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Abstract 

Background:  In the absence of horizontal gene transfer it is possible to reconstruct the history of gene families from 
empirically determined orthology relations, which are equivalent to event-labeled gene trees. Knowledge of the event 
labels considerably simplifies the problem of reconciling a gene tree T with a species trees S, relative to the reconcilia-
tion problem without prior knowledge of the event types. It is well-known that optimal reconciliations in the unla-
beled case may violate time-consistency and thus are not biologically feasible. Here we investigate the mathematical 
structure of the event labeled reconciliation problem with horizontal transfer.

Results:  We investigate the issue of time-consistency for the event-labeled version of the reconciliation problem, 
provide a convenient axiomatic framework, and derive a complete characterization of time-consistent reconciliations. 
This characterization depends on certain weak conditions on the event-labeled gene trees that reflect conditions 
under which evolutionary events are observable at least in principle. We give an O(|V(T )| log(|V(S)|))-time algorithm 
to decide whether a time-consistent reconciliation map exists. It does not require the construction of explicit tim-
ing maps, but relies entirely on the comparably easy task of checking whether a small auxiliary graph is acyclic. The 
algorithms are implemented in C++ using the boost graph library and are freely available at https://github.com/
Nojgaard/tc-recon.

Significance:  The combinatorial characterization of time consistency and thus biologically feasible reconciliation 
is an important step towards the inference of gene family histories with horizontal transfer from orthology data, i.e., 
without presupposed gene and species trees. The fast algorithm to decide time consistency is useful in a broader 
context because it constitutes an attractive component for all tools that address tree reconciliation problems.
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families
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Background
Modern molecular biology describes the evolution of 
species in terms of the evolution of the genes that collec-
tively form an organism’s genome. In this picture, genes 
are viewed as atomic units whose evolutionary history 
by definition forms a tree. The phylogeny of species also 
forms a tree. This species tree is either interpreted as a 
consensus of the gene trees or it is inferred from other 
data. An interesting formal manner to define a species 

tree independent of genes and genetic data is discussed, 
e.g. in [1].

In this contribution, we assume that gene and species 
trees are given independently of each other. The rela-
tionship between gene and species evolution is there-
fore given by a reconciliation map that describes how the 
gene tree is embedded in the species tree: after all, genes 
reside in organisms, and thus at each point in time can be 
assigned to a species.

From a formal point of view, a reconciliation map µ 
identifies vertices of a gene tree with vertices and edges in 
the species tree in such a way that (partial) ancestor rela-
tions given by the genes are preserved by µ. Vertices in 
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the species tree correspond to speciation events. By defi-
nition, in a speciation event all genes are faithfully trans-
mitted from the parent species into both (all) daughter 
species. Some of the vertices in the gene tree therefore 
correspond to speciation events. In gene duplications, 
two copies of a gene are formed from a single ancestral 
gene and then keep residing in the same species. In hori-
zontal gene transfer (HGT) events, the original remains 
within the parental species, while the offspring copy 
“jumps” into a different branch of the species tree. Given 
a gene tree with event types assigned to its interior verti-
ces, it is customary to define pairwise relations between 
genes depending on the event type of their last common 
ancestor [2–4].

Most of the literature on this topic assumes that both 
the gene tree and the species tree are known but no infor-
mation is available of the type of events [5–8]. The aim is 
then to find a mapping of the gene tree T into the spe-
cies tree S and, at least implicitly, an event-labeling on the 
vertices of the gene tree T. Here we take a different point 
of view and assume that T and the types of evolutionary 
events on T are known. This setting has ample practi-
cal relevance because event-labeled gene trees can be 
derived from the pairwise orthology relation [4, 9]. These 
relations in turn can be estimated directly from sequence 
data using a variety of algorithmic approaches that are 
based on the pairwise best match criterion and hence 
do not require any a priori knowledge of the topology of 
either the gene tree or the species tree, see e.g. [10–13].

Genes that share a common origin (homologs) can be 
classified into orthologs, paralogs, and xenologs depend-
ing whether they originated by a speciation, duplica-
tion or horizontal gene transfer (HGT) event [2, 4]. 
Recent advances in mathematical phylogenetics [9, 14] 
have shown that the knowledge of these event-relations 
(orthologs, paralogs and xenologs) suffices to construct 
event-labeled gene trees and, in some case, also a species 
tree [3, 15, 16].

Conceptually, both the gene tree and species tree are 
associated with a timing of each event. Reconciliation 
maps must preserve this timing information because 
there are biologically infeasible event labeled gene trees 
that cannot be reconciled with any species tree. In the 
absence of HGT, biologically feasibility can be character-
ized in terms of certain triples (rooted binary trees on 
three leaves) that are displayed by the gene trees [16]. In 
the presence of HGT such triples give at least necessary 
conditions for a gene tree being biologically feasible [15]. 
In particular, the timing information must be taken into 
account explicitly in the presence of HGT. That is, gene 
trees with HGT that must be mapped to species trees 
only in such a way that some genes do not travel back in 
time.

There have been several attempts in the literature to 
handle this issue, see e.g. [17] for a review. In [18, 19] 
a single HGT adds timing constraints to a time map 
for a reconciliation to be found. Time-consistency is 
then defined as the existence of a topological order of 
the digraph reflecting all the time constraints. In [20] 
NP-hardness was shown for finding a parsimonious 
time-consistent reconciliation based on a definition for 
time-consistency that in essence considers pairs of HGTs. 
However, the latter definitions are explicitly designed for 
binary gene trees and do not apply to non-binary gene 
trees, which are used here to model incomplete knowl-
edge of the exact gene phylogenies. Different algorithmic 
approaches for tackling time-consistency exist [17] such 
as the inclusion of “time-zones” known for specific evolu-
tionary events. It is worth noting that a posteriori modi-
fications of time-inconsistent solutions will in general 
violate parsimony [18]. So far, no results have become 
available to determine the existence of time-consistent 
reconciliation maps given the (undated) species tree and 
the event-labeled gene tree.

Here, we introduce an axiomatic framework for time-
consistent reconciliation maps and characterize for given 
event-labeled gene trees T and species trees S whether 
there exists a time-consistent reconciliation map. We 
provide an O(|V (T )| log(|V (S)|))-time algorithm that 
constructs a time-consistent reconciliation map if one 
exists.

Notation and preliminaries
We consider rooted trees T = (V ,E) (on LT ) with root 
ρT ∈ V  and leaf set LT ⊆ V . A vertex v ∈ V  is called a 
descendant of u ∈ V , v �T u, and u is an ancestor of v, 
u �T v, if u lies on the path from ρT to v. As usual, we 
write v ≺T u and u ≻T v to mean v �T u and u �= v . 
The partial order �T is known as the ancestor order of 
T; the root is the unique maximal element w.r.t �T . If 
u �T v or v �T u then u and v are comparable and oth-
erwise, incomparable. We consider edges of rooted trees 
to be directed away from the root, that is, the notation 
for edges (u,  v) of a tree is chosen such that u ≻T v. If 
(u, v) is an edge in T, then u is called parent of v and v 
child of u. It will be convenient for the discussion below 
to extend the ancestor relation �T on V to the union of 
the edge and vertex sets of T. More precisely, for the 
edge e = (u, v) ∈ E we put x ≺T e if and only if x �T v 
and e ≺T x if and only if u �T x. For edges e = (u, v) and 
f = (a, b) in T we put e �T f  if and only if v �T b. For 
x ∈ V , we write LT (x) := {y ∈ LT | y �T x} for the set of 
leaves in the subtree T(x) of T rooted in x.

For a non-empty subset of leaves A ⊆ L, we 
define lcaT (A), or the least common ancestor of A, 
to be the unique �T-minimal vertex of T that is an 



Page 3 of 17Nøjgaard et al. Algorithms Mol Biol  (2018) 13:2 

ancestor of every vertex in A. In case A = {u, v}, we 
put lcaT (u, v) := lcaT ({u, v}). We have in particular 
u = lcaT (LT (u)) for all u ∈ V . We will also frequently use 
that for any two non-empty vertex sets A, B of a tree, it 
holds that lca(A ∪ B) = lca(lca(A), lca(B)).

A phylogenetic tree is a rooted tree such that no interior 
vertex in v ∈ V \ LT has degree two, except possibly the 
root. If LT corresponds to a set of genes G or species S, 
we call a phylogenetic tree on LT gene tree or species tree, 
respectively. In this contribution we will not restrict the 
gene or species trees to be binary, although this assump-
tion is made implicitly or explicitly in much of the litera-
ture on the topic. The more general setting allows us to 
model incomplete knowledge of the exact gene or species 
phylogenies. Of course, all mathematical results proved 
here also hold for the special case of binary phylogenetic 
trees.

In our setting a gene tree T = (V ,E) on G is equipped 
with an event-labeling map t : V ∪ E → I ∪ {0, 1} with 
I = {•,�,△,⊙} that assigns to each interior vertex v of 
T a value t(v) ∈ I indicating whether v is a speciation 
event (•), duplication event (�) or HGT event (△). It is 
convenient to use the special label ⊙ for the leaves x of 
T. Moreover, to each edge e a value t(e) ∈ {0, 1} is added 
that indicates whether e is a transfer edge (1) or not (0). 
Note, only edges (x,  y) for which t(x) = △ might be 
labeled as transfer edge. We write E = {e ∈ E | t(e) = 1} 
for the set of transfer edges in T. We assume here that all 
edges labeled “0” transmit the genetic material vertically, 
that is, from an ancestral species to its descendants.

We remark that the restriction t|V  of t to the vertex set 
V coincides with the “symbolic dating maps” introduced 
in [21]; these have a close relationship with cographs 
[14, 22, 23]. Furthermore, there is a map σ : G → S that 
assigns to each gene the species in which it resides. The 
set σ(M), M ⊆ G, is the set of species from which the 
genes M are taken. We write (T ; t, σ) for the gene tree 
T = (V ,E) with event-labeling t and corresponding map 
σ.

Removal of the transfer edges from (T ; t, σ) yields a 
forest T

E
:= (V ,E \ E) that inherits the ancestor order on 

its connected components, i.e., �T
E

 iff x �T y and x, y are 
in same subtree of T

E
 [20]. Clearly �T

E
 uniquely defines a 

root for each subtree and the set of descendant leaf nodes 
LT

E
(x).

In order to account for duplication events that 
occurred before the first speciation event, we need to add 
an extra vertex and an extra edge “above” the last com-
mon ancestor of all species in the species tree S = (V ,E) . 
Hence, we add an additional vertex to V (that is now the 
new root ρS of S) and the additional edge (ρS , lcaS(S)) 
to E. Strictly speaking S is not a phylogenetic tree in the 
usual sense, however, it will be convenient to work with 

these augmented trees. For simplicity, we omit drawing 
the augmenting edge (ρS , lcaS(S)) in our examples.

Observable scenarios
The true history of a gene family, as it is considered here, 
is an arbitrary sequence of speciation, duplication, HGT, 
and gene loss events. The applications we envision for the 
theory developed, here, however assume that the gene 
tree and its event labels are inferred from (sequence) 
data, i.e., (T ; t, σ) is restricted to those labeled trees that 
can be constructed at least in principle from observable 
data. The issue here are gene losses that may completely 
eradicate the information on parts of the history. Specifi-
cally, we require that (T ; t, σ) satisfies the following three 
conditions:

(O1) �Every internal vertex v has degree at least 3, except 
possibly the root which has degree at least 2.

(O2) �Every HGT node has at least one transfer edge, 
t(e) = 1, and at least one non-transfer edge, t(e) = 0;

(O3)
(a) �If x is a speciation vertex, then there are at least 

two distinct children v, w of x such that the spe-
cies V and W that contain v and w, resp., are 
incomparable in S.

(b) �If (v, w) is a transfer edge in T, then the species 
V and W that contain v and w, resp., are incom-
parable in S.

Condition (O1) ensures that every event leaves a histor-
ical trace in the sense that there are at least two children 
that have survived in at least two of its subtrees. If this 
were not the case, no evidence would be left for all but 
one descendant tree, i.e., we would have no evidence 
that event v ever happened. We note that this condi-
tion was used, e.g. in [16] for scenarios without HGT. 
Condition (O2) ensures that for an HGT event a histori-
cal trace remains of both the transferred and the non-
transferred copy. If there is no transfer edge, we have 
no evidence to classify v as a HGT node. Conversely, if 
all edges were transfers, no evidence of the lineage of 
origin would be available and any reasonable inference 
of the gene tree from data would assume that the gene 
family was vertically transmitted in at least one of the 
lineages in which it is observed. In particular, Condition 
(O2) implies that for each internal vertex there is a path 
consisting entirely of non-transfer edges to some leaf. 
This excludes in particular scenarios in which a gene is 
transferred to a different “host” and later reverts back to 
descendants of the original lineage without any surviv-
ing offspring in the intermittent host lineage. Further-
more, a speciation vertex x cannot be observed from 
data if it does not “separate” lineages, that is, there are 
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two leaf descendants of distinct children of x that are in 
distinct species. However, here we only assume to have 
the weaker Condition (O3.a) which ensures that any 
“observable” speciation vertex x separates at least locally 
two lineages. In other words, if all children of x would be 
contained in species that are comparable in S or, equiv-
alently, in the same lineage of S, then there is no clear 
historical trace that justifies x to be a speciation vertex. 
In particular, most-likely there are two leaf descend-
ants of distinct children of x that are in the same spe-
cies even if only T

E
 is considered. Hence, x would rather 

be classified as a duplication than as a speciation upon 
inference of the event labels from actual data. Analo-
gously, if (v,w) ∈ E then v signifies the transfer event 
itself but w refers to the next (visible) event in the gene 
tree T. Given that (v,  w) is a HGT-edge in the observ-
able part, in a “true history” v is contained in a species 
V that transmits its genetic material (maybe along a 
path of transfers) to a contemporary species Z that is an 
ancestor of the species W containing w. Clearly, the lat-
ter allows to have V �S W  which happens if the path of 
transfers points back to the descendant lineage of V in 
S. In this case the transfer edge (v, w) must be placed in 
the species tree such that µ(v) and µ(w) are comparable 
in S. However, then there is no evidence that this trans-
fer ever happened, and thus v would be rather classified 
as speciation or duplication vertex.

Assuming that (O2) is satisfied, we obtain the following 
useful result:

Lemma 1  Let T1, . . . , Tk be the connected components of 
T
E

 with roots ρ1, . . . , ρk, respectively. If (O2) holds, then, 
{LT

E
(ρ1), . . . , LT

E
(ρk)} forms a partition of G.

Proof  Since LT
E
(ρi) ⊆ V (T ), it suffices to show that 

LT
E
(ρi) does not contain vertices of V (T ) \G. Note, 

x ∈ LT
E
(ρi) with x /∈ G is only possible if all edges (x, y) 

are removed.
Let x ∈ V  with t(x) = △ such that all edges (x,  y) are 

removed. Thus, all such edges (x,  y) are contained in E. 
Therefore, every edge of the form (x, y) is a transfer edge; 
a contradiction to (O2). � �

We will show in Proposition 1 that (O1), (O2), and 
(O3) together imply two important properties of event 
labeled species trees, (�1) and (�2), which play a crucial 
role for the results reported here.

(�1) If t(x) = •, then there are distinct children v, w of 
x in T such that σ(LT

E
(v)) ∩ σ(LT

E
(w)) = ∅.

(�2) If (v,w) ∈ E, then σ(LT
E
(v)) ∩ σ(LT

E
(w)) = ∅.

Intuitively, (�1) is true because within a component T
E

 
no genetic material is exchanged between non-compara-
ble nodes. Thus, a gene separated in a speciation event 
necessarily ends up in distinct species in the absence of 
horizontal transfer. It is important to note that we do not 
require the converse: σ(LT

E
(y)) ∩ σ(LT

E
(y′)) = ∅ does 

not imply t(lcaT (LT
E
(y) ∪ LT

E
(y′)) = •, that is, the last 

common ancestor of two sets of genes from different spe-
cies is not necessarily a speciation vertex.

Now consider a transfer edge (v,w) ∈ E, i.e., t(v) = △. 
Then T

E
(v) and T

E
(w) are subtrees of distinct connected 

components of T
E

. Since HGT amounts to the transfer of 
genetic material across distinct species, the genes v and 
w must be contained in distinct species X and Y, respec-
tively. Since no genetic material is transferred between 
contemporary species X ′ and Y ′ in T

E
, where X ′ and Y ′ is 

a descendant of X and Y, respectively we derive (�1).

Proposition 1  Conditions (O1)–(O3) imply (�1) and 
(�2).

Proof  Since (O2) is satisfied we can apply Lemma 1 and 
conclude that neither σ(LT

E
(v)) = ∅ nor σ(LT

E
(w)) = ∅. 

Let x ∈ V (T ) with t(x) = •. By Condition (O1) x has (at 
least two) children. Moreover, (O3) implies that there 
are (at least) two children v and w in T that are contained 
in distinct species V and W that are incomparable in S. 
Note, the edges (x, v) and (x, w) remain in T

E
, since only 

transfer edges are removed. Since no transfer is con-
tained in T

E
, the genetic material v and w of V and W, 

respectively, is always vertically transmitted. Therefore, 
for any leaf v′ ∈ LT

E
(v) we have σ(v′) �S V  and for any 

leaf w′ ∈ LT
E
(w) we have σ(w′) �S W  in S. Assume now 

for contradiction, that σ(LT
E
(v)) ∩ σ(LT

E
(w)) �= ∅. Let 

z1 ∈ LT
E
(v) and z2 ∈ LT

E
(w) with σ(z1) = σ(z2) = Z . 

Since Z �S V ,W  and S is a tree, the species V and W 
must be comparable in S; a contradiction to (O3). Hence, 
Condition (�1) is satisfied.

To see (�2), note that since (O2) is satisfied we can 
apply Lemma 1 and conclude that neither σ(LT

E
(v)) = ∅ 

nor σ(LT
E
(w)) = ∅. Let (v,w) ∈ E. By (O3) the species 

containing V and W are incomparable in S. Now we can 
argue along the same lines as in the proof for (�2) to con-
clude that σ(LT

E
(v)) ∩ σ(LT

E
(w)) = ∅.�  �

From here on we simplify the notation a bit and write 
σT

E
(u) := σ(LT

E
(u)). We are aware of the fact that con-

dition (O3) cannot be checked directly for a given event-
labeled gene tree. In contrast, (�1) and (�2) are easily 
determined. Hence, in the remainder of this paper we 
consider the more general case, that is, gene trees that 
satisfy (O1), (O2), (�1), and (�1).
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DTL‑scenario and time‑consistent reconciliation 
maps
In case that the event-labeling of T is unknown, but the 
gene tree T and a species tree S are given, the authors 
in [20, 24] provide an axiom set, called DTL-scenario, 
to reconcile T with S. This reconciliation is then used to 
infer the event-labeling t of T. Instead of defining a DTL-
scenario as octuple [20, 24], we use here the notation 
established above:

Definition 1  (DTL-scenario) For a given gene 
tree (T ; t, σ) on G and a species tree S on S the map 
γ : V (T ) → V (S) maps the gene tree into the species 
tree such that

(I) For each leaf x ∈ G, γ (u) = σ(u).
(II) If u ∈ V (T ) \G with children v, w, then

(a)	 γ (u) is not a proper descendant of γ (v) or γ (w), 
and

(b)	 At least one of γ (v) or γ (w) is a descendant of 
γ (u).

(III) (u, v) is a transfer edge if and only if γ (u) and γ (v) 
are incomparable.
(IV) If u ∈ V (T ) \G with children v, w, then

(a)	 t(u) = △ if and only if either (u, v) or (u, w) is a 
transfer-edge,

(b)	 If t(u) = •, then γ (u) = lcaS(γ (v), γ (w)) and 
γ (v), γ (w) are incomparable,

(c)	 If t(u) = �, then γ (u) � lcaS(γ (v), γ (w)).

DTL-scenarios are explicitly defined for fully resolved 
binary gene and species trees. Indeed, Fig. 1 (right) shows 
a valid reconciliation between a gene tree T and a species 
tree S that is not consistent with DTL-scenario. To see 
this, let us call the duplication vertex v. The vertex v and 
the leaf a are both children of the speciation vertex ρT. 
Condition (IVb) implies that a and v must be incompara-
ble. However, this is not possible since γ (v) �S lcaS(B,C) 
(Cond. (IVc)) and γ (a) = A (Cond. (I)) and therefore, 
γ (v) �S lcaS(B,C) = lcaS(A,B,C) ≻S γ (a).

The problem of reconciliations between gene trees and 
species tree is formalized in terms of so-called DTL-sce-
narios in the literature [20, 24]. This framework, however, 
usually assumes that the event labels t on T are unknown, 
while a species tree S is given. The “usual” DTL axioms, 
furthermore, explicitly refer to binary, fully resolved gene 
and species trees. We therefore use a different axiom set 
here that is a natural generalization of the framework 
introduced in [16] for the HGT-free case:

Definition 2  Let T = (V ,E) and S = (W , F) be phylo-
genetic trees on G and S, resp., σ : G → S the assignment 
of genes to species and t : V ∪ E → {•,�,△,⊙} ∪ {0, 1} 
an event labeling on T. A map µ : V → W ∪ F  is a rec-
onciliation map if for all v ∈ V  it holds that:

Fig. 1  Left: A “true” evolutionary scenario for a gene tree with leaf set G evolving along the tube-like species trees is shown. The symbol “x” denotes 
losses. All speciations along the path from the root ρT  to the leaf a are followed by losses and we omit drawing them. Middle: The observable 
gene tree is shown in the upper-left. The orthology graph G = (G, E) (edges are placed between genes x, y for which t(lca(x , y)) = •) is drawn in 
the lower part. This graph is a cograph and the corresponding non-binary gene tree T on G that can be constructed from such data is given in the 
upper-right part (cf. [3, 4, 14] for further details). Right: Shown is species trees S on S = σ(G) with reconciled gene tree T. The reconciliation map µ 
for T and S is given implicitly by drawing the gene tree T within S. Note, this reconciliation is not consistent with DTL-scenarios [20, 24]. A DTL-sce-
nario would require that the duplication vertex and the leaf a are incomparable in S. Note, a non-binary duplication or HGT vertex v can always be 
“binary resolved” such that the newly created vertices are placed on the same edge µ(v) as v. However, there are cases that show that non-binary 
speciation vertices cannot be “binary resolved”. For instance, for the non-binary gene tree T there is no way to resolve its root without violating the 
conditions of a reconciliation map (cf. [15, Fig. 3]). Yet, such cases strongly imply that the speciation event must have been followed by (several) 
duplication/HGT events that are not observable due to losses
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(M1) Leaf Constraint. If t(v) = ⊙, then µ(v) = σ(v).
(M2) Event Constraint.

(i)	 If t(v) = •, then µ(v) = lcaS(σT
E
(v)).

(ii)	 If t(v) ∈ {�,△}, then µ(v) ∈ F .
(iii)	 If t(v) = △ and (v,w) ∈ E, then µ(v) and µ(w) 

are incomparable in S.

(M3) Ancestor Constraint.
Suppose v,w ∈ V  with v ≺T

E
w.

(i) If t(v), t(w) ∈ {�,△}, then µ(v) �S µ(w),
(ii) �Otherwise, i.e., at least one of t(v) and t(w) is a 

speciation •, µ(v) ≺S µ(w).

We say that S is a species tree for (T ; t, σ) if a reconcilia-
tion map µ : V → W ∪ F  exists.

For the special case that gene and species trees are 
binary, Definition 2 is equivalent to the definition of a 
DTL-scenario, which is summarized in the following

Theorem 1  For a binary gene tree (T ; t, σ) and a binary 
species tree S there is a DTL-scenario if and only if there is 
a reconciliation µ for (T ; t, σ) and S.

The proof of Theorem 1 is a straightforward but tedi-
ous case-by-case analysis. In order to keep this section 
readable, we relegate the proof of Theorem 1 to "Proof of 
Theorem 1" section. Figure 1 shows an example of a bio-
logically plausible reconciliation of non-binary trees that 
is valid w.r.t. Definition 2 but does not satisfy the condi-
tions of a DTL-scenario.

Condition (M1) ensures that each leaf of T, i.e., an 
extant gene in G, is mapped to the species in which 
it resides. Conditions (M2.i) and (M2.ii) ensure that 
each inner vertex of T is either mapped to a vertex or 
an edge in S such that a vertex of T is mapped to an 
interior vertex of S if and only if it is a speciation ver-
tex. Condition (M2.i) might seem overly restrictive, an 
issue to which we will return below. Condition (M2.
iii) satisfies condition (O3) and maps the vertices of 
a transfer edge in a way that they are incomparable in 
the species tree, since a HGT occurs between distinct 
(co-existing) species. It becomes void in the absence 
of HGT; thus Definition 2 reduces to the definition 
of reconciliation maps given in [16] for the HGT-free 
case. Importantly, condition (M3) refers only to the 
connected components of T

E
 since comparability w.r.t. 

≺T
E

 implies that the path between x and y in T does 
not contain transfer edges. It ensures that the ancestor 
order �T  of T is preserved along all paths that do not 
contain transfer edges.

We will make use of the following bound that effec-
tively restricts how close to the leafs the image of a vertex 
in the gene tree can be located.

Lemma 2  If µ : (T ; t, σ) → S satisfies (M1) and (M3), 
then µ(u) �S lcaS(σT

E
(u)) for any u ∈ V (T ).

Proof  If u is a leaf, then by Condition (M1) µ(u) = σ(u) 
and we are done. Thus, let u be an interior vertex. By 
Condition (M3), z �S µ(u) for all z ∈ σT

E
(u). Hence, if 

µ(u) ≺S lcaS(σT
E
(u)) or if µ(u) and lcaS(σT

E
(u))) are 

incomparable in S, then there is a z ∈ σT
E
(u) such that z 

and µ(u) are incomparable; contradicting (M3). � �

Condition (M2.i) implies in particular the weaker 
property “(M2.i’) if t(v) = • then µ(v) ∈ W ”. In the light 
of Lemma  2, µ(v) = lcaS(σT

E
(v)) is the lowest possible 

choice for the image of a speciation vertex. Clearly, this 
restricts the possibly exponentially many reconciliation 
maps for which µ(v) ≻S lcaS(σT

E
(v)) for a speciation ver-

tices v to only those that satisfy (M2.i). However, the lat-
ter is justified by the observation that if v is a speciation 
vertex with children u, w, then there is only one unique 
piece of information given by the gene tree to place µ(v) , 
that is, the unique vertex x in S with children y,  z such 
that σT

E
(u) ⊆ LS(y) and σT

E
(w) ⊆ LS(z). The latter argu-

ments easily generalizes to the case that v has more than 
two children in T. Moreover, any observable speciation 
node v′ ≻T v closer to the root than v must be mapped 
to a node ancestral to µ(v) due to (M3.ii). Therefore, we 
require µ(v) = x = lcaS(σT

E
(v)) here.

If S is a species tree for the gene tree (T , t, σ) then there 
is no freedom in the construction of a reconciliation map 
µ on the set {x ∈ V (T ) | t(x) ∈ {•,⊙}}. The duplication 
and HGT vertices of T, however, can be placed differ-
ently. As a consequence there is a possibly exponentially 
large set of reconciliation maps from (T , t, σ) to S.

From a biological point of view, however, the notion of 
reconciliation used so far is too weak. In the absence of 
HGT, subtrees evolve independently and hence, the linear 
order of points along each path from root to leaf is consist-
ent with a global time axis. This is no longer true in the pres-
ence of HGT events, because HGT events imply additional 
time-consistency conditions. These stem from the fact that 
the appearance of the HGT copy in a distant subtree of S is 
concurrent with the HGT event. To investigate this issue in 
detail, we introduce time maps and the notion of time-con-
sistency, see Figs. 2, 3, 4 for illustrative examples.

Definition 3  (Time Map) The map τT : V (T ) → R 
is a time map for the rooted tree T if x ≺T y implies 
τT (x) > τT (y) for all x, y ∈ V (T ).
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Definition 4  A reconciliation map µ from (T ; t, σ) to S 
is time-consistent if there are time maps τT for T and τS 
for S for all u ∈ V (T ) satisfying the following conditions:

(C1) If t(u) ∈ {•,⊙}, then τT (u) = τS(µ(u)).
(C2) If t(u) ∈ {�,△} and, thus µ(u) = (x, y) ∈ E(S), 
then τS(y) > τT (u) > τS(x).

Fig. 2  Shown are two (tube-like) species trees with reconciled gene trees. The reconciliation map µ for T and S is given implicitly by drawing the 
gene tree (upper right to the respective species tree) within the species tree. In the left example, the map µ is unique. However, µ is not time-con-
sistent and thus, there is no time consistent reconciliation for T and S. In the example on the right hand side, µ is time-consistent

Fig. 3  Shown are a gene tree (T ; t , σ) (right) and two identical (tube-like) species trees S (left and middle). There are two possible reconciliation 
maps for T and S that are given implicitly by drawing T within the species tree S. These two reconciliation maps differ only in the choice of placing 
the HGT-event either on the edge (lcaS(C ,D), C) or on the edge (lcaS({A, B, C ,D}), lcaS(C ,D)). In the first case, it is easy to see that µ would not be 
time-consistent, i.e., there are no time maps τT  and τS that satisfy (C1) and (C2). The reconciliation map µ shown in the middle is time-consistent

Fig. 4  Shown are a gene tree (T ; t , σ) (right) and two identical (tube-like) species trees S (left and middle). There are two possible reconciliation 
maps for T and S that are given implicitly by drawing T within the species tree S. The left reconciliation maps each gene tree vertex as high as pos-
sible into the species tree. However, in this case only the middle reconciliation map is time-consistent
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Condition (C1) is used to identify the time-points of 
speciation vertices and leaves u in the gene tree with 
the time-points of their respective images µ(u) in the 
species trees. In particular, all genes u that reside in 
the same species must be assigned the same time point 
τT (u) = τS(σ (u)). Analogously, all speciation vertices 
in T that are mapped to the same speciation in S are 
assigned matching time stamps, i.e., if t(u) = t(v) = • 
and µ(u) = µ(v) then τT (u) = τT (v) = τS(µ(u)).

To understand the intuition behind (C2) consider a 
duplication or HGT vertex u. By construction of µ it is 
mapped to an edge of S, i.e., µ(u) = (x, y) in S. The time 
point of u must thus lie between time points of x and y. 
Now suppose (u, v) ∈ E is a transfer edge. By construc-
tion, u signifies the transfer event itself. The node v, how-
ever, refers to the next (visible) event in the gene tree. 
Thus τT (u) < τT (v). In particular, τT (v) must not be mis-
interpreted as the time of introducing the HGT-duplicate 
into the new lineage. While this time of course exists 
(and in our model coincides with the timing of the trans-
fer event) it is not marked by a visible event in the new 
lineage, and hence there is no corresponding node in the 
gene tree T.

W.l.o.g. we fix the time axis so that τT (ρT ) = 0 and 
τS(ρS) = −1. Thus, τS(ρS) < τT (ρT ) < τT (u) for all 
u ∈ V (T ) \ {ρT }.

Clearly, a necessary condition to have biologically fea-
sible gene trees is the existence of a reconciliation map µ. 
However, not all reconciliation maps are time-consistent, 
see Fig. 2.

Definition 5  An event-labeled gene tree (T ; t, σ) is bio-
logically feasible if there exists a time-consistent recon-
ciliation map from (T ; t, σ) to some species tree S.

As a main result of this contribution, we provide sim-
ple conditions that characterize (the existence of ) time-
consistent reconciliation maps and thus, provides a first 
step towards the characterization of biologically feasible 
gene trees.

Theorem 2  Let µ be a reconciliation map from (T ; t, σ) 
to S. There is a time-consistent reconciliation map from 
(T ; t, σ) to S if and only if there are two time-maps τT and 
τS for T and S, respectively, such that the following condi-
tions are satisfied for all x ∈ V (S):

(D1) If µ(u) = x, for some u ∈ V (T ), then 
τT (u) = τS(x).
(D2) If x �S lcaS(σT

E
(u)) for some u ∈ V (T ) with 

t(u) ∈ {�,△}, then τS(x) > τT (u).

(D3) If lcaS(σT
E
(u) ∪ σT

E
(v)) �S x for some (u, v) ∈ E , 

then τT (u) > τS(x).
Proof  In what follows, x and u denote vertices in S and 
T, respectively.

Assume that there is a time-consistent reconciliation 
map µ from (T ; t, σ) to S, and thus two time-maps τS and 
τT for S and T, respectively, that satisfy (C1) and (C2).

To see (D1), observe that if µ(u) = x ∈ V (S), then 
(M1) and (M2) imply that t(u) ∈ {•,⊙}. Now apply (C1).

To show (D2), assume that t(u) ∈ {�,△} and 
x �S lcaS(σT

E
(u)). By Condition (M2) it holds that 

µ(u) = (y, z) ∈ E(S). Together with Lemma 2 we obtain 
that x �S lcaS(σT

E
(u)) �S z ≺S µ(u). By the properties 

of τS we have

To see (D3), assume that (u, v) ∈ E and 
z := lcaS(σT

E
(u) ∪ σT

E
(v)) �S x. Since t(u) = △ and by 

(M2ii), we have µ(u) = (y, y′) ∈ E(S). Thus, µ(u) ≺S y. 
By (M2iii) µ(u) and µ(v) are incomparable and therefore, 
we have either µ(v) ≺S y or µ(v) and y are incomparable. 
In either case we see that y �S z, since Lemma 2 implies 
that lcaS(σT

E
(u)) �S µ(u) and lcaS(σT

E
(v)) �S µ(v). In 

summary, µ(u) ≺S y �S z �S x. Therefore,

Hence, conditions (D1)–(D3) are satisfied.
To prove the converse, assume that there exists a rec-

onciliation map µ that satisfies (D1)–(D3) for some time-
maps τT and τS. In the following we will make use of τS 
and τT to construct a time-consistent reconciliation map 
µ′.

First we define “anchor points” by µ′(v) = µ(v) for 
all v ∈ V (T ) with t(v) ∈ {•,⊙}. Condition (D1) implies 
τT (v) = τS(µ(v)) for these vertices, and therefore µ′ satis-
fies (C1).

The next step will be to show that for each vertex 
u ∈ V (T ) with t(u) ∈ {�,△} there is a unique edge 
(x,  y) along the path from lcaS(σT

E
(u)) to ρS with 

τS(x) < τT (u) < τS(y). We set µ′(u) = (x, y) for these 
points. In the final step we will show that µ′ is a valid rec-
onciliation map.

Consider the unique path Pu from lcaS(σT
E
(u)) to 

ρS. By construction, τS(ρS) < τT (ρT ) ≤ τT (u) and by 
Condition (D2) we have τT (u) < τS(lcaS(σT

E
(u))) . 

Since τS is a time map for S, every edge (x, y) ∈ E(S) 
satisfies τS(x) < τS(y). Therefore, there is a unique 
edge (xu, yu) ∈ E(S) along Pu such that either 
τS(xu) < τT (u) < τS(yu), τS(xu) = τT (u) < τS(yu), or 
τS(xu) < τT (u) = τS(yu). The addition of a sufficiently 

τS(x) ≥ τS(lcaS(σT
E
(u)) ≥ τS(z)

(C2)
> τT (u).

τT (u)
(C2)
> τS(y) ≥ τS(z) ≥ τS(x).
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small perturbation ǫu to τT (u) does not violate the con-
ditions for τT being a time-map for T. Clearly ǫu can be 
chosen to break the equalities in the latter two cases in 
such a way that τS(xu) < τT (u) < τS(yu) for each vertex 
u ∈ V (T ) with t(u) ∈ {�,△}. We then continue with the 
perturbed version of τT and set µ′(u) = (xu, yu). By con-
struction, µ′ satisfies (C2).

It remains to show that µ′ is a valid reconciliation map 
from (T ; t, σT

E
) to S. Again, let Pu denote the unique 

path from lcaS(σT
E
(u)) to ρS for any u ∈ V (T ).

By construction, Conditions (M1), (M2i), (M2ii) 
are satisfied. To check condition (M2iii), assume 
(u, v) ∈ E . The original map µ is a valid recon-
ciliation map, and thus, Lemma 2 implies that 
lcaS(σT

E
(u)) ≺S µ(u) and lcaS(σT

E
(v)) �S µ(v).  

Since µ(u) and µ(v) are incomparable in S and 
lcaS(σT

E
(u) ∪ σT

E
(v)) lies on both paths Pu and Pv we 

have µ(u),µ(v) �S lcaS(σT
E
(u) ∪ σT

E
(v)) =: x . In par-

ticular, x �= lcaS(σT
E
(u)) and x �= lcaS(σT

E
(v)).

Conditions (D1) and (D2) imply that 
τS(x) < τT (u) < τS(lcaS(σT

E
(u))) and 

τS(x) < τT (v) ≤ τS(lcaS(σT
E
(v))). By construction of µ′, 

the vertex u is mapped to a unique edge eu = (xu, yu) and 
v is mapped either to lcaS(σT

E
(v)) �= x or to the unique 

edge ev = (xv , yv), respectively. In particular, µ′(u) lies on 
the path P ′ from x to lcaS(σT

E
(u)) and µ′(v) lies one the 

path P ′′ from x to lcaS(σT
E
(v)). The paths P ′ and P ′′ are 

edge-disjoint and have x as their only common vertex. 
Hence, µ′(u) and µ′(v) are incomparable in S, and (M2iii) 
is satisfied.

In order to show (M3), assume that u ≺T
E
v . 

Since u ≺T
E
v, we have σT

E
(u) ⊆ σT

E
(v). Hence, 

lcaS(σT
E
(u)) � lcaS(σT

E
(v)) �S ρS. In other words, 

lcaS(σT
E
(v)) lies on the path Pu and thus, Pv is a sub-

path of Pu. By construction of µ′, both µ′(u) and µ′(v) 
are comparable in S. Moreover, since τT (u) > τT (v) 
and by construction of µ′, it immediately follows that 
µ′(u) �S µ′(v).

Its now an easy task to verify that (M3) is fulfilled by 
considering the distinct event-labels in (M3i) and (M3ii), 
which we leave to the reader. � �

Interestingly, the existence of a time-consistent recon-
ciliation map from a gene tree T to a species tree S can be 
characterized in terms of a time map defined on T, only.

Theorem 3  Let µ be a reconciliation map from (T ; t, σ) 
to S. There is a time-consistent reconciliation map (T ; t, σ) 
to S if and only if there is a time map τT such that for all 
u, v,w ∈ V (T ):

(T1) If t(u) = t(v) ∈ {•,⊙} then

(a) If µ(u) = µ(v), then τT (u) = τT (v).
(b) If µ(u) ≺S µ(v), then τT (u) > τT (v).

(T2) If t(u) ∈ {•,⊙}, t(v) ∈ {�,△} and 
µ(u) �S lcaS(σT

E
(v)), then τT (u) > τT (v).

(T3) If (u, v) ∈ E and 
lcaS(σT

E
(u) ∪ σT

E
(v)) �S lcaS(σT

E
(w)) for some 

w ∈ V (T ), then τT (u) > τT (w).

Proof  Suppose that µ is a time-consistent recon-
ciliation map from (T ; t, σ) to S. By Definition 4 and 
Theorem  2, there are two time maps τT  and τS that 
satisfy (D1)–(D3). We first show that τT  also satis-
fies (T1)–(T3), for all u, v ∈ V (T ). Condition (T1a) is 
trivially implied by (D1). Let t(u), t(v) ∈ {•,⊙}, and 
µ(u) ≺S µ(v). Since τT  and τS are time maps, we may 
conclude that

Hence, (T1b) is satisfied.
Now, assume that t(u) ∈ {•,⊙}, t(v) ∈ {�,△} and 

µ(u) �S lca(σT
E
(v)). By the properties of τS, we have:

Hence, (T2) is fulfilled.
Finally, assume that (u, v) ∈ E, and x := lcaS(σT

E
(u)

∪σT
E
(v)) �S lcaS(σT

E
(w)) for some w ∈ V (T ). Lemma 2 

implies that lcaS(σT
E
(w)) �S µ(w) and we obtain

Hence, (T3) is fulfilled.
To see the converse, assume that there exists a recon-

ciliation map µ that satisfies (T1)–(T3) for some time 
map τT . In the following we construct a time map τS for 
S that satisfies (D1)–(D3). To this end, we first set

We use the symbol ∗ to denote the fact that so far no 
value has been assigned to τS(x). Note, by (M2i) and 
(T1a) the value τS(x) is uniquely determined and 
thus, by construction, (D1) is satisfied. Moreover, if 
x, y ∈ V (S) have non-empty preimages w.r.t. µ and 
x ≺S y, then we can use the fact that τT  is a time map 
for T together with condition (T1) to conclude that 
τS(x) > τS(y).

If x ∈ V (S) with a ∈ µ−1(x), then (T2) implies (D2) [by 
(D1) and setting u = a in (T2) and (T3) implies (D3) [by 

τT (u)
(D1)
= τS(µ(u)) < τS(µ(v))

(D1)
= τT (v).

τT (u)
(D1)
= τS(µ(u))

(D2)
> τT (v).

τT (w)
(D2)
< τS(x) ≤ τS(lca(σT

E
(w)))

(D3)
< τT (u).

τS(x) =







−1 if x = ρS
τT (v) else if v ∈ µ−1(x)

∗ else, i.e., µ−1(x) = ∅ and x �= ρS .
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(D1) and setting w = a in (T3)]. Thus, (D2) and (D3) is 
satisfied for all x ∈ V (S) with µ−1(x) �= ∅.

Using our choices τS(ρT ) = 0 and τS(ρS) = −1 for the 
augmented root of S, we must have µ−1(ρS) = ∅. Thus, 
ρS ≻S lcaS(σT

E
(v)) for any v ∈ V (T ). Hence, (D2) is 

trivially satisfied for ρS. Moreover, τT (ρT ) = 0 implies 
τT (u) > τS(ρS) for any u ∈ V (T ). Hence, (D3) is always 
satisfied for ρS.

In summary, Conditions (D1)–(D3) are met for any 
vertex x ∈ V (S) that up to this point has been assigned a 
value, i.e., τS(x) �= ∗.

We will now assign to all vertices x ∈ V (S) with 
µ−1(x) = ∅ a value τS(x) in a stepwise manner. To this 
end, we give upper and lower bounds for the possible 
values that can be assigned to τS(x). Let x ∈ V (S) with 
τS(x) = ∗. Set

We note that LO(x) �= ∅ and UP(x) �= ∅ because the root 
and the leaves of S already have been assigned a value τS 
in the initial step. In order to construct a valid time map 
τS we must ensure max(LO(x)) < τS(x) < min(UP(x)).

Moreover, we strengthen the bounds as follows. Put

Observe that max(lo(x)) < min(up(x)), since otherwise 
there are vertices u,w ∈ V (T ) with τT (w) ∈ lo(x) and 
τT (u) ∈ up(x) and τT (w) ≥ τT (u). However, this implies 
that lcaS(σT

E
(u) ∪ σT

E
(v)) �S x � lcaS(σT

E
(w)); a con-

tradiction to (T3).
Since (D2) is satisfied for all vertices y that obtained 

a value τS(y) �= ∗, we have max(lo(x)) < min(UP(x)) . 
Likewise because of (D3), it holds that 
max(LO(x)) < min(up(x)). Thus we set τS(x) to an arbi-
trary value such that

By construction, (D1), (D2), and (D3) are satisfied for 
all vertices in V(S) that have already obtained a time 
value distinct from ∗. Moreover, for all such vertices with 
x ≺T y we have τS(x) > τS(y). In each step we chose a 
vertex x with τS(x) = ∗ that obtains then a real-valued 
time stamp. Hence, in each step the number of vertices 
that have value ∗ is reduced by one. Therefore, repeating 
the latter procedure will eventually assign to all vertices 
a real-valued time stamp such that, in particular, τS satis-
fies (D1), (D2), and (D3) and thus is indeed a time map 
for S. � �

LO(x) = {τS(y) | x ≺S y, y ∈ V (S) and τS(y) �= ∗}

UP(x) = {τS(y) | x ≻S y, y ∈ V (S) and τS(y) �= ∗}.

lo(x) = {τT (u) | t(u) ∈ {�,△}, x �S lcaS(σT
E
(u))}

up(x) = {τT (u) | (u, v) ∈ E and

lcaS(σT
E
(u) ∪ σT

E
(v)) �S x }.

max(LO(x) ∪ lo(x)) < τS(x) < min(UP(x) ∪ up(x)).

From the algorithmic point of view it is desirable to 
design methods that allow to check whether a recon-
ciliation map is time-consistent. Moreover, given a gene 
tree T and species tree S we wish to decide whether there 
exists a time-consistent reconciliation map µ, and if so, 
we should be able to construct µ.

To this end, observe that any constraints given by Defi-
nition 3, Theorem  2 (D2)–(D3), and Definition 4 (C2) 
can be expressed as a total order on V (S) ∪ V (T ), while 
the constraints (C1) and (D1) together suggest that we 
can treat the preimage of any vertex in the species tree as 
a “single vertex”. In fact we can create an auxiliary graph 
in order to answer questions that are concerned with 
time-consistent reconciliation maps.

Definition 6  Let µ be a reconciliation map from 
(T ; t, σ) to S. The auxiliary graph A is defined as a 
directed graph with a vertex set V (A) = V (S) ∪ V (T ) 
and an edge-set E(A) that is constructed as follows

(A1) For each (u, v) ∈ E(T ) we have (u′, v′) ∈ E(A), 
where

and

(A2) For each (x, y) ∈ E(S) we have (x, y) ∈ E(A)..
(A3) For each u ∈ V (T ) with t(u) ∈ {�,△} we have 
(u, lcaS(σT

E
(u))) ∈ E(A).

(A4) For each (u, v) ∈ E we have (lcaS(σT
E
(u)

∪σT
E
(v)),u) ∈ E(A).

(A5) For each u ∈ V (T ) with t(u) ∈ {△,�} and 
µ(u) = (x, y) ∈ E(S) we have (x,u) ∈ E(A) and 
(u, y) ∈ E(A).

We define A1 and A2 as the subgraphs of A that contain 
only the edges defined by (A1), (A2), (A5) and (A1), 
(A2), (A3), (A4), respectively.

We note that the edge sets defined by conditions (A1) 
through (A5) are not necessarily disjoint. The mapping of 
vertices in T to edges in S is considered only in condition 
(A5). The following two theorems are the key results of 
this contribution.

Theorem 4  Let µ be a reconciliation map from (T ; t, σ) 
to S. The map µ is time-consistent if and only if the auxil-
iary graph A1 is a directed acyclic graph (DAG).

u′ =

{

µ(u) if t(u) ∈ {⊙, •}
u otherwise

v′ =

{

µ(v) if t(v) ∈ {⊙, •}
v otherwise

,
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Proof  Assume that µ is time-consistent. By Theo-
rem  2, there are two time-maps τT and τS satisfy-
ing (C1) and (C2). Let τ = τT ∪ τS be the map from 
V (T ) ∪ V (S) → R . Let A′ be the directed graph with 
V (A′) = V (S) ∪ V (T ) and set for all x, y ∈ V (A′): 
(x, y) ∈ E(A′) if and only if τ (x) < τ(y). By construction 
A′ is a DAG since τ provides a topological order on A′ 
[25].

We continue to show that A′ contains all edges of A1.
To see that (A1) is satisfied for E(A′) let (u, v) ∈ E(T ) . 

Note, τ (v) > τ(u), since τT is a time map for T and by 
construction of τ. Hence, all edges (u, v) ∈ E(T ) are 
also contained in A′, independent from the respec-
tive event-labels t(u),  t(v). Moreover, if t(u) or t(v) are 
speciation vertices or leaves, then (C1) implies that 
τS(µ(u)) = τT (u) > τT (v) or τT (u) > τT (v) = τS(µ(v)) . 
By construction of τ, all edges satisfying (A1) are con-
tained in E(A′). Since τS is a time map for S, all edges as in 
(A2) are contained in E(A′). Finally, (C2) implies that all 
edges satisfying (A5) are contained in E(A′).

Although, A′ might have more edges than required by 
(A1), (A2) and (A5), the graph A1 is a subgraph of A′. 
Since A′ is a DAG, also A1 is a DAG.

For the converse assume that A1 is a directed graph 
with V (A1) = V (S) ∪ V (T ) and edge set E(A1) as con-
structed in Definition 6 (A1), (A2) and (A5). Moreover, 
assume that A1 is a DAG. Hence, there is is a topological 
order τ on A1 with τ (x) < τ(y) whenever (x, y) ∈ E(A1) . 
In what follows we construct the time-maps τT and τS 
such that they satisfy (C1) and (C2). Set τS(x) = τ (x) for 
all x ∈ V (S). Additionally, set for all u ∈ V (T ):

By construction it follows that (C1) is satisfied. Due 
to (A2), τS is a valid time map for S. It follows from 
the construction and (A1) that τT is a valid time map 
for T. Assume now that u ∈ V (T ), t(u) ∈ {�,△}, and 
µ(u) = (x, y) ∈ E(S). Since τ provides a topological order 
we have:

By construction, it follows that τS(x) < τT (u) < τS(y) sat-
isfying (C2).�  �

Theorem 5  Assume there is a reconciliation map µ from 
(T ; t, σ) to S. There is a time-consistent reconciliation 

τT (u) =

{

τ(µ(u)) if t(u) ∈ {⊙, •}
τ (u) otherwise.

τ (x)
(A5)
< τ(u)

(A5)
< τ(y).

map, possibly different from µ, from (T ; t, σ) to S if and 
only if the auxiliary graph A2 (defined on µ) is a DAG.

Proof  Let µ be a reconciliation map for (T ; t, σ) and 
S and µ′ be a time-consistent reconciliation map for 
(T ; t, σ) and S. Let A2 and A′

2 be the auxiliary graphs that 
satisfy Definition 6 (A1) – (A4) for µ and µ′, respectively. 
Since µ(u) = µ′(u) for all u ∈ V (T ) with t(u) ∈ {⊙, •} 
and (A2) – (A4) don’t rely on the explicit reconciliation 
map, it is easy to see that A2 = A′

2.
Now we can re-use similar arguments as in the proof 

of Theorem 4. Assume there is a time-consistent recon-
ciliation map (T ; t, σ) to S. By Theorem 2, there are two 
time-maps τT and τS satisfying (D1)-(D3). Let τ and A′ be 
defined as in the proof of Theorem 4.

Analogously to the proof of Theorem  4, we show 
that A′ contains all edges of A2. Application of (D1) 
immediately implies that all edges satisfying (A1) 
and (A2) are contained in E(A′). By condition (D2), 
it yields (u, lcaS(σT

E
(u))) ∈ E(A′) and (D3) implies 

(lcaS(σT
E
(u) ∪ σT

E
(v)),u) ∈ E(A′). We conclude by the 

same arguments as before that the graph A2 is a DAG.
For the converse, assume we are given the directed 

acyclic graph A2. As before, there is is a topological 
order τ on A2 with τ (x) < τ(y) only if (x, y) ∈ E(A2) . 
The time-maps τT  and τS are given as in the proof of 
Theorem 1.

By construction, it follows that (D1) is satisfied. Again, 
by construction and the Properties (A1) and (A2), τS and 
τT are valid time-maps for S and T respectively.

Assume now that u ∈ V (T ), t(u) ∈ {�,△}, and 
x �S lcaS(σT

E
(u)) for some x ∈ V (S). Since there is a 

topological order on V (A2), we have

By construction, it follows that τS(x) > τT (u). Thus, (D2) 
is satisfied.

Finally assume that (u, v) ∈ E and 
lcaS(σT

E
(u) ∪ σT

E
(v)) �S x for some x ∈ V (S). Again, 

since τ provides a topological order, we have:

By construction, it follows that τS(x) < τT (u), satisfying 
(D3).

Thus τT and τS are valid time maps satisfying (D1)–
(D3).�  �

τ (x)
(A2)
≥ τ (lcaS(σT

E
(u)))

(A3)
> τ(u).

τ (x)
(A2)
≤ τ (lcaS(σT

E
(u) ∪ σT

E
(v)))

(A4)
< τ(u).
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Naturally, Theorems 4 or 5 can be used to devise algo-
rithms for deciding time-consistency. To this end, the 
efficient computation of lcaS(σT

E
(u)) for all u ∈ V (T ) 

is necessary. This can be achieved with Algorithm  2 in 
O(|V (T )| log(|V (S)|)). More precisely, we have the fol-
lowing statement:

Lemma 3  For a given gene tree (T = (V ,E); t, σ) and a 
species tree S = (W , F), Algorithm  2 correctly computes 
ℓ(u) = lcaS(σT

E
(u)) for all u ∈ V (T ) in O(|V | log(|W |)) 

time.

Proof  Let u ∈ V (T ). In what follows, we show that 
ℓ(u) = lcaS(σT

E
(u)). In fact, the algorithm is (almost) 

a depth first search through T that assigns the (spe-
cies tree) vertex ℓ(u) to u if and only if every child v of 
u has obtained an assignment ℓ(v) (cf. Line (9)–(10)). 
That there are children v with non-empty ℓ(v) at some 
point is ensured by Line (7). That is, if t(u) = ⊙, then 
ℓ(u) = lcaS(σT

E
(u)) = σ(u). Now, assume there is an 

interior vertex u ∈ V (T ), where every child v has been 
assigned a value ℓ(v), then

The latter is achieved by Line (10).
Since T is a tree and the algorithm is in effect a depth 

first search through T, the while loop runs at most 
O(V (T )+ E(T )) times, and thus in O(V(T)) time.

The only non-constant operation within the while loop 
is the computation of lcaS in Line (10). Clearly lcaS of a 
set of vertices C = {c1, c2 . . . ck}, where ci ∈ V (S), for all 
ci ∈ C can be computed as sequence of lcaS operations 
taking two vertices: lcaS(c1, lcaS(c2, . . . lcaS(ck−1, ck))), 
each taking O(lg(|V (S)|)) time. Note however, that since 
Line (10) is called exactly once for each vertex in T, the 
number of lcaS operations taking two vertices is called at 
most |E(T)| times through the entire algorithm. Hence, 
the total time complexity is O(|V (T )| lg(|V (S)|)). � �

Let S be a species tree for (T ; t, σ), that is, there is a 
valid reconciliation between the two trees. Algorithm  1 
describes a method to construct a time-consistent rec-
onciliation map for (T ; t, σ) and S, if one exists, else “No 
time-consistent reconciliation map exists” is returned. 
First, an arbitrary reconciliation map µ that satisfies the 
condition of Definition 2 is computed. Second, Theo-
rem 5 is utilized and it is checked whether the auxiliary 
graph A2 is not a DAG in which case no time-consistent 
map µ exists for (T ; t, σ) and S. Finally, if A2 is a DAG, 

lcaS(σT
E
(u))

= lcaS(σT
E
({σT

E
(v) | (u, v) ∈ E(T ) and t(u, v) = 0}))

= lcaS(σT
E
({lcaS(σT

E
(v)) | (u, v) ∈ E(T ) and t(u, v) = 0}))

= lcaS(σT
E
({ℓ(v) | (u, v) ∈ E(T ) and t(u, v) = 0}))

then we continue to adjust µ to become time-consistent. 
The latter is based on Theorem 2, see the proof of Theo-
rems 2 and 6 for details.

Theorem  6  Let S = (W , F) be species tree for the gene 
tree (T = (V ,E); t, σ). Algorithm  1 correctly deter-
mines whether there is a time-consistent reconcilia-
tion map µ and in the positive case, returns such a µ in 
O(|V | log(|W |)) time.

Proof  In order to produce a time-consistent reconcili-
ation map, we first construct some valid reconciliation 
map µ from (T ; t, σ) to S. Using the lca-map ℓ from Algo-
rithm 2, µ will be adjusted to become time-consistent, if 
possible.

By assumption, there is a reconciliation map from 
(T ; t, σ) to S. The for-loop (Line (3)–(5)) ensures that 
each vertex u ∈ V  obtained a value µ(u). We continue 
to show that µ is a valid reconciliation map satisfying 
(M1)–(M3).
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Assume that t(u) = ⊙, in this case ℓ(u) = σ(u) , 
and thus (M1) is satisfied. If t(u) = •, it holds that 
µ(u) = ℓ(u) = lcaS(σT

E
(u)), thus satisfying (M2i). Note 

that ρS ≻S ℓ(u), and hence, µ(u) ∈ F  by Line (5), imply-
ing that (M2ii) is satisfied. Now, assume t(u) = △ and 
(u, v) ∈ E. By assumption, we know there exists a recon-
ciliation map from T to S, thus by (�1):

It follows that, ℓ(u) is incomparable to ℓ(v), satisfying 
(M2iii).

Now assume that u, v ∈ V  and u ≺T
E
v . 

Note that σT
E
(u) ⊆ σT

E
(v). It follows that 

ℓ(u) = lcaS(σT
E
(u)) �S lcaS(σT

E
(v)) = ℓ(v). By con-

struction, (M3) is satisfied. Thus, µ is a valid reconcilia-
tion map.

By Theorem  5, two time maps τT and τS satisfying 
(D1)–(D3) only exists if the auxiliary graph A build on 
Line (7) is a DAG. Thus if A := A2 contains a cycle, no 
such time-maps exists and the statement “No time-con-
sistent reconciliation map exists.” is returned (Line (7)). 
On the other hand, if A is a DAG, the construction in 
Line (8)–(11) is identical to the construction used in the 
proof of Theorem 5. Hence correctness of this part of the 
algorithm follows directly from the proof of Theorem 5.

Finally, we adjust µ to become a time-consistent recon-
ciliation map.. By the latter arguments, τT and τS satisfy 
(D1)–(D3) w.r.t. to µ. Note, that µ is chosen to be the 
“lowest point” where a vertex u ∈ V  with t(u) ∈ {�,△} 
can be mapped, that is, µ(u) is set to (p(x),  x) where 
x = lcaS(σT

E
(u)). However, by the arguments in the 

proof of Theorem 2, there is a unique edge (y, z) ∈ W  on 
the path from x to ρS such that τS(y) < τT (u) < τS(z) . 
The latter is ensured by choosing a different value for dis-
tinct vertices in V(A), see comment in Line (9). Hence, 
Line (14) ensures, that µ(u) is mapped on the correct 
edge such that (C2) is satisfied. It follows that adjusted µ 
is a valid time-consistent reconciliation map.

We are now concerned with the time-complex-
ity. By Lemma 3, computation of ℓ in Line (1) takes 
O(|V | log(|W |)) time and the for-loop (Line (3)-(5)) takes 
O(|V|) time. We continue to show that the auxiliary graph 
A (Line (6)) can be constructed in O(|V | log(|W |)) time.

Since we know ℓ(u) = lcaS(σT
E
(u)) for all u ∈ V  

and since T and S are trees, the subgraph with 
edges satisfying (A1)–(A3) can be constructed in 
O(|V | + |W | + |E| + |F)|) = O(|V | + |W |) time. To 
ensure (A4), we must compute for a possible trans-
fer edges (u, v) ∈ E the vertex lcaS(σT

E
(u) ∪ σT

E
(v)) . 

which can be done in O(log(|W |)) time. Note, the 
number of transfer edges is bounded by the num-
ber of possible transfer event O(|V|). Hence, gener-
ating all edges satisfying (A4) takes O(|V |(log(|W |)) 

σT
E
(u) ∩ σT

E
(v) = ∅

time. In summary, computing A can done in 
O(|V | + |W | + |V |(log(|W |)) = O(|V |(log(|W |)) time.

To detect whether A contains cycles one has to 
determine whether there is a topological order τ 
on V(A) which can be done via depth first search in 
O(|V (A)| + |E(A)|) time. Since |V (A)| = |V | + |W | and 
O(|E(A)|) = O(|F | + |E| + |W | + |V |) and S, T are trees, 
the latter task can be done in O(|V | + |W |) time. Clearly, 
Line (10)-(11) can be performed on O(|V | + |W |) time.

Finally, we have to adjust µ according to τT and τS. 
Note, that for each u ∈ V  with t(u) ∈ {�,△} (Line (12)) 
we have possibly adjust µ to the next edge (p(x), x). How-
ever, the possibilities for the choice of (p(x), x) is bounded 
by by the height of S, which is in the worst case log(|W |) . 
Hence, the for-loop in Line (12) has total-time complex-
ity O(|V | log(|W |)).

In summary, the overall time complexity of Algo-
rithm 1 is O(|V | log(|W |)). � �

So far, we have shown how to find a time consistent 
reconciliation map µ given a species tree S and a single 
gene tree T. In practical applications, however, one often 
considers more than one gene family, and thus, a set of 
gene trees F = {(T1; t1, σ1), . . . , (Tn; tn, σn)} that has to 
be reconciled with one and the same species tree S.

In this case it is possible to aggregate all gene trees 
(Ti; ti, σi) ∈ F  to a single gene tree (T ; t, σ) that is con-
structed from F by introducing an artificial duplication as 
the new root of all Ti. More precisely, T = (V ,E) is con-
structed from F such that V = {ρT } ∪

⋃n
i=1 V (Ti) and 

E =
⋃n

i=1(E(Ti) ∪ {(ρT , ρTi)}). Moreover, the event-labe-
ling map t is defined as

Finally, σ(x) = σi(x) for all x ∈ LTi.
Finding a time consistent reconciliation for a spe-

cies tree S and a set of gene trees F then corresponds 
to finding a time map τS for S and a time map τT for the 
aggregated gene tree (T ; t, σ), such that (D1)–(D3) are 
satisfied.

If there exists a time consistent reconciliation map µ 
from (T ; t, σ) to S then, by Theorem  2, there exists the 
two time maps τT and τS that satisfy (D1)–(D3). But then 
τT and τS also satisfy (D1)–(D3) w.r.t. any (Ti; ti, σi) ∈ F  
and therefore, µ immediately gives a time-consistent rec-
onciliation map for each (Ti; ti, σi) ∈ F .

Outlook and summary
We have characterized here whether a given event-
labeled gene tree (T ; t, σ) and species tree S can be rec-
onciled in a time-consistent manner in terms of two 
auxiliary graphs A1 and A2 that must be DAGs. These are 

t(x) =







ti(x) if x ∈ V (Ti) ∪ E(Ti)

� if x = t(ρT )
0 if x = (ρT , ρTi)
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defined in terms of given reconciliation maps. This con-
dition yields an O(|V | log(|W |))-time algorithm to check 
whether a given reconciliation map µ is time-consistent, 
and an algorithm with the same time complexity for the 
construction of a time-consistent reconciliation maps, 
provided one exists.

Our results depend on three conditions on the event-
labeled gene trees that are motivated by the fact that 
event-labels can be assigned to internal vertices of gene 
trees only if there is observable information on the event. 
The question which event-labeled gene trees are actu-
ally observable given an arbitrary, true evolutionary sce-
nario deserves further investigation in future work. Here 
we have used conditions that arguable are satisfied when 
gene trees are inferred using sequence comparison and 
synteny information. A more formal theory of observ-
ability is still missing, however.

Our results point to an efficient way of deciding whether 
a given pair of gene and species tree can be time-con-
sistently reconciled. Such gene and species trees can be 
obtained from genomic sequence data using the following 
workflow: (i) Estimate putative orthologs and HGT events 
using e.g. one of the methods detailed in [11, 12, 26–38], 
respectively. Importantly, this step uses only sequence 
data as input and does not require the construction of 
either gene or species trees. (ii) Correct these estimates in 
order to derive “biologically feasible” homology relations 
as described in [15, 16, 26, 39–44]. The result of this step 
are (not necessarily fully resolved) gene trees together 
with event-labels. (iii) Extract “informative triples” from 
the event-labeled gene tree. These imply necessary condi-
tions for gene trees to be biologically feasible [15, 16].

In general, there will be exponentially many putative spe-
cies trees. This begs the question whether there is at least 
one species tree S for a gene tree and if so, how to construct 
S. In the absence of HGT, the answer is known: time-con-
sistent reconciliation maps are fully characterized in terms 
of “informative triples” [16]. Hence, the central open prob-
lem that needs to be addressed in further research are suf-
ficient conditions for the existence of a time-consistent 
species tree given an event-labeled gene tree with HGT.

Proof of Theorem 1
We show that Definition 2 is is equivalent to the tradi-
tional definition of a DTL-scenario [20, 24] in the special 
case that both the gene tree and species trees are binary. 
To this end we establish a series of lemmas detailing 
some useful properties of reconciliation maps.

Lemma 4  Let µ be a reconciliation map from (T ; t, σ) to 
S and assume that T is binary. Then the following condi-
tions are satisfied: 

1.	 If v,w ∈ V (T ) are in the same connected component 
of T

E
, then µ(lcaT

E
(v,w)) �S lcaS(µ(v),µ(w)). Let u 

be an arbitrary interior vertex of T with children v, w, 
then:

2.	 µ(u) and µ(v) are incomparable in S if and only if 
(u, v) ∈ E .

3.	 If t(u) = •, then µ(v) and µ(w) are incomparable in 
S.

4.	 If µ(v),µ(w) are comparable or µ(u) ≻S lcaS(µ(v),

µ(w)), then t(u) = �.

Proof  We prove the Items 1 – 4 separately. Recall, 
Lemma 1 implies that σ(LT

E
(x)) �= ∅ for all x ∈ V (T ).

Proof of Item 1: Let v and w be distinct vertices of T 
that are in the same connected component of T

E
. Con-

sider the unique path P connecting w with v in T
E

. This 
path P is uniquely subdivided into a path P′ and a path 
P′′ from lcaT

E
(v,w) to v and w, respectively. Condition 

(M3) implies that the images of the vertices of P′ and P′′ 
under µ, resp., are ordered in S with regards to �S and 
hence, are contained in the intervals Q′ and Q′′ that con-
nect µ(lcaT

E
(v,w)) with µ(v) and µ(w), respectively. In 

particular, µ(lcaT
E
(v,w)) is the largest element (w.r.t. �S ) 

in the union of Q′ ∪ Q′′ which contains the unique path 
from µ(v) to µ(w) and hence also lcaS(µ(v),µ(w)).

Proof of Item 2: If (u, v) ∈ E then, t(u) = △ and (M2iii) 
implies that µ(u) and µ(v) are incomparable.

To see the converse, let µ(u) and µ(v) be incomparable 
in S. Item (M3) implies that for any edge (x, y) ∈ E(T

E
) 

we have µ(y) �S µ(x). However, since µ(u) and µ(v) are 
incomparable it must hold that (u, v) /∈ E(T

E
). Since (u, v) 

is an edge in the gene tree T, (u, v) ∈ E is a transfer edge.
Proof of Item 3: Let t(u) = •. Since none of (u, v) and 

(u,  w) are transfer-edges, it follows that both edges are 
contained in T

E
.

Then, since T is a binary tree, it follows that 
LT

E
(u) = LT

E
(v) ∪ LT

E
(w) and therefore, 

σT
E
(u) = σT

E
(v) ∪ σT

E
(w).

Therefore and by Item (M2i),

Assume for contradiction that µ(v) and 
µ(w) are comparable, say, µ(w) �S µ(v). By 
Lemma 2, µ(w) �S µ(v) �S lcaS(σT

E
(v)) and 

µ(w) �S lcaS(σT
E
(w)) . Thus,

Thus, µ(w) �S µ(u); a contradiction to (M3ii).
Proof of Item 4: Let µ(v),µ(w) be comparable in S. 

Item 3 implies that t(u) �= •. Assume for contradiction 
that t(u) = △. Since by (O2) only one of the edges (u, v) 

µ(u) = lcaS(σT
E
(u)) = lcaS(σT

E
(v) ∪ σT

E
(w))

= lcaS(lcaS(σT
E
(v)), lcaS(σT

E
(w))).

µ(w) �S lcaS(lcaS(σT
E
(v)), lcaS(σT

E
(w))).
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and (u, w) is a transfer edge, we have either (u, v) ∈ E or 
(u,w) ∈ E. W.l.o.g. let (u, v) ∈ E and (u,w) ∈ E(T

E
). By 

Condition (M3), µ(u) �S µ(w). However, since µ(v) and 
µ(w) are comparable in S, also µ(u) and µ(v) are com-
parable in S; a contradiction to Item 2. Thus, t(u) �= △. 
Since each interior vertex is labeled with one event, we 
have t(u) = �.

Assume now that µ(u) ≻S lcaS(µ(v),µ(w)). Hence, 
µ(u) is comparable to both µ(v) and µ(w) and thus, 
(M2iii) implies that t(u) �= △. Lemma 2 implies 
µ(v) �S lcaS(σT

E
(v)) and µ(w) �S lcaS(σT

E
(w)). Hence,

Since T (u) �= △ it follows that neither (u, v) ∈ E nor 
(u,w) ∈ E and hence, both edges are contained in 
T
E

. By the same argumentation as in Item 3 it fol-
lows that σT

E
(u) = σT

E
(v) ∪ σT

E
(w) and there-

fore, lcaS(σT
E
(v) ∪ σT

E
(w)) = lcaS(σT

E
(u)). Hence, 

µ(u) ≻S lcaS(µ(v),µ(w)) �S lcaS(σT
E
(u)). Now, (M2i) 

implies t(u) �= •. Since each interior vertex is labeled 
with one event, we have t(u) = �. �

Lemma 5  Let µ be a reconciliation map for the gene tree 
(T ; t, σ) and the species tree S as in Definition 2. Moreo-
ver, assume that T and S are binary. Set for all u ∈ V (T ) :

 Then γ : V (T ) → V (S) is a map according to the 
DTL-scenario.

Proof  We first emphasize that, by construction, 
µ(u) �S γ (u) for all u ∈ V (T ). Moreover, µ(u) = µ(v) 
implies that γ (u) = γ (v), and γ (u) = γ (v) implies 
that µ(u) and µ(v) are comparable. Furthermore, 
µ(u) ≺S µ(v) implies γ (u) �S γ (v), while γ (u) ≺S γ (v) 
implies that µ(u) ≺S µ(v). Thus, µ(u) and µ(v) are com-
parable if and only if γ (u) and γ (v) are comparable.

Item (I) and (M1) are equivalent.
For Item (II) let u ∈ V (T ) \G be an interior vertex 

with children v,  w. If (u,w) /∈ E, then w ≺T
E
u. Apply-

ing Condition (M3) yields µ(w) �S µ(u) and thus, by 
construction, γ (w) �S γ (u). Therefore, γ (u) is not a 
proper descendant of γ (w) and γ (w) is a descendant of 
γ (u) . If one of the edges, say (u,  v), is a transfer edge, 
then t(u) = △ and by Condition (M2iii) µ(u) and µ(v) 
are incomparable. Hence, γ (u) and γ (v) are incompara-
ble. Therefore, γ (u) is no proper descendant of γ (v). Note 

lcaS(µ(v),µ(w)) �S lcaS(lcaS(σT
E
(v)), lcaS(σT

E
(w)))

= lcaS(σT
E
(v) ∪ σT

E
(w)).

γ (u) =

{

µ(u), if µ(u) ∈ V (S)
y, if µ(u) = (x, y) ∈ E(S)

that (O2) implies that for each vertex u ∈ V (T ) \G at 
least one of its outgoing edges must be a non-transfer 
edge, which implies that γ (w) �S γ (u) or γ (v) �S γ (u) 
as shown before. Hence, Item (IIa) and (IIb) are satisfied.

For Item (III) assume first that (u, v) ∈ E and therefore 
t(u) = △. Then, (M2iii) implies that µ(u) and µ(v) are 
incomparable and thus, γ (u) and γ (v) are incomparable. 
Now assume that (u, v) is an edge in the gene tree T and 
γ (u) and γ (v) are incomparable. Therefore, µ(u) and µ(v) 
are incomparable. Now, apply Lemma 4(2).

Item (IVa) is clear by the event-labeling t of T and since 
(O2). Now assume for (IVb) that t(u) = •. Lemma 4(3) 
implies that µ(v) and µ(w) are incomparable and thus, 
γ (v) and γ (w) must be incomparable as well. Further-
more, Condition (M2i) implies that µ(u) = lcaS(σT

E
(u)) . 

Lemma 2 implies that µ(v) �S lcaS(σT
E
(v)) and 

µ(w) �S lcaS(σT
E
(w)). The latter together with the 

incomparability of µ(v) and µ(u) implies that

If µ(v) is mapped on the edge (x,  y) in T, 
then γ (v) = y. By definition of lca for edges, 
lcaS(µ(v), γ (w)) = lcaS(y, γ (w)) = lcaS(γ (v), γ (w)). The 
same argument applies if µ(w) is mapped on an edge. 
Since for all z ∈ V (T ) either µ(z) ≻S γ (z) (if µ(z) is 
mapped on an edge) or µ(z) = γ (z), we always have

Since t(u) = •, (M2i) implies that µ(u) ∈ V (S) 
and therefore, by construction of γ it holds that 
µ(u) = γ (u). Thus, γ (u) = lcaS(γ (v), γ (w)). For (IVc) 
assume that t(u) = �. Condition (M3) implies that 
µ(u) �S µ(v),µ(w) and therefore, γ (u) �S γ (v), γ (w) . If 
γ (v) and γ (w) are incomparable, then γ (u) �S γ (v), γ (w) 
implies that γ (u) �S lcaS(γ (v), γ (w)) . If γ (v) 
and γ (w) are comparable, say γ (v) �S γ (w), then 
γ (u) �S γ (v) = lcaS(γ (v), γ (w)). Hence, Statement (IVc) 
is satisfied. � �

Lemma 6  Let γ : V (T ) → V (S) be a map according to 
the DTL-scenario for the binary the gene tree (T ; t, σ) and 
the binary species tree S. For all u ∈ V (T ) define:

 Then µ : V (T ) → V (S) ∪ E(S) is a reconciliation map 
according to Definition 2.

lcaS(µ(v),µ(w)) = lcaS(lcaS(σT
E
(v)), lcaS(σT

E
(w)))

= lcaS(σT
E
(v) ∪ σT

E
(w))

= lcaS(σT
E
(u)) = µ(u).

lcaS(γ (v), γ (w)) = lcaS(µ(v),µ(w)) = µ(u).

µ(u) =

{

γ (u), if t(u) ∈ {•,⊙}

(x, γ (u)) ∈ E(S), if t(u) ∈ {△,�}
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Proof  Let γ : V (T ) → V (S) be a map a DTL-scenario 
for the binary the gene tree (T ; t, σ) and the species tree 
S.

Condition (M1) is equivalent to (I).
For (M3) assume that v �T

E
w. The path P from v 

to w in T
E

 does not contain transfer edges. Thus, by 
(III) all vertices along P are comparable. Moreover, by 
(IIa) we have that γ (w) is not a proper descendant of 
the image of its child in S, and therefore, by repeating 
these arguments along the vertices x in Pwv, we obtain 
γ (v) �S γ (x) �S γ (w).

If γ (v) ≺S γ (w), then by construction of µ , it 
follows that µ(v) ≺S µ(w). Thus, (M3) is sat-
isfied, whenever γ (v) ≺S γ (w). Assume now 
that γ (v) = γ (w). If t(v), t(w) ∈ {�,△} then 
µ(v) = (x, γ (v)) = (x, γ (w)) = µ(w) and thus (M3i) is 
satisfied. If t(v) = • and t(w) �= • then since µ(v) = γ (v) 
and µ(w) = (x, γ (w)). Thus µ(v) ≺S µ(w).

Now assume that γ (v) = γ (w) and w is a speciation 
vertex. Since t(w) = •, for its two children w′ and w′′ 
the images γ (w′) and γ (w′′) must be incomparable due 
to (IVb). W.l.o.g. assume that w′ is a vertex of Pwv. Since 
γ (v) �S γ (x) �S γ (w) for any vertex x along Pwv and 
γ (v) = γ (w), we obtain γ (w′) = γ (w). However, since 
γ (w′′) �S γ (w), the vertices γ (w′) and γ (w′′) are com-
parable in S; contradicting (IVb). Thus, whenever w is a 
speciation vertex, γ (w′) = γ (w) is not possible. There-
fore, γ (v) �S γ (w′) ≺S γ (w) and, by construction of µ, 
µ(v) ≺S µ(w). Thus, (M3ii) is satisfied.

Finally, we show that (M2) is satisfied. To this end, 
observe first that (M2ii) is fulfilled by construction of 
µ and (M2iii) is an immediate consequence of (III). 
Thus, it remains to show that (M2i) is satisfied. Thus, 
for a given speciation vertex u we need to show that 
µ(u) = lcaS(σT

E
(u)). By construction, µ(u) = γ (u). Note, 

T
E

 does not contain transfer edges. Applying (III) implies 
that for all edges (x,  y) in T

E
 the images γ (x) and γ (y) 

must be comparable. The latter and (IIa) implies that for 
all edges (x, y) in T

E
 we have γ (y) �S γ (x). Take the lat-

ter together, σ(z) = γ (z) �S γ (u) for any leaf z ∈ LT
E
(u) . 

Therefore lcaS(σT
E
(u)) �S γ (u) = µ(u). Assume for 

contradiction that lcaS(σT
E
(u)) ≺S γ (u) = µ(u). Con-

sider the two children u′ and u′′ of u in T
E

. Since nei-
ther (u,u′) ∈ E nor (u,u′′) ∈ E and T is a binary tree, 
it follows that LT

E
(u) = LT

E
(u′) ∪ LT

E
(u′′) and we 

obtain that σT
E
(u) = σT

E
(u′) ∪ σT

E
(u′′). Moreover, 

re-using the arguments above, lcaS(σT
E
(u′)) �S γ (u′) 

and lcaS(σT
E
(u′′)) �S γ (u′′). By the arguments we 

used in the proof for (M3), we have γ (u′) ≺S γ (u) and 
γ (u′′) ≺S γ (u). In particular, γ (u′) and γ (u′′) must be 
contained in the subtree of S that is rooted in the child 
a of γ (u) in S with lcaS(σT

E
(u)) �S a, as otherwise, 

lcaS(σT
E
(u′)) ��S γ (u′) or lcaS(σT

E
(u′′)) ��S γ (u′′) . 

Moreover, neither lcaS(σT
E
(u)) �S lcaS(σT

E
(u′)) nor 

lcaS(σT
E
(u)) �S lcaS(σT

E
(u′′)) is possible since then 

lcaS(σT
E
(u′)) �S γ (u′) and lcaS(σT

E
(u′′)) �S γ (u′′) 

implies that γ (u′) and γ (u′′) would be comparable; con-
tradicting (IVb). Hence, there remains only one way to 
locate γ (u′) and γ (u′′), that is, they must be located in the 
subtree of S that is rooted in lcaS(σT

E
(u)). But then we 

have lcaS(γ (u′), γ (u′′)) �S lcaS(σT
E
(u)) ≺S γ (u); a con-

tradiction to (IVb) γ (u) = lcaS(γ (u
′), γ (u′′)). Therefore, 

lcaS(σT
E
(u)) = γ (u) = µ(u) and (M2i) is satisfied.�  �

Finally, Lemmas 5 and 6 imply Theorem 1.
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