But for 
some methods, or when we are only interested in local 
phylogenies for sequences or profiles of interest, one does 
not need to know all pairwise distances for reconstruct-
ing a phylogenetic tree. The problem addressed in this 

PROCi,j × Pairs

O

(

md + k ·
Bd

σL

)

.

k ·
Bd

σL
=

k · ⌊ m
⌊m/(k+1)⌋

⌋ · d2

σ
⌊ m
k+1

⌋
≤

k ·

(

m
⌊m/(k+1)⌋

)

· d2

σ
m

k+1
−1

.

k ·

(

m
⌊m/(k+1)⌋

)

· d2

σ
m

k+1
−1

≤
(md)2

σ
m

k+1
−1

.

(md)2

σ
m

k+1
−1

=
(md)2

(md)
log σ
logmd

(

m
k+1

−1
) = (md)

2−
(m−k−1) log σ
(k+1) logmd .

k <
(m− k − 1) · log σ

logmd

article was motivated by the goeBURST algorithm  [10], 
our use case 1. goeBURST is one of such methods for 
which one must know only the pairs of sequences that 
are at Hamming distance at most k. The solution pro-
posed here can however be extended to other distance-
based phylogenetic inference methods, that rely directly 
or indirectly on Hamming distance computations. Note 
that most methods either consider the Hamming dis-
tance or its correction accordingly to some formula 
based on some model of evolution [2, 4]. In both cases we 
must start by computing the Hamming distance among 
sequences, but not necessarily all of them [6].

The underlying model of goeBURST is as follows: a 
given genotype increases in frequency in the population as 
a consequence of a fitness advantage or of random genetic 
drift, becoming a founder clone in the population; and this 
increase is accompanied by a gradual diversification of 
that genotype, by mutation and recombination, forming a 
cluster of phylogenetic closely-related strains. This diver-
sification of the “founding” genotype is reflected in the 
appearance of genetic profiles differing only in one house-
keeping gene sequence from this genotype—single locus 
variants (SLVs). Further diversification of those SLVs will 
result in the appearance of variations of the original gen-
otype with more than one difference in the allelic profile, 
e.g., double and triple locus variants (DLVs and TLVs).

The problem solved by goeBURST can be stated as 
a graphic matroid optimization problem and, hence, 
it follows a classic greedy approach  [22]. Given the 
maximum Hamming distance k, we can define a 
graph G = (V ,E), where V = P (set of profiles) and 
E = {(u, v) ∈ V 2 | H(u, v) ≤ k}. The main goal of goe-
BURST is then to compute a minimum spanning forest 
for G taking into account the distance H and a total order 
on links. It starts with a forest of singleton trees (each 
sequence/profile is a tree). Then it constructs the optimal 
forest by adding links connecting profiles in different trees 
in increasing order accordingly to the total order, similarly 
to what is done in the Kruskal’s algorithm [23]. In the cur-
rent implementation, a total order for links is implicitly 
defined based on the distance between sequences, on the 
number of SLVs, DLVs, TLVs, on the occurrence frequency 
of sequences, and on the assigned sequence identifier. 
With this total order, the construction of the tree consists 
of building a minimum spanning forest in a graph  [23], 
where each sequence is a node and the link weights are 
defined by the total order. By construction, the pairs at dis-
tance δ will be joined before the pairs at distance δ + 1.

Use case 2: querying typing databases
A related problem is querying typing databases for simi-
lar typing profiles. Given a set P of d profiles of length m 
each, a profile u not necessarily in P but with the same 
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length m as those in P, and k such that 0 < k < m, the 
problem is to find all profiles v ∈ P such that H(u, v) ≤ k . 
One may be also interested on local phylogenetic pat-
terns, but those can be inferred from found profiles using 
for instance the goeBURST algorithm.

Once we define the value for k, we can address this 
problem as follows. We index all d profiles in the data-
base as before in linear time O(md), and given a query 
profile u, we enumerate all candidate profiles v. We then 
verify as before all candidate pairs and we return only 
those satisfying H(u, v) ≤ k.

For indexing set P, we make use of the suffix tree data 
structure. The suffix tree T (x) of a string x is a compact 
trie representing all suffixes of x. It is known that the suf-
fix tree of a string of length n, over an integer alphabet, 
can be computed in time and space O(n) [24]. For integer 
alphabets, in order to access the children of an explicit 
node of the suffix tree by the first letter of their edge label 
in O(1) time, we make use of perfect hashing [25].

By using the suffix tree we find candidate matches 
through forward search: spelling blocks of u from the 
root. Specifically, given the k + 1 non-overlapping blocks 
of length L = ⌊ m

k+1
⌋ of u, we search (without reporting) 

for each one of them in O(L) time. Since we have k + 1 
blocks, it takes O(kL) = O(m) time to search for all k + 1 
blocks of u. Finally, we can verify and report all candidate 
profiles v ∈ P as detailed in Algorithm 2.

Although, in the worst case, Algorithm 2 runs in time 
O(md +m logmd), as we may have d matches at most, 
we can prove a similar average case as in Theorem 1.

Theorem  2  Given a profile u and a set of d profiles 
of length m each, all over an integer alphabet � of size 
σ > 1, with the letters of the profiles being independent 
and identically distributed random variables uniformly 
distributed over �, the T (s) for the string s of length md 
obtained after concatenating the d profiles, and the maxi-
mum Hamming distance 0 < k < m, Algorithm 2 runs in 
O(m) average-case time if

Proof  Let us denote by B the total number of blocks 
over s and by L the block length. We set L = ⌊ m

k+1
⌋ and 

thus we have that B = d⌊m
L
⌋.

By the stated assumption on the profiles, the expected 
value for the number of profiles matching u is no more 
than B

σL
: we have B blocks in total and each block can 

only match at most one other block in u (since they must 
be aligned; line 8).

k <
(m− k − 1) · log σ

logmd
.

Algorithm 2:
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Moreover, since we are not relying on the LCP array in 
this case (profile u is not indexed), the verification step 
(line 12) takes O(m) time using letter comparisons. 
Hence, the algorithm requires on average the following 
running time

Let us analyze this further to obtain the relevant condi-
tion on k. We have the following:

By some simple rearrangements we have that:

Consequently, in the case when

the algorithm requires O(m) time on average.� �

This algorithm was implemented using a suffix array 
and then integrated in INNUENDO Platform, which is 
publicly available  [24]. The INNUENDO Platform is an 
infrastructure that provides the required framework for 
data analyses from bacterial raw reads sequencing data 
quality insurance to the integration of epidemiological 
data and visualization. As such, rapid methods for classi-
fication and search for closely related strains are a neces-
sity for quick navigation through the platform database 
entries. More information about the project can be found 
at its website [25].

As a starting point and for the purpose of this study, 
a subset of 2312 wgMLST profiles of Escherichia coli 
retrieved from Enterobase  [13] were included in the 
INNUENDO database as well as their ancillary data and 
predefined core-genome cluster classification. Two tab-
separated files containing the wgMLST and cgMLST 
profiles for the E. coli strains were also created to allow 
storing information on the currently available profiles 
and for updating with profiles that will become available 
upon the platform analyses.

One of two index files are used depending on the type 
of search we want to perform: classification or search for 
k-closest. The cgMLST index file is used for strain classi-
fication, which relies on a nomenclature designed for the 
cgMLST profiles. As such, and since a pre-classification 

O(m+m ·
B

σL
).

m ·
B

σL
=

m · ⌊ m

⌊m/(k+1)⌋
⌋ · d

σ
⌊ m

k+1
⌋

≤
m · ( m

⌊m/(k+1)⌋
) · d

σ
m

k+1
−1

≤
m2d

σ
m

k+1
−1

.

m2d

σ
m

k+1
−1

=
m2d

(md)
log σ
logmd

( m
k+1

−1)
= m(md)

1−
(m−k−1) log σ
(k+1) logmd .

k <
(m− k − 1) · log σ

logmd

was performed on the database of E. coli strains, we con-
tinued using it for comparison purposes. However, when 
searching for the k-closest profiles, we take into consid-
eration all targets available in the wgMLST profiles using 
the wgMLST index file for a higher discriminatory power.

Each time a new profile is generated from the platform, 
it requires classification. The INNUENDO Platform 
performs the classification step based on the approach 
described in our "Use case 2: querying typing databases" 
with a given maximum of k differences over core genes. 
It uses the cgMLST index file for the search since the 
classification is constructed based on those number of 
loci. If the method returns at least one match, it classi-
fies the new profile with the classification of the closest. 
If not, a new classification is assigned. A new entry is 
then added to the INNUENDO database as well as to the 
cgMLST and wgMLST profiles files and the index files 
are updated.

In the case of the search for the k-closest, it is useful 
to define the input data for visualization methods accord-
ing to a defined number of differences on close strains. 
For each profile used as input for the search, the method 
searches for the k-closest strains considering at most 
k differences among all wgMLST loci. Since duplicate 
matches can occur between the profiles used for each 
search, the final file used as input for the visualization 
methods is the intersection of the results of the k-closest 
profiles between each input strain. The set of strain iden-
tifiers are then used to query the INNUENDO database 
to get the profiles and ancillary data to be sent to PHY-
LOViZ Online [26] for further analysis, namely with the 
goeBURST algorithm.

The drawback of using this method for classification 
and search is the need for rebuilding the index each time 
there is a new profile, which will depend on the number 
of profile entries on the database. Nevertheless, the num-
ber of updates is rather smaller compared to the number 
of queries and the index can be build in the background, 
with search functionalities still using the old index during 
the process. In our implementation, the index and related 
data structures are serialized in secondary memory and 
they are accessed by mapping them into memory. The 
implementation of the underlying tool is made publicly 
available [27].

The above described approaches in combination with 
the features offered by the INNUENDO Platform allow 
microbiologists to quickly and efficiently search for 
strains close to their strain of interest, allowing a more 
targeted, focused and simple visualization of results.
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Experimental evaluation
We evaluated the proposed approach to compute the 
pairs of profiles at distance at most k using both real 
and synthetic datasets. We used real datasets obtained 
through different typing schemas, namely whole-genome 
multi-locus sequence typing (wgMLST) data, core-
genome multi-locus sequence typing (cgMLST) data, 
and single-nucleotide polymorphism (SNP) data. Table 2 
summarizes the real datasets used. We should note that 
wgMLST and cgMLST datasets contain sequences of 
integers, where each column corresponds to a locus 
and different values in the same column denote differ-
ent alleles. Synthetic datasets comprise sets of binary 
sequences of variable length, uniformly sampled, allow-
ing us to validate our theoretical findings.

We implemented both versions described above in 
the C programming language: one based on binary 
search over the SA; and another one based on find-
ing clusters in the LCP array. Since allelic profiles can 
be either string of letters or sequences of integers, we 
relied on libdivsufsort library  [28] and qsuf-
sort code [29, 30], respectively. For RMQ over the LCP 
array, we implemented a fast well-known solution that 
uses constant time per query and linearithmic space for 
pre-processing [17].

All tests were conducted on a machine running Linux, 
with an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz (8 
cores, cache 32  KB/4096  KB) and with 32  GB of RAM. 
All binaries where produced using GCC 5.3 with full 
optimization enabled.

Synthetic datasets
We first present results with synthetic data for different 
values of d, m and k. All synthetic sequences are binary 
sequences uniformly sampled. Results presented in this 
section were averaged over ten runs and for five different 
sets of synthetic data.

The bound proved in Theorem 1 was verified in prac-
tice. For k satisfying the conditions in Theorem  1, the 
running time of our implementation grows almost line-
arly with n, the size of the input. We can observe in Fig. 1 
a growth slightly above linear. Since we included the time 
for constructing the SA, the LCP array and the RMQ data 

structure, with the last one in linearithmic time, that was 
expected.

We also tested our method for values of k exceeding 
the bound shown in Theorem 1. For d = m = 4096 and a 
binary alphabet, the bound for k given in Theorem 1 is no 
more than ⌊m/(2 logm)⌋ = 170. For k above this bound 
we expect that proposed approaches are no longer com-
petitive with the naïve approach. As shown in Fig. 2, for 
k > 250 and k > 270 respectively, both limits above the 
predicted bound, the running time for both computing 
pairwise distances by finding lower and higher bounds in 
the SA, and by processing LCP based clusters, becomes 
slower than the running time of the naïve approach.

In Fig. 3 we have the running time as a function of the 
number d of profiles, for different values of m and for k 
satisfying the bound given in Theorem  1. The running 
time for the naïve approach grows quadratically with d, 
while it grows linearly for both computing pairwise dis-
tances by finding lower and higher bounds in the SA, and 
by processing LCP based clusters. Hence, for synthetic 
data, as described by Theorem 1, the result holds.

Real datasets
For each dataset in Table  2, we ranged the threshold k 
accordingly and compared the approaches discussed in 
"Methods" section with the naïve approach that com-
putes the distance for all sequence pairs. Results are pro-
vided in Table 3.

In most cases, the approach based on the LCP clusters 
is the fastest up to two orders of magnitude compared to 
the naïve approach. As expected, in the case when data 
are not uniformly random, our method works reasonably 
well for smaller values of k than the ones implied by the 
bound in Theorem 1. As an example, the upper bound on 
k for C. jejuni would be around 200, but the running time 
for the naïve approach is already better for k = 64. We 
should note however that the number of candidate profile 
pairs at Hamming distance at most k is much higher than 
the expected number when data are uniformly random. 
This tells us that we can design a simple hybrid scheme 
that chooses a strategy (naïve or the proposed method) 
depending on the nature of the input data. It seems also 
to point out clustering effects on profile dissimilarities, 

Table 2  Real datasets used in the experimental evaluation

(*) Dataset provided by the Molecular Microbiology and Infection Unit, IMM

 Dataset  Typing method  Profile length  Number of distinct elements  References

 Campylobacter jejuni wgMLST  5446  5669  (*)

 Salmonella enterica wgMLST  3002  6861  [13]

 Salmonella typhi SNP  22,143  1534  [36]

 Streptococcus pneumoniae cgMLST  235  1968  [37–39]
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which we may exploit to improve our results. We leave 
both tasks as future work for the full version of this 
article.

We incorporated the approach based on finding lower 
and higher bounds in the SA in the implementation of 
goeBURST algorithm, discussed in "Methods" section. 
We did not incorporate the approach based on the LCP 
clusters as the running time did not improve much as 
observed above. Since running times are similar to those 
reported in Table  3, we discuss only the running time 
for C. jejuni. We need only to index the input once. We 
can then use the index in the different stages of the algo-
rithm and for different values of k. In the particular case 
of goeBURST, we use the index twice: once for comput-
ing the number of neighbors at a given distance, used 
for untying links according to the total order discussed 
in the description of goeBURST algorithm in methods 
section, and a second time for enumerating pairs at dis-
tance below a given threshold. Note that the goeBURST 
algorithm does not aim to link all nodes, but to identify 
clonal complexes (or connected components) for a given 
threshold on the distance among profiles [10]. In the case 
of C. jejuni dataset, and for k = 52, the running time is 
around 36 s, while the naïve approach takes around 115 
s, yielding a threefold speedup. In this case we get sev-
eral connected components, i.e., several trees, connect-
ing the most similar profiles. We provide the tree for the 
largest component in Fig. 4, where each node represents 
a profile. The nodes are colored according to one of the 
loci for which profiles in this cluster differ. Note that this 
tree is optimal with respect to the criterion used by the 

goeBURST algorithm, not being affected by the threshold 
on the distance. In fact, since this problem is a graphic 
matroid, the trees found for a given threshold will be 
always subtrees of the trees found for larger thresh-
olds [22]. Comparing this tree with other inference meth-
ods is beyond the scope of this article; the focus here was 
on the faster computation of an optimal tree under this 
model.

In many studies, the computation of trees based on 
pairwise distances below a given threshold, usually small 
compared with the total number of loci, combined with 
ancillary data, such as antibiotic resistance and host 
information, allows microbiologists to uncover evolution 
patterns and study the mechanisms underlying the trans-
mission of infectious diseases [31].

Conclusions
Most distance-based phylogenetic inference methods 
rely directly or indirectly on Hamming distance compu-
tations. The computation of a distance matrix is a com-
mon first step for such methods, taking �(md2) time in 
general, with d being the number of sequences or profiles 
and m the length of each sequence or profile. For large-
scale datasets this running time may be problematic; 
however, for some methods, we can avoid to compute all-
pairs distances [6].

We addressed this problem when only a truncated dis-
tance matrix is needed, i.e., one needs to know only which 
pairs are at Hamming distance at most k. This problem 
was motivated by the goeBURST algorithm  [10], which 
relies on a truncated distance matrix by construction. 

Table 3  Time and percentage of pairs processed for each method and dataset

The minimum time for each row is highlighted in italic

 Dataset  k  Naïve  Binary search  LCP clusters

 t (s) Pairs (%)  t (s)  Pairs (%)  t (s)  Pairs (%)

C. jejuni 8 108.59 100 0.22 0.06 0.17 0.06

16 109.30 100 0.48 0.32 0.34 0.32

32 108.60 100 3.52 5.45 2.67 5.45

64 108.60 100 231.05 99.98 162.36 99.98

S. enterica 8 89.85 100 1.04 2.37 0.95 2.37

16 87.26 100 7.16 12.69 6.73 12.69

32 85.36 100 36.29 33.22 30.76 33.22

64 84.63 100 254.45 82.44 187.15 82.44

S. typhi 89 28.83 100 16.63 91.48 12.02 91.48

178 28.32 100 46.98 99.91 32.03 99.91

890 30.04 100 113.57 100 129.14 100

S. pneumoniae 8 0.56 100 0.02 0.93 0.02 0.93

16 0.57 100 0.05 1.71 0.04 1.71

32 0.56 100 0.20 4.42 0.15 4.42

64 0.58 100 5.63 73.36 5.01 73.36
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Fig. 4  The tree inferred for the largest connected component found with k = 52 for the C. jejuni dataset. Image produced by PHYLOViZ [35]
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Both the problem and techniques discussed here are 
related to average-case approximate string matching [32, 
33]. We proposed here an average-case linear-time and 
linear-space algorithm to compute the pairs of sequences 
or profiles that are at Hamming distance at most k, when 
k <

(m−k−1)·log σ
logmd , where σ is the size of the alphabet. We 

integrated our solution in goeBURST demonstrating its 
effectiveness using both real and synthetic datasets.

We must note however that our analysis holds for uni-
formly random sequences and, hence, as observed with 
real data, the presented bound may be optimistic. It is 
thus interesting to investigate how to address this prob-
lem taking into account local conserved regions within 
sequences. Moreover, it might be interesting to consider 
in the analysis null models such as those used to evalu-
ate the accuracy of distance-based phylogenetic inference 
methods [4].

The proposed approach is particularly useful when one 
is interested in local phylogenies, i.e., local patterns of 
evolution, such as searching for similar sequences or pro-
files in large typing databases, as in our "Use case 2: que-
rying typing databases". In this case we do not need to 
construct full phylogenetic trees, with tens of thousands 
of taxa. We can focus our search on the most similar 
sequences or profiles, within a given threshold k. There 
are however some issues to be solved in this scenario, 
namely, dynamic updating of the data structures used 
in our algorithm. Note that after querying a database, if 
new sequences or profiles are identified, then we should 
be able to add them while keeping our data structures 
updated. Although more complex and dynamic data 
structures are known, a technique proposed recently for 
adding dynamism to otherwise static data structures can 
be useful to address this issue [34]. This and other chal-
lenges raised above are left as future work.
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