
Nøjgaard et al. Algorithms Mol Biol (2018) 13:2
https://doi.org/10.1186/s13015-018-0121-8

RESEARCH

Time‑consistent reconciliation maps
and forbidden time travel
Nikolai Nøjgaard1,2, Manuela Geiß5, Daniel Merkle2, Peter F. Stadler5,6,7,8,9,10,11, Nicolas Wieseke3
and Marc Hellmuth1,4*

Abstract 

Background:  In the absence of horizontal gene transfer it is possible to reconstruct the history of gene families from
empirically determined orthology relations, which are equivalent to event-labeled gene trees. Knowledge of the event
labels considerably simplifies the problem of reconciling a gene tree T with a species trees S, relative to the reconcilia-
tion problem without prior knowledge of the event types. It is well-known that optimal reconciliations in the unla-
beled case may violate time-consistency and thus are not biologically feasible. Here we investigate the mathematical
structure of the event labeled reconciliation problem with horizontal transfer.

Results:  We investigate the issue of time-consistency for the event-labeled version of the reconciliation problem,
provide a convenient axiomatic framework, and derive a complete characterization of time-consistent reconciliations.
This characterization depends on certain weak conditions on the event-labeled gene trees that reflect conditions
under which evolutionary events are observable at least in principle. We give an O(|V(T)| log(|V(S)|))-time algorithm
to decide whether a time-consistent reconciliation map exists. It does not require the construction of explicit tim-
ing maps, but relies entirely on the comparably easy task of checking whether a small auxiliary graph is acyclic. The
algorithms are implemented in C++ using the boost graph library and are freely available at https://github.com/
Nojgaard/tc-recon.

Significance:  The combinatorial characterization of time consistency and thus biologically feasible reconciliation
is an important step towards the inference of gene family histories with horizontal transfer from orthology data, i.e.,
without presupposed gene and species trees. The fast algorithm to decide time consistency is useful in a broader
context because it constitutes an attractive component for all tools that address tree reconciliation problems.

Keywords:  Tree reconciliation, Horizontal gene transfer, Reconciliation map, Time-consistency, History of gene
families

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Modern molecular biology describes the evolution of
species in terms of the evolution of the genes that collec-
tively form an organism’s genome. In this picture, genes
are viewed as atomic units whose evolutionary history
by definition forms a tree. The phylogeny of species also
forms a tree. This species tree is either interpreted as a
consensus of the gene trees or it is inferred from other
data. An interesting formal manner to define a species

tree independent of genes and genetic data is discussed,
e.g. in [1].

In this contribution, we assume that gene and species
trees are given independently of each other. The rela-
tionship between gene and species evolution is there-
fore given by a reconciliation map that describes how the
gene tree is embedded in the species tree: after all, genes
reside in organisms, and thus at each point in time can be
assigned to a species.

From a formal point of view, a reconciliation map µ
identifies vertices of a gene tree with vertices and edges in
the species tree in such a way that (partial) ancestor rela-
tions given by the genes are preserved by µ. Vertices in

Open Access

Algorithms for
Molecular Biology

*Correspondence: mhellmuth@mailbox.org
1 Institute of Mathematics and Computer Science, University
of Greifswald, Walther‑Rathenau‑Strasse 47, 17487 Greifswald, Germany
Full list of author information is available at the end of the article

https://github.com/Nojgaard/tc-recon
https://github.com/Nojgaard/tc-recon
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-018-0121-8&domain=pdf

Page 2 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

the species tree correspond to speciation events. By defi-
nition, in a speciation event all genes are faithfully trans-
mitted from the parent species into both (all) daughter
species. Some of the vertices in the gene tree therefore
correspond to speciation events. In gene duplications,
two copies of a gene are formed from a single ancestral
gene and then keep residing in the same species. In hori-
zontal gene transfer (HGT) events, the original remains
within the parental species, while the offspring copy
“jumps” into a different branch of the species tree. Given
a gene tree with event types assigned to its interior verti-
ces, it is customary to define pairwise relations between
genes depending on the event type of their last common
ancestor [2–4].

Most of the literature on this topic assumes that both
the gene tree and the species tree are known but no infor-
mation is available of the type of events [5–8]. The aim is
then to find a mapping of the gene tree T into the spe-
cies tree S and, at least implicitly, an event-labeling on the
vertices of the gene tree T. Here we take a different point
of view and assume that T and the types of evolutionary
events on T are known. This setting has ample practi-
cal relevance because event-labeled gene trees can be
derived from the pairwise orthology relation [4, 9]. These
relations in turn can be estimated directly from sequence
data using a variety of algorithmic approaches that are
based on the pairwise best match criterion and hence
do not require any a priori knowledge of the topology of
either the gene tree or the species tree, see e.g. [10–13].

Genes that share a common origin (homologs) can be
classified into orthologs, paralogs, and xenologs depend-
ing whether they originated by a speciation, duplica-
tion or horizontal gene transfer (HGT) event [2, 4].
Recent advances in mathematical phylogenetics [9, 14]
have shown that the knowledge of these event-relations
(orthologs, paralogs and xenologs) suffices to construct
event-labeled gene trees and, in some case, also a species
tree [3, 15, 16].

Conceptually, both the gene tree and species tree are
associated with a timing of each event. Reconciliation
maps must preserve this timing information because
there are biologically infeasible event labeled gene trees
that cannot be reconciled with any species tree. In the
absence of HGT, biologically feasibility can be character-
ized in terms of certain triples (rooted binary trees on
three leaves) that are displayed by the gene trees [16]. In
the presence of HGT such triples give at least necessary
conditions for a gene tree being biologically feasible [15].
In particular, the timing information must be taken into
account explicitly in the presence of HGT. That is, gene
trees with HGT that must be mapped to species trees
only in such a way that some genes do not travel back in
time.

There have been several attempts in the literature to
handle this issue, see e.g. [17] for a review. In [18, 19]
a single HGT adds timing constraints to a time map
for a reconciliation to be found. Time-consistency is
then defined as the existence of a topological order of
the digraph reflecting all the time constraints. In [20]
NP-hardness was shown for finding a parsimonious
time-consistent reconciliation based on a definition for
time-consistency that in essence considers pairs of HGTs.
However, the latter definitions are explicitly designed for
binary gene trees and do not apply to non-binary gene
trees, which are used here to model incomplete knowl-
edge of the exact gene phylogenies. Different algorithmic
approaches for tackling time-consistency exist [17] such
as the inclusion of “time-zones” known for specific evolu-
tionary events. It is worth noting that a posteriori modi-
fications of time-inconsistent solutions will in general
violate parsimony [18]. So far, no results have become
available to determine the existence of time-consistent
reconciliation maps given the (undated) species tree and
the event-labeled gene tree.

Here, we introduce an axiomatic framework for time-
consistent reconciliation maps and characterize for given
event-labeled gene trees T and species trees S whether
there exists a time-consistent reconciliation map. We
provide an O(|V (T)| log(|V (S)|))-time algorithm that
constructs a time-consistent reconciliation map if one
exists.

Notation and preliminaries
We consider rooted trees T = (V ,E) (on LT) with root
ρT ∈ V and leaf set LT ⊆ V . A vertex v ∈ V is called a
descendant of u ∈ V , v �T u, and u is an ancestor of v,
u �T v, if u lies on the path from ρT to v. As usual, we
write v ≺T u and u ≻T v to mean v �T u and u �= v .
The partial order �T is known as the ancestor order of
T; the root is the unique maximal element w.r.t �T . If
u �T v or v �T u then u and v are comparable and oth-
erwise, incomparable. We consider edges of rooted trees
to be directed away from the root, that is, the notation
for edges (u, v) of a tree is chosen such that u ≻T v. If
(u, v) is an edge in T, then u is called parent of v and v
child of u. It will be convenient for the discussion below
to extend the ancestor relation �T on V to the union of
the edge and vertex sets of T. More precisely, for the
edge e = (u, v) ∈ E we put x ≺T e if and only if x �T v
and e ≺T x if and only if u �T x. For edges e = (u, v) and
f = (a, b) in T we put e �T f if and only if v �T b. For
x ∈ V , we write LT (x) := {y ∈ LT | y �T x} for the set of
leaves in the subtree T(x) of T rooted in x.

For a non-empty subset of leaves A ⊆ L, we
define lcaT (A), or the least common ancestor of A,
to be the unique �T-minimal vertex of T that is an

Page 3 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

ancestor of every vertex in A. In case A = {u, v}, we
put lcaT (u, v) := lcaT ({u, v}). We have in particular
u = lcaT (LT (u)) for all u ∈ V . We will also frequently use
that for any two non-empty vertex sets A, B of a tree, it
holds that lca(A ∪ B) = lca(lca(A), lca(B)).

A phylogenetic tree is a rooted tree such that no interior
vertex in v ∈ V \ LT has degree two, except possibly the
root. If LT corresponds to a set of genes G or species S,
we call a phylogenetic tree on LT gene tree or species tree,
respectively. In this contribution we will not restrict the
gene or species trees to be binary, although this assump-
tion is made implicitly or explicitly in much of the litera-
ture on the topic. The more general setting allows us to
model incomplete knowledge of the exact gene or species
phylogenies. Of course, all mathematical results proved
here also hold for the special case of binary phylogenetic
trees.

In our setting a gene tree T = (V ,E) on G is equipped
with an event-labeling map t : V ∪ E → I ∪ {0, 1} with
I = {•,�,△,⊙} that assigns to each interior vertex v of
T a value t(v) ∈ I indicating whether v is a speciation
event (•), duplication event (�) or HGT event (△). It is
convenient to use the special label ⊙ for the leaves x of
T. Moreover, to each edge e a value t(e) ∈ {0, 1} is added
that indicates whether e is a transfer edge (1) or not (0).
Note, only edges (x, y) for which t(x) = △ might be
labeled as transfer edge. We write E = {e ∈ E | t(e) = 1}
for the set of transfer edges in T. We assume here that all
edges labeled “0” transmit the genetic material vertically,
that is, from an ancestral species to its descendants.

We remark that the restriction t|V of t to the vertex set
V coincides with the “symbolic dating maps” introduced
in [21]; these have a close relationship with cographs
[14, 22, 23]. Furthermore, there is a map σ : G → S that
assigns to each gene the species in which it resides. The
set σ(M), M ⊆ G, is the set of species from which the
genes M are taken. We write (T ; t, σ) for the gene tree
T = (V ,E) with event-labeling t and corresponding map
σ.

Removal of the transfer edges from (T ; t, σ) yields a
forest T

E
:= (V ,E \ E) that inherits the ancestor order on

its connected components, i.e., �T
E

 iff x �T y and x, y are
in same subtree of T

E
 [20]. Clearly �T

E
 uniquely defines a

root for each subtree and the set of descendant leaf nodes
LT

E
(x).

In order to account for duplication events that
occurred before the first speciation event, we need to add
an extra vertex and an extra edge “above” the last com-
mon ancestor of all species in the species tree S = (V ,E) .
Hence, we add an additional vertex to V (that is now the
new root ρS of S) and the additional edge (ρS , lcaS(S))
to E. Strictly speaking S is not a phylogenetic tree in the
usual sense, however, it will be convenient to work with

these augmented trees. For simplicity, we omit drawing
the augmenting edge (ρS , lcaS(S)) in our examples.

Observable scenarios
The true history of a gene family, as it is considered here,
is an arbitrary sequence of speciation, duplication, HGT,
and gene loss events. The applications we envision for the
theory developed, here, however assume that the gene
tree and its event labels are inferred from (sequence)
data, i.e., (T ; t, σ) is restricted to those labeled trees that
can be constructed at least in principle from observable
data. The issue here are gene losses that may completely
eradicate the information on parts of the history. Specifi-
cally, we require that (T ; t, σ) satisfies the following three
conditions:

(O1) �Every internal vertex v has degree at least 3, except
possibly the root which has degree at least 2.

(O2) �Every HGT node has at least one transfer edge,
t(e) = 1, and at least one non-transfer edge, t(e) = 0;

(O3)
(a) �If x is a speciation vertex, then there are at least

two distinct children v, w of x such that the spe-
cies V and W that contain v and w, resp., are
incomparable in S.

(b) �If (v, w) is a transfer edge in T, then the species
V and W that contain v and w, resp., are incom-
parable in S.

Condition (O1) ensures that every event leaves a histor-
ical trace in the sense that there are at least two children
that have survived in at least two of its subtrees. If this
were not the case, no evidence would be left for all but
one descendant tree, i.e., we would have no evidence
that event v ever happened. We note that this condi-
tion was used, e.g. in [16] for scenarios without HGT.
Condition (O2) ensures that for an HGT event a histori-
cal trace remains of both the transferred and the non-
transferred copy. If there is no transfer edge, we have
no evidence to classify v as a HGT node. Conversely, if
all edges were transfers, no evidence of the lineage of
origin would be available and any reasonable inference
of the gene tree from data would assume that the gene
family was vertically transmitted in at least one of the
lineages in which it is observed. In particular, Condition
(O2) implies that for each internal vertex there is a path
consisting entirely of non-transfer edges to some leaf.
This excludes in particular scenarios in which a gene is
transferred to a different “host” and later reverts back to
descendants of the original lineage without any surviv-
ing offspring in the intermittent host lineage. Further-
more, a speciation vertex x cannot be observed from
data if it does not “separate” lineages, that is, there are

Page 4 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

two leaf descendants of distinct children of x that are in
distinct species. However, here we only assume to have
the weaker Condition (O3.a) which ensures that any
“observable” speciation vertex x separates at least locally
two lineages. In other words, if all children of x would be
contained in species that are comparable in S or, equiv-
alently, in the same lineage of S, then there is no clear
historical trace that justifies x to be a speciation vertex.
In particular, most-likely there are two leaf descend-
ants of distinct children of x that are in the same spe-
cies even if only T

E
 is considered. Hence, x would rather

be classified as a duplication than as a speciation upon
inference of the event labels from actual data. Analo-
gously, if (v,w) ∈ E then v signifies the transfer event
itself but w refers to the next (visible) event in the gene
tree T. Given that (v, w) is a HGT-edge in the observ-
able part, in a “true history” v is contained in a species
V that transmits its genetic material (maybe along a
path of transfers) to a contemporary species Z that is an
ancestor of the species W containing w. Clearly, the lat-
ter allows to have V �S W which happens if the path of
transfers points back to the descendant lineage of V in
S. In this case the transfer edge (v, w) must be placed in
the species tree such that µ(v) and µ(w) are comparable
in S. However, then there is no evidence that this trans-
fer ever happened, and thus v would be rather classified
as speciation or duplication vertex.

Assuming that (O2) is satisfied, we obtain the following
useful result:

Lemma 1  Let T1, . . . , Tk be the connected components of
T
E

 with roots ρ1, . . . , ρk, respectively. If (O2) holds, then,
{LT

E
(ρ1), . . . , LT

E
(ρk)} forms a partition of G.

Proof  Since LT
E
(ρi) ⊆ V (T), it suffices to show that

LT
E
(ρi) does not contain vertices of V (T) \G. Note,

x ∈ LT
E
(ρi) with x /∈ G is only possible if all edges (x, y)

are removed.
Let x ∈ V with t(x) = △ such that all edges (x, y) are

removed. Thus, all such edges (x, y) are contained in E.
Therefore, every edge of the form (x, y) is a transfer edge;
a contradiction to (O2). � �

We will show in Proposition 1 that (O1), (O2), and
(O3) together imply two important properties of event
labeled species trees, (�1) and (�2), which play a crucial
role for the results reported here.

(�1) If t(x) = •, then there are distinct children v, w of
x in T such that σ(LT

E
(v)) ∩ σ(LT

E
(w)) = ∅.

(�2) If (v,w) ∈ E, then σ(LT
E
(v)) ∩ σ(LT

E
(w)) = ∅.

Intuitively, (�1) is true because within a component T
E

no genetic material is exchanged between non-compara-
ble nodes. Thus, a gene separated in a speciation event
necessarily ends up in distinct species in the absence of
horizontal transfer. It is important to note that we do not
require the converse: σ(LT

E
(y)) ∩ σ(LT

E
(y′)) = ∅ does

not imply t(lcaT (LT
E
(y) ∪ LT

E
(y′)) = •, that is, the last

common ancestor of two sets of genes from different spe-
cies is not necessarily a speciation vertex.

Now consider a transfer edge (v,w) ∈ E, i.e., t(v) = △.
Then T

E
(v) and T

E
(w) are subtrees of distinct connected

components of T
E

. Since HGT amounts to the transfer of
genetic material across distinct species, the genes v and
w must be contained in distinct species X and Y, respec-
tively. Since no genetic material is transferred between
contemporary species X ′ and Y ′ in T

E
, where X ′ and Y ′ is

a descendant of X and Y, respectively we derive (�1).

Proposition 1  Conditions (O1)–(O3) imply (�1) and
(�2).

Proof  Since (O2) is satisfied we can apply Lemma 1 and
conclude that neither σ(LT

E
(v)) = ∅ nor σ(LT

E
(w)) = ∅.

Let x ∈ V (T) with t(x) = •. By Condition (O1) x has (at
least two) children. Moreover, (O3) implies that there
are (at least) two children v and w in T that are contained
in distinct species V and W that are incomparable in S.
Note, the edges (x, v) and (x, w) remain in T

E
, since only

transfer edges are removed. Since no transfer is con-
tained in T

E
, the genetic material v and w of V and W,

respectively, is always vertically transmitted. Therefore,
for any leaf v′ ∈ LT

E
(v) we have σ(v′) �S V and for any

leaf w′ ∈ LT
E
(w) we have σ(w′) �S W in S. Assume now

for contradiction, that σ(LT
E
(v)) ∩ σ(LT

E
(w)) �= ∅. Let

z1 ∈ LT
E
(v) and z2 ∈ LT

E
(w) with σ(z1) = σ(z2) = Z .

Since Z �S V ,W and S is a tree, the species V and W
must be comparable in S; a contradiction to (O3). Hence,
Condition (�1) is satisfied.

To see (�2), note that since (O2) is satisfied we can
apply Lemma 1 and conclude that neither σ(LT

E
(v)) = ∅

nor σ(LT
E
(w)) = ∅. Let (v,w) ∈ E. By (O3) the species

containing V and W are incomparable in S. Now we can
argue along the same lines as in the proof for (�2) to con-
clude that σ(LT

E
(v)) ∩ σ(LT

E
(w)) = ∅.� �

From here on we simplify the notation a bit and write
σT

E
(u) := σ(LT

E
(u)). We are aware of the fact that con-

dition (O3) cannot be checked directly for a given event-
labeled gene tree. In contrast, (�1) and (�2) are easily
determined. Hence, in the remainder of this paper we
consider the more general case, that is, gene trees that
satisfy (O1), (O2), (�1), and (�1).

Page 5 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

DTL‑scenario and time‑consistent reconciliation
maps
In case that the event-labeling of T is unknown, but the
gene tree T and a species tree S are given, the authors
in [20, 24] provide an axiom set, called DTL-scenario,
to reconcile T with S. This reconciliation is then used to
infer the event-labeling t of T. Instead of defining a DTL-
scenario as octuple [20, 24], we use here the notation
established above:

Definition 1  (DTL-scenario) For a given gene
tree (T ; t, σ) on G and a species tree S on S the map
γ : V (T) → V (S) maps the gene tree into the species
tree such that

(I) For each leaf x ∈ G, γ (u) = σ(u).
(II) If u ∈ V (T) \G with children v, w, then

(a)	 γ (u) is not a proper descendant of γ (v) or γ (w),
and

(b)	 At least one of γ (v) or γ (w) is a descendant of
γ (u).

(III) (u, v) is a transfer edge if and only if γ (u) and γ (v)
are incomparable.
(IV) If u ∈ V (T) \G with children v, w, then

(a)	 t(u) = △ if and only if either (u, v) or (u, w) is a
transfer-edge,

(b)	 If t(u) = •, then γ (u) = lcaS(γ (v), γ (w)) and
γ (v), γ (w) are incomparable,

(c)	 If t(u) = �, then γ (u) � lcaS(γ (v), γ (w)).

DTL-scenarios are explicitly defined for fully resolved
binary gene and species trees. Indeed, Fig. 1 (right) shows
a valid reconciliation between a gene tree T and a species
tree S that is not consistent with DTL-scenario. To see
this, let us call the duplication vertex v. The vertex v and
the leaf a are both children of the speciation vertex ρT.
Condition (IVb) implies that a and v must be incompara-
ble. However, this is not possible since γ (v) �S lcaS(B,C)
(Cond. (IVc)) and γ (a) = A (Cond. (I)) and therefore,
γ (v) �S lcaS(B,C) = lcaS(A,B,C) ≻S γ (a).

The problem of reconciliations between gene trees and
species tree is formalized in terms of so-called DTL-sce-
narios in the literature [20, 24]. This framework, however,
usually assumes that the event labels t on T are unknown,
while a species tree S is given. The “usual” DTL axioms,
furthermore, explicitly refer to binary, fully resolved gene
and species trees. We therefore use a different axiom set
here that is a natural generalization of the framework
introduced in [16] for the HGT-free case:

Definition 2  Let T = (V ,E) and S = (W , F) be phylo-
genetic trees on G and S, resp., σ : G → S the assignment
of genes to species and t : V ∪ E → {•,�,△,⊙} ∪ {0, 1}
an event labeling on T. A map µ : V → W ∪ F is a rec-
onciliation map if for all v ∈ V it holds that:

Fig. 1  Left: A “true” evolutionary scenario for a gene tree with leaf set G evolving along the tube-like species trees is shown. The symbol “x” denotes
losses. All speciations along the path from the root ρT to the leaf a are followed by losses and we omit drawing them. Middle: The observable
gene tree is shown in the upper-left. The orthology graph G = (G, E) (edges are placed between genes x, y for which t(lca(x , y)) = •) is drawn in
the lower part. This graph is a cograph and the corresponding non-binary gene tree T on G that can be constructed from such data is given in the
upper-right part (cf. [3, 4, 14] for further details). Right: Shown is species trees S on S = σ(G) with reconciled gene tree T. The reconciliation map µ
for T and S is given implicitly by drawing the gene tree T within S. Note, this reconciliation is not consistent with DTL-scenarios [20, 24]. A DTL-sce-
nario would require that the duplication vertex and the leaf a are incomparable in S. Note, a non-binary duplication or HGT vertex v can always be
“binary resolved” such that the newly created vertices are placed on the same edge µ(v) as v. However, there are cases that show that non-binary
speciation vertices cannot be “binary resolved”. For instance, for the non-binary gene tree T there is no way to resolve its root without violating the
conditions of a reconciliation map (cf. [15, Fig. 3]). Yet, such cases strongly imply that the speciation event must have been followed by (several)
duplication/HGT events that are not observable due to losses

Page 6 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

(M1) Leaf Constraint. If t(v) = ⊙, then µ(v) = σ(v).
(M2) Event Constraint.

(i)	 If t(v) = •, then µ(v) = lcaS(σT
E
(v)).

(ii)	 If t(v) ∈ {�,△}, then µ(v) ∈ F .
(iii)	 If t(v) = △ and (v,w) ∈ E, then µ(v) and µ(w)

are incomparable in S.

(M3) Ancestor Constraint.
Suppose v,w ∈ V with v ≺T

E
w.

(i) If t(v), t(w) ∈ {�,△}, then µ(v) �S µ(w),
(ii) �Otherwise, i.e., at least one of t(v) and t(w) is a

speciation •, µ(v) ≺S µ(w).

We say that S is a species tree for (T ; t, σ) if a reconcilia-
tion map µ : V → W ∪ F exists.

For the special case that gene and species trees are
binary, Definition 2 is equivalent to the definition of a
DTL-scenario, which is summarized in the following

Theorem 1  For a binary gene tree (T ; t, σ) and a binary
species tree S there is a DTL-scenario if and only if there is
a reconciliation µ for (T ; t, σ) and S.

The proof of Theorem 1 is a straightforward but tedi-
ous case-by-case analysis. In order to keep this section
readable, we relegate the proof of Theorem 1 to "Proof of
Theorem 1" section. Figure 1 shows an example of a bio-
logically plausible reconciliation of non-binary trees that
is valid w.r.t. Definition 2 but does not satisfy the condi-
tions of a DTL-scenario.

Condition (M1) ensures that each leaf of T, i.e., an
extant gene in G, is mapped to the species in which
it resides. Conditions (M2.i) and (M2.ii) ensure that
each inner vertex of T is either mapped to a vertex or
an edge in S such that a vertex of T is mapped to an
interior vertex of S if and only if it is a speciation ver-
tex. Condition (M2.i) might seem overly restrictive, an
issue to which we will return below. Condition (M2.
iii) satisfies condition (O3) and maps the vertices of
a transfer edge in a way that they are incomparable in
the species tree, since a HGT occurs between distinct
(co-existing) species. It becomes void in the absence
of HGT; thus Definition 2 reduces to the definition
of reconciliation maps given in [16] for the HGT-free
case. Importantly, condition (M3) refers only to the
connected components of T

E
 since comparability w.r.t.

≺T
E

 implies that the path between x and y in T does
not contain transfer edges. It ensures that the ancestor
order �T of T is preserved along all paths that do not
contain transfer edges.

We will make use of the following bound that effec-
tively restricts how close to the leafs the image of a vertex
in the gene tree can be located.

Lemma 2  If µ : (T ; t, σ) → S satisfies (M1) and (M3),
then µ(u) �S lcaS(σT

E
(u)) for any u ∈ V (T).

Proof  If u is a leaf, then by Condition (M1) µ(u) = σ(u)
and we are done. Thus, let u be an interior vertex. By
Condition (M3), z �S µ(u) for all z ∈ σT

E
(u). Hence, if

µ(u) ≺S lcaS(σT
E
(u)) or if µ(u) and lcaS(σT

E
(u))) are

incomparable in S, then there is a z ∈ σT
E
(u) such that z

and µ(u) are incomparable; contradicting (M3). � �

Condition (M2.i) implies in particular the weaker
property “(M2.i’) if t(v) = • then µ(v) ∈ W ”. In the light
of Lemma 2, µ(v) = lcaS(σT

E
(v)) is the lowest possible

choice for the image of a speciation vertex. Clearly, this
restricts the possibly exponentially many reconciliation
maps for which µ(v) ≻S lcaS(σT

E
(v)) for a speciation ver-

tices v to only those that satisfy (M2.i). However, the lat-
ter is justified by the observation that if v is a speciation
vertex with children u, w, then there is only one unique
piece of information given by the gene tree to place µ(v) ,
that is, the unique vertex x in S with children y, z such
that σT

E
(u) ⊆ LS(y) and σT

E
(w) ⊆ LS(z). The latter argu-

ments easily generalizes to the case that v has more than
two children in T. Moreover, any observable speciation
node v′ ≻T v closer to the root than v must be mapped
to a node ancestral to µ(v) due to (M3.ii). Therefore, we
require µ(v) = x = lcaS(σT

E
(v)) here.

If S is a species tree for the gene tree (T , t, σ) then there
is no freedom in the construction of a reconciliation map
µ on the set {x ∈ V (T) | t(x) ∈ {•,⊙}}. The duplication
and HGT vertices of T, however, can be placed differ-
ently. As a consequence there is a possibly exponentially
large set of reconciliation maps from (T , t, σ) to S.

From a biological point of view, however, the notion of
reconciliation used so far is too weak. In the absence of
HGT, subtrees evolve independently and hence, the linear
order of points along each path from root to leaf is consist-
ent with a global time axis. This is no longer true in the pres-
ence of HGT events, because HGT events imply additional
time-consistency conditions. These stem from the fact that
the appearance of the HGT copy in a distant subtree of S is
concurrent with the HGT event. To investigate this issue in
detail, we introduce time maps and the notion of time-con-
sistency, see Figs. 2, 3, 4 for illustrative examples.

Definition 3  (Time Map) The map τT : V (T) → R
is a time map for the rooted tree T if x ≺T y implies
τT (x) > τT (y) for all x, y ∈ V (T).

Page 7 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

Definition 4  A reconciliation map µ from (T ; t, σ) to S
is time-consistent if there are time maps τT for T and τS
for S for all u ∈ V (T) satisfying the following conditions:

(C1) If t(u) ∈ {•,⊙}, then τT (u) = τS(µ(u)).
(C2) If t(u) ∈ {�,△} and, thus µ(u) = (x, y) ∈ E(S),
then τS(y) > τT (u) > τS(x).

Fig. 2  Shown are two (tube-like) species trees with reconciled gene trees. The reconciliation map µ for T and S is given implicitly by drawing the
gene tree (upper right to the respective species tree) within the species tree. In the left example, the map µ is unique. However, µ is not time-con-
sistent and thus, there is no time consistent reconciliation for T and S. In the example on the right hand side, µ is time-consistent

Fig. 3  Shown are a gene tree (T ; t , σ) (right) and two identical (tube-like) species trees S (left and middle). There are two possible reconciliation
maps for T and S that are given implicitly by drawing T within the species tree S. These two reconciliation maps differ only in the choice of placing
the HGT-event either on the edge (lcaS(C ,D), C) or on the edge (lcaS({A, B, C ,D}), lcaS(C ,D)). In the first case, it is easy to see that µ would not be
time-consistent, i.e., there are no time maps τT and τS that satisfy (C1) and (C2). The reconciliation map µ shown in the middle is time-consistent

Fig. 4  Shown are a gene tree (T ; t , σ) (right) and two identical (tube-like) species trees S (left and middle). There are two possible reconciliation
maps for T and S that are given implicitly by drawing T within the species tree S. The left reconciliation maps each gene tree vertex as high as pos-
sible into the species tree. However, in this case only the middle reconciliation map is time-consistent

Page 8 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

Condition (C1) is used to identify the time-points of
speciation vertices and leaves u in the gene tree with
the time-points of their respective images µ(u) in the
species trees. In particular, all genes u that reside in
the same species must be assigned the same time point
τT (u) = τS(σ (u)). Analogously, all speciation vertices
in T that are mapped to the same speciation in S are
assigned matching time stamps, i.e., if t(u) = t(v) = •
and µ(u) = µ(v) then τT (u) = τT (v) = τS(µ(u)).

To understand the intuition behind (C2) consider a
duplication or HGT vertex u. By construction of µ it is
mapped to an edge of S, i.e., µ(u) = (x, y) in S. The time
point of u must thus lie between time points of x and y.
Now suppose (u, v) ∈ E is a transfer edge. By construc-
tion, u signifies the transfer event itself. The node v, how-
ever, refers to the next (visible) event in the gene tree.
Thus τT (u) < τT (v). In particular, τT (v) must not be mis-
interpreted as the time of introducing the HGT-duplicate
into the new lineage. While this time of course exists
(and in our model coincides with the timing of the trans-
fer event) it is not marked by a visible event in the new
lineage, and hence there is no corresponding node in the
gene tree T.

W.l.o.g. we fix the time axis so that τT (ρT) = 0 and
τS(ρS) = −1. Thus, τS(ρS) < τT (ρT) < τT (u) for all
u ∈ V (T) \ {ρT }.

Clearly, a necessary condition to have biologically fea-
sible gene trees is the existence of a reconciliation map µ.
However, not all reconciliation maps are time-consistent,
see Fig. 2.

Definition 5  An event-labeled gene tree (T ; t, σ) is bio-
logically feasible if there exists a time-consistent recon-
ciliation map from (T ; t, σ) to some species tree S.

As a main result of this contribution, we provide sim-
ple conditions that characterize (the existence of) time-
consistent reconciliation maps and thus, provides a first
step towards the characterization of biologically feasible
gene trees.

Theorem 2  Let µ be a reconciliation map from (T ; t, σ)
to S. There is a time-consistent reconciliation map from
(T ; t, σ) to S if and only if there are two time-maps τT and
τS for T and S, respectively, such that the following condi-
tions are satisfied for all x ∈ V (S):

(D1) If µ(u) = x, for some u ∈ V (T), then
τT (u) = τS(x).
(D2) If x �S lcaS(σT

E
(u)) for some u ∈ V (T) with

t(u) ∈ {�,△}, then τS(x) > τT (u).

(D3) If lcaS(σT
E
(u) ∪ σT

E
(v)) �S x for some (u, v) ∈ E ,

then τT (u) > τS(x).
Proof  In what follows, x and u denote vertices in S and
T, respectively.

Assume that there is a time-consistent reconciliation
map µ from (T ; t, σ) to S, and thus two time-maps τS and
τT for S and T, respectively, that satisfy (C1) and (C2).

To see (D1), observe that if µ(u) = x ∈ V (S), then
(M1) and (M2) imply that t(u) ∈ {•,⊙}. Now apply (C1).

To show (D2), assume that t(u) ∈ {�,△} and
x �S lcaS(σT

E
(u)). By Condition (M2) it holds that

µ(u) = (y, z) ∈ E(S). Together with Lemma 2 we obtain
that x �S lcaS(σT

E
(u)) �S z ≺S µ(u). By the properties

of τS we have

To see (D3), assume that (u, v) ∈ E and
z := lcaS(σT

E
(u) ∪ σT

E
(v)) �S x. Since t(u) = △ and by

(M2ii), we have µ(u) = (y, y′) ∈ E(S). Thus, µ(u) ≺S y.
By (M2iii) µ(u) and µ(v) are incomparable and therefore,
we have either µ(v) ≺S y or µ(v) and y are incomparable.
In either case we see that y �S z, since Lemma 2 implies
that lcaS(σT

E
(u)) �S µ(u) and lcaS(σT

E
(v)) �S µ(v). In

summary, µ(u) ≺S y �S z �S x. Therefore,

Hence, conditions (D1)–(D3) are satisfied.
To prove the converse, assume that there exists a rec-

onciliation map µ that satisfies (D1)–(D3) for some time-
maps τT and τS. In the following we will make use of τS
and τT to construct a time-consistent reconciliation map
µ′.

First we define “anchor points” by µ′(v) = µ(v) for
all v ∈ V (T) with t(v) ∈ {•,⊙}. Condition (D1) implies
τT (v) = τS(µ(v)) for these vertices, and therefore µ′ satis-
fies (C1).

The next step will be to show that for each vertex
u ∈ V (T) with t(u) ∈ {�,△} there is a unique edge
(x, y) along the path from lcaS(σT

E
(u)) to ρS with

τS(x) < τT (u) < τS(y). We set µ′(u) = (x, y) for these
points. In the final step we will show that µ′ is a valid rec-
onciliation map.

Consider the unique path Pu from lcaS(σT
E
(u)) to

ρS. By construction, τS(ρS) < τT (ρT) ≤ τT (u) and by
Condition (D2) we have τT (u) < τS(lcaS(σT

E
(u))) .

Since τS is a time map for S, every edge (x, y) ∈ E(S)
satisfies τS(x) < τS(y). Therefore, there is a unique
edge (xu, yu) ∈ E(S) along Pu such that either
τS(xu) < τT (u) < τS(yu), τS(xu) = τT (u) < τS(yu), or
τS(xu) < τT (u) = τS(yu). The addition of a sufficiently

τS(x) ≥ τS(lcaS(σT
E
(u)) ≥ τS(z)

(C2)
> τT (u).

τT (u)
(C2)
> τS(y) ≥ τS(z) ≥ τS(x).

Page 9 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

small perturbation ǫu to τT (u) does not violate the con-
ditions for τT being a time-map for T. Clearly ǫu can be
chosen to break the equalities in the latter two cases in
such a way that τS(xu) < τT (u) < τS(yu) for each vertex
u ∈ V (T) with t(u) ∈ {�,△}. We then continue with the
perturbed version of τT and set µ′(u) = (xu, yu). By con-
struction, µ′ satisfies (C2).

It remains to show that µ′ is a valid reconciliation map
from (T ; t, σT

E
) to S. Again, let Pu denote the unique

path from lcaS(σT
E
(u)) to ρS for any u ∈ V (T).

By construction, Conditions (M1), (M2i), (M2ii)
are satisfied. To check condition (M2iii), assume
(u, v) ∈ E . The original map µ is a valid recon-
ciliation map, and thus, Lemma 2 implies that
lcaS(σT

E
(u)) ≺S µ(u) and lcaS(σT

E
(v)) �S µ(v).

Since µ(u) and µ(v) are incomparable in S and
lcaS(σT

E
(u) ∪ σT

E
(v)) lies on both paths Pu and Pv we

have µ(u),µ(v) �S lcaS(σT
E
(u) ∪ σT

E
(v)) =: x . In par-

ticular, x �= lcaS(σT
E
(u)) and x �= lcaS(σT

E
(v)).

Conditions (D1) and (D2) imply that
τS(x) < τT (u) < τS(lcaS(σT

E
(u))) and

τS(x) < τT (v) ≤ τS(lcaS(σT
E
(v))). By construction of µ′,

the vertex u is mapped to a unique edge eu = (xu, yu) and
v is mapped either to lcaS(σT

E
(v)) �= x or to the unique

edge ev = (xv , yv), respectively. In particular, µ′(u) lies on
the path P ′ from x to lcaS(σT

E
(u)) and µ′(v) lies one the

path P ′′ from x to lcaS(σT
E
(v)). The paths P ′ and P ′′ are

edge-disjoint and have x as their only common vertex.
Hence, µ′(u) and µ′(v) are incomparable in S, and (M2iii)
is satisfied.

In order to show (M3), assume that u ≺T
E
v .

Since u ≺T
E
v, we have σT

E
(u) ⊆ σT

E
(v). Hence,

lcaS(σT
E
(u)) � lcaS(σT

E
(v)) �S ρS. In other words,

lcaS(σT
E
(v)) lies on the path Pu and thus, Pv is a sub-

path of Pu. By construction of µ′, both µ′(u) and µ′(v)
are comparable in S. Moreover, since τT (u) > τT (v)
and by construction of µ′, it immediately follows that
µ′(u) �S µ′(v).

Its now an easy task to verify that (M3) is fulfilled by
considering the distinct event-labels in (M3i) and (M3ii),
which we leave to the reader. � �

Interestingly, the existence of a time-consistent recon-
ciliation map from a gene tree T to a species tree S can be
characterized in terms of a time map defined on T, only.

Theorem 3  Let µ be a reconciliation map from (T ; t, σ)
to S. There is a time-consistent reconciliation map (T ; t, σ)
to S if and only if there is a time map τT such that for all
u, v,w ∈ V (T):

(T1) If t(u) = t(v) ∈ {•,⊙} then

(a) If µ(u) = µ(v), then τT (u) = τT (v).
(b) If µ(u) ≺S µ(v), then τT (u) > τT (v).

(T2) If t(u) ∈ {•,⊙}, t(v) ∈ {�,△} and
µ(u) �S lcaS(σT

E
(v)), then τT (u) > τT (v).

(T3) If (u, v) ∈ E and
lcaS(σT

E
(u) ∪ σT

E
(v)) �S lcaS(σT

E
(w)) for some

w ∈ V (T), then τT (u) > τT (w).

Proof  Suppose that µ is a time-consistent recon-
ciliation map from (T ; t, σ) to S. By Definition 4 and
Theorem 2, there are two time maps τT and τS that
satisfy (D1)–(D3). We first show that τT also satis-
fies (T1)–(T3), for all u, v ∈ V (T). Condition (T1a) is
trivially implied by (D1). Let t(u), t(v) ∈ {•,⊙}, and
µ(u) ≺S µ(v). Since τT and τS are time maps, we may
conclude that

Hence, (T1b) is satisfied.
Now, assume that t(u) ∈ {•,⊙}, t(v) ∈ {�,△} and

µ(u) �S lca(σT
E
(v)). By the properties of τS, we have:

Hence, (T2) is fulfilled.
Finally, assume that (u, v) ∈ E, and x := lcaS(σT

E
(u)

∪σT
E
(v)) �S lcaS(σT

E
(w)) for some w ∈ V (T). Lemma 2

implies that lcaS(σT
E
(w)) �S µ(w) and we obtain

Hence, (T3) is fulfilled.
To see the converse, assume that there exists a recon-

ciliation map µ that satisfies (T1)–(T3) for some time
map τT . In the following we construct a time map τS for
S that satisfies (D1)–(D3). To this end, we first set

We use the symbol ∗ to denote the fact that so far no
value has been assigned to τS(x). Note, by (M2i) and
(T1a) the value τS(x) is uniquely determined and
thus, by construction, (D1) is satisfied. Moreover, if
x, y ∈ V (S) have non-empty preimages w.r.t. µ and
x ≺S y, then we can use the fact that τT is a time map
for T together with condition (T1) to conclude that
τS(x) > τS(y).

If x ∈ V (S) with a ∈ µ−1(x), then (T2) implies (D2) [by
(D1) and setting u = a in (T2) and (T3) implies (D3) [by

τT (u)
(D1)
= τS(µ(u)) < τS(µ(v))

(D1)
= τT (v).

τT (u)
(D1)
= τS(µ(u))

(D2)
> τT (v).

τT (w)
(D2)
< τS(x) ≤ τS(lca(σT

E
(w)))

(D3)
< τT (u).

τS(x) =







−1 if x = ρS
τT (v) else if v ∈ µ−1(x)

∗ else, i.e., µ−1(x) = ∅ and x �= ρS .

Page 10 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

(D1) and setting w = a in (T3)]. Thus, (D2) and (D3) is
satisfied for all x ∈ V (S) with µ−1(x) �= ∅.

Using our choices τS(ρT) = 0 and τS(ρS) = −1 for the
augmented root of S, we must have µ−1(ρS) = ∅. Thus,
ρS ≻S lcaS(σT

E
(v)) for any v ∈ V (T). Hence, (D2) is

trivially satisfied for ρS. Moreover, τT (ρT) = 0 implies
τT (u) > τS(ρS) for any u ∈ V (T). Hence, (D3) is always
satisfied for ρS.

In summary, Conditions (D1)–(D3) are met for any
vertex x ∈ V (S) that up to this point has been assigned a
value, i.e., τS(x) �= ∗.

We will now assign to all vertices x ∈ V (S) with
µ−1(x) = ∅ a value τS(x) in a stepwise manner. To this
end, we give upper and lower bounds for the possible
values that can be assigned to τS(x). Let x ∈ V (S) with
τS(x) = ∗. Set

We note that LO(x) �= ∅ and UP(x) �= ∅ because the root
and the leaves of S already have been assigned a value τS
in the initial step. In order to construct a valid time map
τS we must ensure max(LO(x)) < τS(x) < min(UP(x)).

Moreover, we strengthen the bounds as follows. Put

Observe that max(lo(x)) < min(up(x)), since otherwise
there are vertices u,w ∈ V (T) with τT (w) ∈ lo(x) and
τT (u) ∈ up(x) and τT (w) ≥ τT (u). However, this implies
that lcaS(σT

E
(u) ∪ σT

E
(v)) �S x � lcaS(σT

E
(w)); a con-

tradiction to (T3).
Since (D2) is satisfied for all vertices y that obtained

a value τS(y) �= ∗, we have max(lo(x)) < min(UP(x)) .
Likewise because of (D3), it holds that
max(LO(x)) < min(up(x)). Thus we set τS(x) to an arbi-
trary value such that

By construction, (D1), (D2), and (D3) are satisfied for
all vertices in V(S) that have already obtained a time
value distinct from ∗. Moreover, for all such vertices with
x ≺T y we have τS(x) > τS(y). In each step we chose a
vertex x with τS(x) = ∗ that obtains then a real-valued
time stamp. Hence, in each step the number of vertices
that have value ∗ is reduced by one. Therefore, repeating
the latter procedure will eventually assign to all vertices
a real-valued time stamp such that, in particular, τS satis-
fies (D1), (D2), and (D3) and thus is indeed a time map
for S. � �

LO(x) = {τS(y) | x ≺S y, y ∈ V (S) and τS(y) �= ∗}

UP(x) = {τS(y) | x ≻S y, y ∈ V (S) and τS(y) �= ∗}.

lo(x) = {τT (u) | t(u) ∈ {�,△}, x �S lcaS(σT
E
(u))}

up(x) = {τT (u) | (u, v) ∈ E and

lcaS(σT
E
(u) ∪ σT

E
(v)) �S x }.

max(LO(x) ∪ lo(x)) < τS(x) < min(UP(x) ∪ up(x)).

From the algorithmic point of view it is desirable to
design methods that allow to check whether a recon-
ciliation map is time-consistent. Moreover, given a gene
tree T and species tree S we wish to decide whether there
exists a time-consistent reconciliation map µ, and if so,
we should be able to construct µ.

To this end, observe that any constraints given by Defi-
nition 3, Theorem 2 (D2)–(D3), and Definition 4 (C2)
can be expressed as a total order on V (S) ∪ V (T), while
the constraints (C1) and (D1) together suggest that we
can treat the preimage of any vertex in the species tree as
a “single vertex”. In fact we can create an auxiliary graph
in order to answer questions that are concerned with
time-consistent reconciliation maps.

Definition 6  Let µ be a reconciliation map from
(T ; t, σ) to S. The auxiliary graph A is defined as a
directed graph with a vertex set V (A) = V (S) ∪ V (T)
and an edge-set E(A) that is constructed as follows

(A1) For each (u, v) ∈ E(T) we have (u′, v′) ∈ E(A),
where

and

(A2) For each (x, y) ∈ E(S) we have (x, y) ∈ E(A)..
(A3) For each u ∈ V (T) with t(u) ∈ {�,△} we have
(u, lcaS(σT

E
(u))) ∈ E(A).

(A4) For each (u, v) ∈ E we have (lcaS(σT
E
(u)

∪σT
E
(v)),u) ∈ E(A).

(A5) For each u ∈ V (T) with t(u) ∈ {△,�} and
µ(u) = (x, y) ∈ E(S) we have (x,u) ∈ E(A) and
(u, y) ∈ E(A).

We define A1 and A2 as the subgraphs of A that contain
only the edges defined by (A1), (A2), (A5) and (A1),
(A2), (A3), (A4), respectively.

We note that the edge sets defined by conditions (A1)
through (A5) are not necessarily disjoint. The mapping of
vertices in T to edges in S is considered only in condition
(A5). The following two theorems are the key results of
this contribution.

Theorem 4  Let µ be a reconciliation map from (T ; t, σ)
to S. The map µ is time-consistent if and only if the auxil-
iary graph A1 is a directed acyclic graph (DAG).

u′ =

{

µ(u) if t(u) ∈ {⊙, •}
u otherwise

v′ =

{

µ(v) if t(v) ∈ {⊙, •}
v otherwise

,

Page 11 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

Proof  Assume that µ is time-consistent. By Theo-
rem 2, there are two time-maps τT and τS satisfy-
ing (C1) and (C2). Let τ = τT ∪ τS be the map from
V (T) ∪ V (S) → R . Let A′ be the directed graph with
V (A′) = V (S) ∪ V (T) and set for all x, y ∈ V (A′):
(x, y) ∈ E(A′) if and only if τ (x) < τ(y). By construction
A′ is a DAG since τ provides a topological order on A′
[25].

We continue to show that A′ contains all edges of A1.
To see that (A1) is satisfied for E(A′) let (u, v) ∈ E(T) .

Note, τ (v) > τ(u), since τT is a time map for T and by
construction of τ. Hence, all edges (u, v) ∈ E(T) are
also contained in A′, independent from the respec-
tive event-labels t(u), t(v). Moreover, if t(u) or t(v) are
speciation vertices or leaves, then (C1) implies that
τS(µ(u)) = τT (u) > τT (v) or τT (u) > τT (v) = τS(µ(v)) .
By construction of τ, all edges satisfying (A1) are con-
tained in E(A′). Since τS is a time map for S, all edges as in
(A2) are contained in E(A′). Finally, (C2) implies that all
edges satisfying (A5) are contained in E(A′).

Although, A′ might have more edges than required by
(A1), (A2) and (A5), the graph A1 is a subgraph of A′.
Since A′ is a DAG, also A1 is a DAG.

For the converse assume that A1 is a directed graph
with V (A1) = V (S) ∪ V (T) and edge set E(A1) as con-
structed in Definition 6 (A1), (A2) and (A5). Moreover,
assume that A1 is a DAG. Hence, there is is a topological
order τ on A1 with τ (x) < τ(y) whenever (x, y) ∈ E(A1) .
In what follows we construct the time-maps τT and τS
such that they satisfy (C1) and (C2). Set τS(x) = τ (x) for
all x ∈ V (S). Additionally, set for all u ∈ V (T):

By construction it follows that (C1) is satisfied. Due
to (A2), τS is a valid time map for S. It follows from
the construction and (A1) that τT is a valid time map
for T. Assume now that u ∈ V (T), t(u) ∈ {�,△}, and
µ(u) = (x, y) ∈ E(S). Since τ provides a topological order
we have:

By construction, it follows that τS(x) < τT (u) < τS(y) sat-
isfying (C2).� �

Theorem 5  Assume there is a reconciliation map µ from
(T ; t, σ) to S. There is a time-consistent reconciliation

τT (u) =

{

τ(µ(u)) if t(u) ∈ {⊙, •}
τ (u) otherwise.

τ (x)
(A5)
< τ(u)

(A5)
< τ(y).

map, possibly different from µ, from (T ; t, σ) to S if and
only if the auxiliary graph A2 (defined on µ) is a DAG.

Proof  Let µ be a reconciliation map for (T ; t, σ) and
S and µ′ be a time-consistent reconciliation map for
(T ; t, σ) and S. Let A2 and A′

2 be the auxiliary graphs that
satisfy Definition 6 (A1) – (A4) for µ and µ′, respectively.
Since µ(u) = µ′(u) for all u ∈ V (T) with t(u) ∈ {⊙, •}
and (A2) – (A4) don’t rely on the explicit reconciliation
map, it is easy to see that A2 = A′

2.
Now we can re-use similar arguments as in the proof

of Theorem 4. Assume there is a time-consistent recon-
ciliation map (T ; t, σ) to S. By Theorem 2, there are two
time-maps τT and τS satisfying (D1)-(D3). Let τ and A′ be
defined as in the proof of Theorem 4.

Analogously to the proof of Theorem 4, we show
that A′ contains all edges of A2. Application of (D1)
immediately implies that all edges satisfying (A1)
and (A2) are contained in E(A′). By condition (D2),
it yields (u, lcaS(σT

E
(u))) ∈ E(A′) and (D3) implies

(lcaS(σT
E
(u) ∪ σT

E
(v)),u) ∈ E(A′). We conclude by the

same arguments as before that the graph A2 is a DAG.
For the converse, assume we are given the directed

acyclic graph A2. As before, there is is a topological
order τ on A2 with τ (x) < τ(y) only if (x, y) ∈ E(A2) .
The time-maps τT and τS are given as in the proof of
Theorem 1.

By construction, it follows that (D1) is satisfied. Again,
by construction and the Properties (A1) and (A2), τS and
τT are valid time-maps for S and T respectively.

Assume now that u ∈ V (T), t(u) ∈ {�,△}, and
x �S lcaS(σT

E
(u)) for some x ∈ V (S). Since there is a

topological order on V (A2), we have

By construction, it follows that τS(x) > τT (u). Thus, (D2)
is satisfied.

Finally assume that (u, v) ∈ E and
lcaS(σT

E
(u) ∪ σT

E
(v)) �S x for some x ∈ V (S). Again,

since τ provides a topological order, we have:

By construction, it follows that τS(x) < τT (u), satisfying
(D3).

Thus τT and τS are valid time maps satisfying (D1)–
(D3).� �

τ (x)
(A2)
≥ τ (lcaS(σT

E
(u)))

(A3)
> τ(u).

τ (x)
(A2)
≤ τ (lcaS(σT

E
(u) ∪ σT

E
(v)))

(A4)
< τ(u).

Page 12 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

Naturally, Theorems 4 or 5 can be used to devise algo-
rithms for deciding time-consistency. To this end, the
efficient computation of lcaS(σT

E
(u)) for all u ∈ V (T)

is necessary. This can be achieved with Algorithm 2 in
O(|V (T)| log(|V (S)|)). More precisely, we have the fol-
lowing statement:

Lemma 3  For a given gene tree (T = (V ,E); t, σ) and a
species tree S = (W , F), Algorithm 2 correctly computes
ℓ(u) = lcaS(σT

E
(u)) for all u ∈ V (T) in O(|V | log(|W |))

time.

Proof  Let u ∈ V (T). In what follows, we show that
ℓ(u) = lcaS(σT

E
(u)). In fact, the algorithm is (almost)

a depth first search through T that assigns the (spe-
cies tree) vertex ℓ(u) to u if and only if every child v of
u has obtained an assignment ℓ(v) (cf. Line (9)–(10)).
That there are children v with non-empty ℓ(v) at some
point is ensured by Line (7). That is, if t(u) = ⊙, then
ℓ(u) = lcaS(σT

E
(u)) = σ(u). Now, assume there is an

interior vertex u ∈ V (T), where every child v has been
assigned a value ℓ(v), then

The latter is achieved by Line (10).
Since T is a tree and the algorithm is in effect a depth

first search through T, the while loop runs at most
O(V (T)+ E(T)) times, and thus in O(V(T)) time.

The only non-constant operation within the while loop
is the computation of lcaS in Line (10). Clearly lcaS of a
set of vertices C = {c1, c2 . . . ck}, where ci ∈ V (S), for all
ci ∈ C can be computed as sequence of lcaS operations
taking two vertices: lcaS(c1, lcaS(c2, . . . lcaS(ck−1, ck))),
each taking O(lg(|V (S)|)) time. Note however, that since
Line (10) is called exactly once for each vertex in T, the
number of lcaS operations taking two vertices is called at
most |E(T)| times through the entire algorithm. Hence,
the total time complexity is O(|V (T)| lg(|V (S)|)). � �

Let S be a species tree for (T ; t, σ), that is, there is a
valid reconciliation between the two trees. Algorithm 1
describes a method to construct a time-consistent rec-
onciliation map for (T ; t, σ) and S, if one exists, else “No
time-consistent reconciliation map exists” is returned.
First, an arbitrary reconciliation map µ that satisfies the
condition of Definition 2 is computed. Second, Theo-
rem 5 is utilized and it is checked whether the auxiliary
graph A2 is not a DAG in which case no time-consistent
map µ exists for (T ; t, σ) and S. Finally, if A2 is a DAG,

lcaS(σT
E
(u))

= lcaS(σT
E
({σT

E
(v) | (u, v) ∈ E(T) and t(u, v) = 0}))

= lcaS(σT
E
({lcaS(σT

E
(v)) | (u, v) ∈ E(T) and t(u, v) = 0}))

= lcaS(σT
E
({ℓ(v) | (u, v) ∈ E(T) and t(u, v) = 0}))

then we continue to adjust µ to become time-consistent.
The latter is based on Theorem 2, see the proof of Theo-
rems 2 and 6 for details.

Theorem 6  Let S = (W , F) be species tree for the gene
tree (T = (V ,E); t, σ). Algorithm 1 correctly deter-
mines whether there is a time-consistent reconcilia-
tion map µ and in the positive case, returns such a µ in
O(|V | log(|W |)) time.

Proof  In order to produce a time-consistent reconcili-
ation map, we first construct some valid reconciliation
map µ from (T ; t, σ) to S. Using the lca-map ℓ from Algo-
rithm 2, µ will be adjusted to become time-consistent, if
possible.

By assumption, there is a reconciliation map from
(T ; t, σ) to S. The for-loop (Line (3)–(5)) ensures that
each vertex u ∈ V obtained a value µ(u). We continue
to show that µ is a valid reconciliation map satisfying
(M1)–(M3).

Page 13 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

Assume that t(u) = ⊙, in this case ℓ(u) = σ(u) ,
and thus (M1) is satisfied. If t(u) = •, it holds that
µ(u) = ℓ(u) = lcaS(σT

E
(u)), thus satisfying (M2i). Note

that ρS ≻S ℓ(u), and hence, µ(u) ∈ F by Line (5), imply-
ing that (M2ii) is satisfied. Now, assume t(u) = △ and
(u, v) ∈ E. By assumption, we know there exists a recon-
ciliation map from T to S, thus by (�1):

It follows that, ℓ(u) is incomparable to ℓ(v), satisfying
(M2iii).

Now assume that u, v ∈ V and u ≺T
E
v .

Note that σT
E
(u) ⊆ σT

E
(v). It follows that

ℓ(u) = lcaS(σT
E
(u)) �S lcaS(σT

E
(v)) = ℓ(v). By con-

struction, (M3) is satisfied. Thus, µ is a valid reconcilia-
tion map.

By Theorem 5, two time maps τT and τS satisfying
(D1)–(D3) only exists if the auxiliary graph A build on
Line (7) is a DAG. Thus if A := A2 contains a cycle, no
such time-maps exists and the statement “No time-con-
sistent reconciliation map exists.” is returned (Line (7)).
On the other hand, if A is a DAG, the construction in
Line (8)–(11) is identical to the construction used in the
proof of Theorem 5. Hence correctness of this part of the
algorithm follows directly from the proof of Theorem 5.

Finally, we adjust µ to become a time-consistent recon-
ciliation map.. By the latter arguments, τT and τS satisfy
(D1)–(D3) w.r.t. to µ. Note, that µ is chosen to be the
“lowest point” where a vertex u ∈ V with t(u) ∈ {�,△}
can be mapped, that is, µ(u) is set to (p(x), x) where
x = lcaS(σT

E
(u)). However, by the arguments in the

proof of Theorem 2, there is a unique edge (y, z) ∈ W on
the path from x to ρS such that τS(y) < τT (u) < τS(z) .
The latter is ensured by choosing a different value for dis-
tinct vertices in V(A), see comment in Line (9). Hence,
Line (14) ensures, that µ(u) is mapped on the correct
edge such that (C2) is satisfied. It follows that adjusted µ
is a valid time-consistent reconciliation map.

We are now concerned with the time-complex-
ity. By Lemma 3, computation of ℓ in Line (1) takes
O(|V | log(|W |)) time and the for-loop (Line (3)-(5)) takes
O(|V|) time. We continue to show that the auxiliary graph
A (Line (6)) can be constructed in O(|V | log(|W |)) time.

Since we know ℓ(u) = lcaS(σT
E
(u)) for all u ∈ V

and since T and S are trees, the subgraph with
edges satisfying (A1)–(A3) can be constructed in
O(|V | + |W | + |E| + |F)|) = O(|V | + |W |) time. To
ensure (A4), we must compute for a possible trans-
fer edges (u, v) ∈ E the vertex lcaS(σT

E
(u) ∪ σT

E
(v)) .

which can be done in O(log(|W |)) time. Note, the
number of transfer edges is bounded by the num-
ber of possible transfer event O(|V|). Hence, gener-
ating all edges satisfying (A4) takes O(|V |(log(|W |))

σT
E
(u) ∩ σT

E
(v) = ∅

time. In summary, computing A can done in
O(|V | + |W | + |V |(log(|W |)) = O(|V |(log(|W |)) time.

To detect whether A contains cycles one has to
determine whether there is a topological order τ
on V(A) which can be done via depth first search in
O(|V (A)| + |E(A)|) time. Since |V (A)| = |V | + |W | and
O(|E(A)|) = O(|F | + |E| + |W | + |V |) and S, T are trees,
the latter task can be done in O(|V | + |W |) time. Clearly,
Line (10)-(11) can be performed on O(|V | + |W |) time.

Finally, we have to adjust µ according to τT and τS.
Note, that for each u ∈ V with t(u) ∈ {�,△} (Line (12))
we have possibly adjust µ to the next edge (p(x), x). How-
ever, the possibilities for the choice of (p(x), x) is bounded
by by the height of S, which is in the worst case log(|W |) .
Hence, the for-loop in Line (12) has total-time complex-
ity O(|V | log(|W |)).

In summary, the overall time complexity of Algo-
rithm 1 is O(|V | log(|W |)). � �

So far, we have shown how to find a time consistent
reconciliation map µ given a species tree S and a single
gene tree T. In practical applications, however, one often
considers more than one gene family, and thus, a set of
gene trees F = {(T1; t1, σ1), . . . , (Tn; tn, σn)} that has to
be reconciled with one and the same species tree S.

In this case it is possible to aggregate all gene trees
(Ti; ti, σi) ∈ F to a single gene tree (T ; t, σ) that is con-
structed from F by introducing an artificial duplication as
the new root of all Ti. More precisely, T = (V ,E) is con-
structed from F such that V = {ρT } ∪

⋃n
i=1 V (Ti) and

E =
⋃n

i=1(E(Ti) ∪ {(ρT , ρTi)}). Moreover, the event-labe-
ling map t is defined as

Finally, σ(x) = σi(x) for all x ∈ LTi.
Finding a time consistent reconciliation for a spe-

cies tree S and a set of gene trees F then corresponds
to finding a time map τS for S and a time map τT for the
aggregated gene tree (T ; t, σ), such that (D1)–(D3) are
satisfied.

If there exists a time consistent reconciliation map µ
from (T ; t, σ) to S then, by Theorem 2, there exists the
two time maps τT and τS that satisfy (D1)–(D3). But then
τT and τS also satisfy (D1)–(D3) w.r.t. any (Ti; ti, σi) ∈ F
and therefore, µ immediately gives a time-consistent rec-
onciliation map for each (Ti; ti, σi) ∈ F .

Outlook and summary
We have characterized here whether a given event-
labeled gene tree (T ; t, σ) and species tree S can be rec-
onciled in a time-consistent manner in terms of two
auxiliary graphs A1 and A2 that must be DAGs. These are

t(x) =







ti(x) if x ∈ V (Ti) ∪ E(Ti)

� if x = t(ρT)
0 if x = (ρT , ρTi)

Page 14 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

defined in terms of given reconciliation maps. This con-
dition yields an O(|V | log(|W |))-time algorithm to check
whether a given reconciliation map µ is time-consistent,
and an algorithm with the same time complexity for the
construction of a time-consistent reconciliation maps,
provided one exists.

Our results depend on three conditions on the event-
labeled gene trees that are motivated by the fact that
event-labels can be assigned to internal vertices of gene
trees only if there is observable information on the event.
The question which event-labeled gene trees are actu-
ally observable given an arbitrary, true evolutionary sce-
nario deserves further investigation in future work. Here
we have used conditions that arguable are satisfied when
gene trees are inferred using sequence comparison and
synteny information. A more formal theory of observ-
ability is still missing, however.

Our results point to an efficient way of deciding whether
a given pair of gene and species tree can be time-con-
sistently reconciled. Such gene and species trees can be
obtained from genomic sequence data using the following
workflow: (i) Estimate putative orthologs and HGT events
using e.g. one of the methods detailed in [11, 12, 26–38],
respectively. Importantly, this step uses only sequence
data as input and does not require the construction of
either gene or species trees. (ii) Correct these estimates in
order to derive “biologically feasible” homology relations
as described in [15, 16, 26, 39–44]. The result of this step
are (not necessarily fully resolved) gene trees together
with event-labels. (iii) Extract “informative triples” from
the event-labeled gene tree. These imply necessary condi-
tions for gene trees to be biologically feasible [15, 16].

In general, there will be exponentially many putative spe-
cies trees. This begs the question whether there is at least
one species tree S for a gene tree and if so, how to construct
S. In the absence of HGT, the answer is known: time-con-
sistent reconciliation maps are fully characterized in terms
of “informative triples” [16]. Hence, the central open prob-
lem that needs to be addressed in further research are suf-
ficient conditions for the existence of a time-consistent
species tree given an event-labeled gene tree with HGT.

Proof of Theorem 1
We show that Definition 2 is is equivalent to the tradi-
tional definition of a DTL-scenario [20, 24] in the special
case that both the gene tree and species trees are binary.
To this end we establish a series of lemmas detailing
some useful properties of reconciliation maps.

Lemma 4  Let µ be a reconciliation map from (T ; t, σ) to
S and assume that T is binary. Then the following condi-
tions are satisfied:

1.	 If v,w ∈ V (T) are in the same connected component
of T

E
, then µ(lcaT

E
(v,w)) �S lcaS(µ(v),µ(w)). Let u

be an arbitrary interior vertex of T with children v, w,
then:

2.	 µ(u) and µ(v) are incomparable in S if and only if
(u, v) ∈ E .

3.	 If t(u) = •, then µ(v) and µ(w) are incomparable in
S.

4.	 If µ(v),µ(w) are comparable or µ(u) ≻S lcaS(µ(v),

µ(w)), then t(u) = �.

Proof  We prove the Items 1 – 4 separately. Recall,
Lemma 1 implies that σ(LT

E
(x)) �= ∅ for all x ∈ V (T).

Proof of Item 1: Let v and w be distinct vertices of T
that are in the same connected component of T

E
. Con-

sider the unique path P connecting w with v in T
E

. This
path P is uniquely subdivided into a path P′ and a path
P′′ from lcaT

E
(v,w) to v and w, respectively. Condition

(M3) implies that the images of the vertices of P′ and P′′
under µ, resp., are ordered in S with regards to �S and
hence, are contained in the intervals Q′ and Q′′ that con-
nect µ(lcaT

E
(v,w)) with µ(v) and µ(w), respectively. In

particular, µ(lcaT
E
(v,w)) is the largest element (w.r.t. �S )

in the union of Q′ ∪ Q′′ which contains the unique path
from µ(v) to µ(w) and hence also lcaS(µ(v),µ(w)).

Proof of Item 2: If (u, v) ∈ E then, t(u) = △ and (M2iii)
implies that µ(u) and µ(v) are incomparable.

To see the converse, let µ(u) and µ(v) be incomparable
in S. Item (M3) implies that for any edge (x, y) ∈ E(T

E
)

we have µ(y) �S µ(x). However, since µ(u) and µ(v) are
incomparable it must hold that (u, v) /∈ E(T

E
). Since (u, v)

is an edge in the gene tree T, (u, v) ∈ E is a transfer edge.
Proof of Item 3: Let t(u) = •. Since none of (u, v) and

(u, w) are transfer-edges, it follows that both edges are
contained in T

E
.

Then, since T is a binary tree, it follows that
LT

E
(u) = LT

E
(v) ∪ LT

E
(w) and therefore,

σT
E
(u) = σT

E
(v) ∪ σT

E
(w).

Therefore and by Item (M2i),

Assume for contradiction that µ(v) and
µ(w) are comparable, say, µ(w) �S µ(v). By
Lemma 2, µ(w) �S µ(v) �S lcaS(σT

E
(v)) and

µ(w) �S lcaS(σT
E
(w)) . Thus,

Thus, µ(w) �S µ(u); a contradiction to (M3ii).
Proof of Item 4: Let µ(v),µ(w) be comparable in S.

Item 3 implies that t(u) �= •. Assume for contradiction
that t(u) = △. Since by (O2) only one of the edges (u, v)

µ(u) = lcaS(σT
E
(u)) = lcaS(σT

E
(v) ∪ σT

E
(w))

= lcaS(lcaS(σT
E
(v)), lcaS(σT

E
(w))).

µ(w) �S lcaS(lcaS(σT
E
(v)), lcaS(σT

E
(w))).

Page 15 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

and (u, w) is a transfer edge, we have either (u, v) ∈ E or
(u,w) ∈ E. W.l.o.g. let (u, v) ∈ E and (u,w) ∈ E(T

E
). By

Condition (M3), µ(u) �S µ(w). However, since µ(v) and
µ(w) are comparable in S, also µ(u) and µ(v) are com-
parable in S; a contradiction to Item 2. Thus, t(u) �= △.
Since each interior vertex is labeled with one event, we
have t(u) = �.

Assume now that µ(u) ≻S lcaS(µ(v),µ(w)). Hence,
µ(u) is comparable to both µ(v) and µ(w) and thus,
(M2iii) implies that t(u) �= △. Lemma 2 implies
µ(v) �S lcaS(σT

E
(v)) and µ(w) �S lcaS(σT

E
(w)). Hence,

Since T (u) �= △ it follows that neither (u, v) ∈ E nor
(u,w) ∈ E and hence, both edges are contained in
T
E

. By the same argumentation as in Item 3 it fol-
lows that σT

E
(u) = σT

E
(v) ∪ σT

E
(w) and there-

fore, lcaS(σT
E
(v) ∪ σT

E
(w)) = lcaS(σT

E
(u)). Hence,

µ(u) ≻S lcaS(µ(v),µ(w)) �S lcaS(σT
E
(u)). Now, (M2i)

implies t(u) �= •. Since each interior vertex is labeled
with one event, we have t(u) = �. �

Lemma 5  Let µ be a reconciliation map for the gene tree
(T ; t, σ) and the species tree S as in Definition 2. Moreo-
ver, assume that T and S are binary. Set for all u ∈ V (T) :

 Then γ : V (T) → V (S) is a map according to the
DTL-scenario.

Proof  We first emphasize that, by construction,
µ(u) �S γ (u) for all u ∈ V (T). Moreover, µ(u) = µ(v)
implies that γ (u) = γ (v), and γ (u) = γ (v) implies
that µ(u) and µ(v) are comparable. Furthermore,
µ(u) ≺S µ(v) implies γ (u) �S γ (v), while γ (u) ≺S γ (v)
implies that µ(u) ≺S µ(v). Thus, µ(u) and µ(v) are com-
parable if and only if γ (u) and γ (v) are comparable.

Item (I) and (M1) are equivalent.
For Item (II) let u ∈ V (T) \G be an interior vertex

with children v, w. If (u,w) /∈ E, then w ≺T
E
u. Apply-

ing Condition (M3) yields µ(w) �S µ(u) and thus, by
construction, γ (w) �S γ (u). Therefore, γ (u) is not a
proper descendant of γ (w) and γ (w) is a descendant of
γ (u) . If one of the edges, say (u, v), is a transfer edge,
then t(u) = △ and by Condition (M2iii) µ(u) and µ(v)
are incomparable. Hence, γ (u) and γ (v) are incompara-
ble. Therefore, γ (u) is no proper descendant of γ (v). Note

lcaS(µ(v),µ(w)) �S lcaS(lcaS(σT
E
(v)), lcaS(σT

E
(w)))

= lcaS(σT
E
(v) ∪ σT

E
(w)).

γ (u) =

{

µ(u), if µ(u) ∈ V (S)
y, if µ(u) = (x, y) ∈ E(S)

that (O2) implies that for each vertex u ∈ V (T) \G at
least one of its outgoing edges must be a non-transfer
edge, which implies that γ (w) �S γ (u) or γ (v) �S γ (u)
as shown before. Hence, Item (IIa) and (IIb) are satisfied.

For Item (III) assume first that (u, v) ∈ E and therefore
t(u) = △. Then, (M2iii) implies that µ(u) and µ(v) are
incomparable and thus, γ (u) and γ (v) are incomparable.
Now assume that (u, v) is an edge in the gene tree T and
γ (u) and γ (v) are incomparable. Therefore, µ(u) and µ(v)
are incomparable. Now, apply Lemma 4(2).

Item (IVa) is clear by the event-labeling t of T and since
(O2). Now assume for (IVb) that t(u) = •. Lemma 4(3)
implies that µ(v) and µ(w) are incomparable and thus,
γ (v) and γ (w) must be incomparable as well. Further-
more, Condition (M2i) implies that µ(u) = lcaS(σT

E
(u)) .

Lemma 2 implies that µ(v) �S lcaS(σT
E
(v)) and

µ(w) �S lcaS(σT
E
(w)). The latter together with the

incomparability of µ(v) and µ(u) implies that

If µ(v) is mapped on the edge (x, y) in T,
then γ (v) = y. By definition of lca for edges,
lcaS(µ(v), γ (w)) = lcaS(y, γ (w)) = lcaS(γ (v), γ (w)). The
same argument applies if µ(w) is mapped on an edge.
Since for all z ∈ V (T) either µ(z) ≻S γ (z) (if µ(z) is
mapped on an edge) or µ(z) = γ (z), we always have

Since t(u) = •, (M2i) implies that µ(u) ∈ V (S)
and therefore, by construction of γ it holds that
µ(u) = γ (u). Thus, γ (u) = lcaS(γ (v), γ (w)). For (IVc)
assume that t(u) = �. Condition (M3) implies that
µ(u) �S µ(v),µ(w) and therefore, γ (u) �S γ (v), γ (w) . If
γ (v) and γ (w) are incomparable, then γ (u) �S γ (v), γ (w)
implies that γ (u) �S lcaS(γ (v), γ (w)) . If γ (v)
and γ (w) are comparable, say γ (v) �S γ (w), then
γ (u) �S γ (v) = lcaS(γ (v), γ (w)). Hence, Statement (IVc)
is satisfied. � �

Lemma 6  Let γ : V (T) → V (S) be a map according to
the DTL-scenario for the binary the gene tree (T ; t, σ) and
the binary species tree S. For all u ∈ V (T) define:

 Then µ : V (T) → V (S) ∪ E(S) is a reconciliation map
according to Definition 2.

lcaS(µ(v),µ(w)) = lcaS(lcaS(σT
E
(v)), lcaS(σT

E
(w)))

= lcaS(σT
E
(v) ∪ σT

E
(w))

= lcaS(σT
E
(u)) = µ(u).

lcaS(γ (v), γ (w)) = lcaS(µ(v),µ(w)) = µ(u).

µ(u) =

{

γ (u), if t(u) ∈ {•,⊙}

(x, γ (u)) ∈ E(S), if t(u) ∈ {△,�}

Page 16 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

Proof  Let γ : V (T) → V (S) be a map a DTL-scenario
for the binary the gene tree (T ; t, σ) and the species tree
S.

Condition (M1) is equivalent to (I).
For (M3) assume that v �T

E
w. The path P from v

to w in T
E

 does not contain transfer edges. Thus, by
(III) all vertices along P are comparable. Moreover, by
(IIa) we have that γ (w) is not a proper descendant of
the image of its child in S, and therefore, by repeating
these arguments along the vertices x in Pwv, we obtain
γ (v) �S γ (x) �S γ (w).

If γ (v) ≺S γ (w), then by construction of µ , it
follows that µ(v) ≺S µ(w). Thus, (M3) is sat-
isfied, whenever γ (v) ≺S γ (w). Assume now
that γ (v) = γ (w). If t(v), t(w) ∈ {�,△} then
µ(v) = (x, γ (v)) = (x, γ (w)) = µ(w) and thus (M3i) is
satisfied. If t(v) = • and t(w) �= • then since µ(v) = γ (v)
and µ(w) = (x, γ (w)). Thus µ(v) ≺S µ(w).

Now assume that γ (v) = γ (w) and w is a speciation
vertex. Since t(w) = •, for its two children w′ and w′′
the images γ (w′) and γ (w′′) must be incomparable due
to (IVb). W.l.o.g. assume that w′ is a vertex of Pwv. Since
γ (v) �S γ (x) �S γ (w) for any vertex x along Pwv and
γ (v) = γ (w), we obtain γ (w′) = γ (w). However, since
γ (w′′) �S γ (w), the vertices γ (w′) and γ (w′′) are com-
parable in S; contradicting (IVb). Thus, whenever w is a
speciation vertex, γ (w′) = γ (w) is not possible. There-
fore, γ (v) �S γ (w′) ≺S γ (w) and, by construction of µ,
µ(v) ≺S µ(w). Thus, (M3ii) is satisfied.

Finally, we show that (M2) is satisfied. To this end,
observe first that (M2ii) is fulfilled by construction of
µ and (M2iii) is an immediate consequence of (III).
Thus, it remains to show that (M2i) is satisfied. Thus,
for a given speciation vertex u we need to show that
µ(u) = lcaS(σT

E
(u)). By construction, µ(u) = γ (u). Note,

T
E

 does not contain transfer edges. Applying (III) implies
that for all edges (x, y) in T

E
 the images γ (x) and γ (y)

must be comparable. The latter and (IIa) implies that for
all edges (x, y) in T

E
 we have γ (y) �S γ (x). Take the lat-

ter together, σ(z) = γ (z) �S γ (u) for any leaf z ∈ LT
E
(u) .

Therefore lcaS(σT
E
(u)) �S γ (u) = µ(u). Assume for

contradiction that lcaS(σT
E
(u)) ≺S γ (u) = µ(u). Con-

sider the two children u′ and u′′ of u in T
E

. Since nei-
ther (u,u′) ∈ E nor (u,u′′) ∈ E and T is a binary tree,
it follows that LT

E
(u) = LT

E
(u′) ∪ LT

E
(u′′) and we

obtain that σT
E
(u) = σT

E
(u′) ∪ σT

E
(u′′). Moreover,

re-using the arguments above, lcaS(σT
E
(u′)) �S γ (u′)

and lcaS(σT
E
(u′′)) �S γ (u′′). By the arguments we

used in the proof for (M3), we have γ (u′) ≺S γ (u) and
γ (u′′) ≺S γ (u). In particular, γ (u′) and γ (u′′) must be
contained in the subtree of S that is rooted in the child
a of γ (u) in S with lcaS(σT

E
(u)) �S a, as otherwise,

lcaS(σT
E
(u′)) ��S γ (u′) or lcaS(σT

E
(u′′)) ��S γ (u′′) .

Moreover, neither lcaS(σT
E
(u)) �S lcaS(σT

E
(u′)) nor

lcaS(σT
E
(u)) �S lcaS(σT

E
(u′′)) is possible since then

lcaS(σT
E
(u′)) �S γ (u′) and lcaS(σT

E
(u′′)) �S γ (u′′)

implies that γ (u′) and γ (u′′) would be comparable; con-
tradicting (IVb). Hence, there remains only one way to
locate γ (u′) and γ (u′′), that is, they must be located in the
subtree of S that is rooted in lcaS(σT

E
(u)). But then we

have lcaS(γ (u′), γ (u′′)) �S lcaS(σT
E
(u)) ≺S γ (u); a con-

tradiction to (IVb) γ (u) = lcaS(γ (u
′), γ (u′′)). Therefore,

lcaS(σT
E
(u)) = γ (u) = µ(u) and (M2i) is satisfied.� �

Finally, Lemmas 5 and 6 imply Theorem 1.

Authors’ contributions
NN and MH designed the study. NN implemented and designed thealgo-
rithms. All authors collaborated in research and the writing of themanuscript.
All authors read and approved the final manuscript.

Author details
1 Institute of Mathematics and Computer Science, University of Greifswald,
Walther‑Rathenau‑Strasse 47, 17487 Greifswald, Germany. 2 Department
of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark. 3 Parallel Computing and Complex
Systems Group, Department of Computer Science, Leipzig University, Augus-
tusplatz 10, 04109 Leipzig, Germany. 4 Center for Bioinformatics, Saarland
University, Building E 2.1, P.O. Box 151150, 66041 Saarbrücken, Germany.
5 Bioinformatics Group, Department of Computer Science, University of Leip-
zig, Häartelstraße 16‑18, 04107 Leipzig, Germany. 6 Interdisciplinary Center
for Bioinformatics, Universität Leipzig, Häartelstraße 16‑18, 04107 Leipzig,
Germany. 7 Max-Planck-Institute for Mathematics in the Sciences, Inselstraße
22, 04103 Leipzig, Germany. 8 Fraunhofer Institut for Cell Therapy and Immu-
nology, Perlickstraße 1, 04103 Leipzig, Germany. 9 Inst. f. Theoretical Chemistry,
University of Vienna, Wäahringerstraße 17, 1090 Wien, Austria. 10 Santa Fe
Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA. 11 Center for non-
coding RNA in Technology and Health, Grønegåardsvej 3, 1870 Frederiksberg
C, Denmark.

Acknowledgements
We thank the organizers of the 32nd TBI Winterseminar 2017 in Bled(Slovenia),
where the authors met and jointly drafted the main ideas of thispaper with
the help of an unknown number of cold and tasty cans of redUnion, or was it
green Laško?

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Supported in part by the Danish Council for Independent Research, NaturalS-
ciences, Grants DFF-1323-00247 and DFF-7014-00041.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 21 October 2017 Accepted: 20 January 2018

Page 17 of 17Nøjgaard et al. Algorithms Mol Biol (2018) 13:2

References
	1.	 Dress A, Moulton V, Steel M, Wu T. Species, clusters and the ‘tree of life’: a

graph-theoretic perspective. J Theor Biol. 2010;265:535–42.
	2.	 Fitch WM. Homology: a personal view on some of the problems. Trends

Genet. 2000;16:227–31.
	3.	 Hellmuth M, Stadler PF, Wieseke N. The mathematics of xenology: di-

cographs, symbolic ultrametrics, 2-structures and tree- representable
systems of binary relations. J Math Biol. 2016;75(1):199–237. https://doi.
org/10.1007/s00285-016-1084-3.

	4.	 Hellmuth M, Wieseke N. From sequence data including orthologs,
paralogs, and xenologs to gene and species trees. In: Pontarotti P, editor.
Evolutionary Biology: convergent evolution, evolution of complex traits,
concepts and methods. Cham: Springer; 2016. p. 373–92.

	5.	 Guigó R, Muchnik I, Smith T. Reconstruction of ancient molecular phylog-
eny. Mol Phylogenet Evol. 1996;6:189–213.

	6.	 Page RDM, Charleston MA. Trees within trees: phylogeny and historical
associations. Trends Ecol Evol. 1998;13:356–9.

	7.	 Zmasek C, Eddy S. A simple algorithm to infer gene duplication and
speciation events on a gene tree. Bioinformatics. 2001;17:821–8.

	8.	 Vernot B, Stolzer M, Goldman A, Durand D. Reconciliation with non-
binary species trees. J Comput Biol. 2008;15:981–1006. https://doi.
org/10.1089/cmb.2008.0092.

	9.	 Hellmuth M, Wieseke N, Lechner M, Lenhof H-P, Middendorf M, Stadler PF.
Phylogenomics with paralogs. Proc Natl Acad Sci. 2015;112(7):2058–63.
https://doi.org/10.1073/pnas.1412770112.

	10.	 Roth ACJ, Gonnet GH, Dessimoz C. Algorithm of OMA for large-scale
orthology inference. BMC Bioinf. 2008;9:518.

	11.	 Altenhoff AM, Dessimoz C. Phylogenetic and functional assessment
of orthologs inference projects and methods. PLoS Comput Biol.
2009;5:1000262.

	12.	 Lechner M, Hernandez-Rosales M, Doerr D, Wieseke N, Thévenin A,
Stoye J, Hartmann RK, Prohaska SJ, Stadler PF. Orthology detection
combining clustering and synteny for very large datasets. PLoS ONE.
2014;9(8):105015.

	13.	 Altenhoff AM, Boeckmann B, Capella-Gutierrez S, Dalquen DA, DeLuca T,
Forslund K, Huerta-Cepas J, Linard B, Pereira C, Pryszcz LP, Schreiber F, da
Silva AS, Szklarczyk D, Train CM, Bork P, Lecompte O, von Mering C, Xenar-
ios I, Sjölander K, Jensen LJ, Martin MJ, Muffato M, Gabaldón T, Lewis SE,
Thomas PD, Sonnhammer E, Dessimoz C. Standardized benchmarking in
the quest for orthologs. Nat Methods. 2016;13:425–30.

	14.	 Hellmuth M, Hernandez-Rosales M, Huber KT, Moulton V, Stadler PF,
Wieseke N. Orthology relations, symbolic ultrametrics, and cographs. J
Math Biol. 2013;66(1–2):399–420.

	15.	 Hellmuth M. Biologically feasible gene trees, reconciliation maps and
informative triples. Algorithms Mol Biol. 2017;12(1):23.

	16.	 Hernandez-Rosales M, Hellmuth M, Wieseke N, Huber KT, Moulton V,
Stadler PF. From event-labeled gene trees to species trees. BMC Bioinf.
2012;13(Suppl 19):6.

	17.	 Doyon J-P, Ranwez V, Daubin V, Berry V. Models, algorithms and programs
for phylogeny reconciliation. Brief Bioinf. 2011;12(5):392.

	18.	 Merkle D, Middendorf M. Reconstruction of the cophylogenetic history
of related phylogenetic trees with divergence timing information. Theor
Biosci. 2005;4:277–99.

	19.	 Charleston MA. Jungles: a new solution to the host/parasite phylogeny
reconciliation problem. Math Biosci. 1998;149(2):191–223.

	20.	 Tofigh A, Hallett M, Lagergren J. Simultaneous identification of duplica-
tions and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinf.
2011;8(2):517–35.

	21.	 Böcker S, Dress AWM. Recovering symbolically dated, rooted trees from
symbolic ultrametrics. Adv Math. 1998;138:105–25.

	22.	 Hellmuth M, Wieseke N. On symbolic ultrametrics, cotree representa-
tions, and cograph edge decompositions and partitions., Proceedings
COCOON 2015Cham: Springer; 2015. p. 609–23.

	23.	 Hellmuth M, Wieseke N. On tree representations of relations and graphs:
Symbolic ultrametrics and cograph edge decompositions. J Comb
Optim. 2017; https://doi.org/10.1007/s10878-017-0111-7.

	24.	 Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformat-
ics. 2012;28(12):283–91.

	25.	 Kahn AB. Topological sorting of large networks. Commun ACM.
1962;5(11):558–62.

	26.	 Altenhoff AM, Gil M, Gonnet GH, Dessimoz C. Inferring hierarchical orthol-
ogous groups from orthologous gene pairs. PLoS ONE. 2013;8(1):53786.

	27.	 Altenhoff AM, et al. The OMA orthology database in 2015: function
predictions, better plant support, synteny view and other improvements.
Nucleic Acids Res. 2015;43(D1):240–9.

	28.	 Chen F, Mackey AJ, Stoeckert CJ, Roos DS. OrthoMCL-db: querying a com-
prehensive multi-species collection of ortholog groups. Nucleic Acids
Res. 2006;34(S1):363–8.

	29.	 Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Pro-
teinortho: detection of (co-)orthologs in large-scale analysis. BMC
Bioinf. 2011;12:124.

	30.	 Östlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings
O, Sonnhammer ELL. InParanoid 7: new algorithms and tools
for eukaryotic orthology analysis. Nucleic Acids Res. 2010;38(suppl
1):196–203.

	31.	 Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool
for genome-scale analysis of protein functions and evolution. Nucleic
Acids Res. 2000;28(1):33–6.

	32.	 Trachana K, Larsson TA, Powell S, Chen W-H, Doerks T, Muller J, Bork P.
Orthology prediction methods: a quality assessment using curated
protein families. BioEssays. 2011;33(10):769–80.

	33.	 Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V,
Church DM, Dicuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg
W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott
DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry
ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner
L, Yaschenko E. Database resources of the national center for biotechnol-
ogy information. Nucleic Acids Res. 2008;36:13–21.

	34.	 Clarke GDP, Beiko RG, Ragan MA, Charlebois RL. Inferring genome trees
by using a filter to eliminate phylogenetically discordant sequences and
a distance matrix based on mean normalized BLASTP scores. J Bacteriol.
2002;184(8):2072–80.

	35.	 Dessimoz C, Margadant D, Gonnet GH. DLIGHT—lateral gene transfer
detection using pairwise evolutionary distances in a statistical frame-
work. In: Proceedings RECOMB 2008, pp. 315–330. Springer, Berlin; 2008.

	36.	 Lawrence JG, Hartl DL. Inference of horizontal genetic transfer
from molecular data: an approach using the bootstrap. Genetics.
1992;131(3):753–60.

	37.	 Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assign-
ing protein functions by comparative genome analysis: protein phyloge-
netic profiles. Proc Natl Acad Sci USA. 1999;96(8):4285–8.

	38.	 Ravenhall M, Škunca N, Lassalle F, Dessimoz C. Inferring horizontal gene
transfer. PLoS Comput Biol. 2015;11(5):1004095.

	39.	 Dondi R, Lafond M, El-Mabrouk N. Approximating the correction of
weighted and unweighted orthology and paralogy relations. Algorithms
Mol Biol. 2017;12(1):4.

	40.	 Lafond M, El-Mabrouk N. Orthology and paralogy constraints: satisfiability
and consistency. BMC Genom. 2014;15(6):12.

	41.	 Lafond M, El-Mabrouk N. Orthology relation and gene tree correction:
complexity results. In: International workshop on algorithms in bioinfor-
matics, Berlin: Springer; 2015. p. 66–79.

	42.	 Dondi R, El-Mabrouk N, Lafond M. Correction of weighted orthology and
paralogy relations-complexity and algorithmic results. In: International
workshop on algorithms in bioinformatics, Berlin: Springer; 2016. p.
121–36.

	43.	 Dondi R, Mauri G, Zoppis I. Orthology correction for gene tree reconstruc-
tion: Theoretical and experimental results. Procedia Computer Science.
International Conference on Computational Science, ICCS 2017, 12-14
June 2017, Zurich, Switzerland. p. 1115–24.

	44.	 Lafond M, Dondi R, El-Mabrouk N. The link between orthology rela-
tions and gene trees: a correction perspective. Algorithms Mol Biol.
2016;11(1):1.

https://doi.org/10.1007/s00285-016-1084-3
https://doi.org/10.1007/s00285-016-1084-3
https://doi.org/10.1089/cmb.2008.0092
https://doi.org/10.1089/cmb.2008.0092
https://doi.org/10.1073/pnas.1412770112
https://doi.org/10.1007/s10878-017-0111-7

	Time-consistent reconciliation maps and forbidden time travel
	Abstract
	Background:
	Results:
	Significance:

	Background
	Notation and preliminaries
	Observable scenarios
	DTL-scenario and time-consistent reconciliation maps
	Outlook and summary
	Proof of Theorem 1
	Authors’ contributions
	References

