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Abstract 

Background:  Reconstructing the genome of a species from short fragments is one of the oldest bioinformat-
ics problems. Metagenomic assembly is a variant of the problem asking to reconstruct the circular genomes of all 
bacterial species present in a sequencing sample. This problem can be naturally formulated as finding a collection of 
circular walks of a directed graph G that together cover all nodes, or edges, of G.

Approach:  We address this problem with the “safe and complete” framework of Tomescu and Medvedev (Research in 
computational Molecular biology—20th annual conference, RECOMB 9649:152–163, 2016). An algorithm is called safe 
if it returns only those walks (also called safe) that appear as subwalk in all metagenomic assembly solutions for G. A 
safe algorithm is called complete if it returns all safe walks of G.

Results:  We give graph-theoretic characterizations of the safe walks of G, and a safe and complete algorithm finding 
all safe walks of G. In the node-covering case, our algorithm runs in time O(m2

+ n
3), and in the edge-covering case 

it runs in time O(m2
n); n and m denote the number of nodes and edges, respectively, of G. This algorithm constitutes 

the first theoretical tight upper bound on what can be safely assembled from metagenomic reads using this problem 
formulation.
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Background
One of the oldest bioinformatics problems is to recon-
struct the genome of an individual from short fragments 
sequenced from it, called reads (see  [1–3] for some 
genome assembly surveys). Its most common mathemati-
cal formulations refer to an assembly (directed) graph 
built from the reads, such as a string graph [4, 5] or a de 
Bruijn graph [6, 7]. The nodes of such a graph are labeled 
with reads, or with sub-strings of the reads.1 Standard 
assembly problem formulations require to find e.g., a 
node-covering circular walk in this graph  [8], an edge-
covering circular walk  [8–11],2 a Hamiltonian cycle  [12, 
13] or an Eulerian cycle [7]. 1  We refer the reader to [4–7] for definitions of string graphs and de Bruijn 

graphs, as they are not essential to this paper.
2  Node- and edge-covering walks usually refer to node- and edge-centric de 
Bruijn graphs, respectively. In the node-centric de Buijn graph, all k-mers in 
the reads are nodes of the graph, and edges are added between all k-mers 
that have a suffix-prefix overlap of length k − 1. In the edge-centric de Bruijn 
graph, it is further required that the k + 1-mer obtained by overlapping the 
two k-mers of an edge also appears in the reads. Thus for edge-centric de 
Bruijn graphs it reasonable to require that the walk covers all edges, because 
all edges also appear in the reads; this may not be the case for node-centric 
de Bruijn graphs.

Real assembly graphs have however many possible 
solutions, due mainly to long repeated sub-strings of 
the genome. Thus, assembly programs used in prac-
tice, e.g., [5, 14–18], output only (partial) strings that are 
promised to occur in all solutions to the assembly prob-
lem. Following the terminology of  [19], we will refer to 
such a partial output as a safe solution to an assembly 
problem; an algorithm outputting all safe solutions will be 
called complete. Even though practical assemblers incor-
porate various heuristics, they do have safe solutions at 
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their core. Improving these can improve practical assem-
bly results, and ultimately characterizing all safe solutions 
to an assembly problem formulation gives a tight upper 
bound on what can be reliably assembled from the reads.

We will assume here that the genome to be assembled 
is a node or edge-covering circular walk of the input 
graph, since Hamiltonian or Eulerian cycle formulations 
unrealistically assume that each position of the genome is 
sequenced exactly the same number of times. The quest 
for safe solutions for this assembly problem formulation 
has a long history. Its beginnings can be traced to [20], 
which assembled the paths whose internal nodes have 
in-degree and out-degree equal to one. The method [7] 
assembled those paths whose internal nodes have out-
degree equal to one, with no restriction on their in-
degree. Other strategies such as [9, 21, 22] are based on 
iteratively reducing the assembly graph, for example by 
contracting edges whose target has in-degree equal to 
one. In [19], Tomescu and Medvedev found the first safe 
and complete algorithms for this problem, by giving a 
graph-theoretic characterization of all walks of a graph 
that are common to all of its node or edge-covering cir-
cular walks. The algorithm for finding them, though 
proven to work in polynomial time, launches an exhaus-
tive visit of all walks starting at each edge, and extend-
ing each walk as long as it satisfies the graph-theoretic 
characterization.

The present paper is motivated by metagenomic 
sequencing  [23, 24], namely the application of genomic 
sequencing to environment samples, such as soils, oceans, 
or parts of the human body. For example, metagenomic 
sequencing helped discover connections between bacte-
ria in the human gut and bowel diseases [25, 26] or obe-
sity  [27]. A metagenomic sample contains reads from all 
the circular bacterial genomes present in it.

Because of the multiple genomes present in the sample, 
one can no longer formulate a solution for the metagen-
omic assembly problem as a single circular walk cover-
ing all the nodes or edges. A natural analog is to find a 
collection of circular walks of an assembly graph (i.e., the 
circular bacterial genomes), which together cover all the 
nodes, or edges, of the graph (i.e., they together explain 

all the reads). In general, we do not know how many bac-
terial species are in the sample, so we cannot place any 
bound on the number of circular walks. Hence, in our 
above formulation they can be any arbitrary number. See 
the next section for formal definitions, and Fig.  1 for a 
simple example.

It can be easily verified that the walks from [7, 9, 20–
22]—which are safe for single circular covering walks—
are also safe for this metagenomic problem formulation. 
However, even though many practical metagenomic 
assemblers exist, e.g., [28–34], no other safe solutions are 
known for this problem formulation.

In this paper we solve this problem, by giving a graph-
theoretic characterization of all walks w of a graph G 
such that for any metagenomic assembly solution R of G, 
w is a sub-walk of some circular walk in R. As opposed 
to the exhaustive search strategy from [19], in this paper 
we devise a new type of safe and complete algorithm 
for which we can tightly bound the running time. This 
works by outputting one solution to the metagenomic 
assembly problem, and then marking all its sub-walks 
that satisfy our characterization. The algorithm for the 
node-covering case can be implemented with a complex-
ity of O(m2

+ n3), and the one for the edge-covering case 
with a complexity of O(m2n); n and m denote the num-
ber of nodes and edges, respectively, of the input graph. 
This is achieved by pre-processing the graph and the 
metagenomic assembly solution so that for each of its 
sub-walks we can check in constant time if they satisfy 
our characterization.

We then show how to modify this algorithm to explic-
itly output all maximal safe walks (i.e., not contained in 
another safe walk), with a logarithmic slowdown, namely 
O(m2

+ n3 log n) and O(m2n log n), respectively. This is 
based on constructing a suffix-tree from the metagenomic 
assembly solution, and traversing it using suffix links.

Related work
This paper also falls into a broad line of research deal-
ing with real-life problems that cannot model sufficiently 
well the real data. Other strategies for dealing with 
these in practice are to enumerate all solutions (as done 

a b c

Fig. 1  Node-safe walks. In a, the walk (a, b, c, d) is node-safe, because every circular walk covering node e contains (a, b, c, d) as sub-walk (we draw 
one such circular walk in orange). In b, the walk (a, b, c, d) is not node-safe, because the graph admits two circular walks covering all nodes (in blue 
and red) that do not contain it as sub-walk; it does not satisfy condition (b) of Theorem 2. In c the walk (a, b, c, d) is not safe because there is a node-
covering circular walk not containing it as sub-walk (in green); it does not satisfy condition (a) of Theorem 2
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e.g.  in [35]), or to find the best k solutions (see e.g., [35, 
36]).

Other bioinformatics studies that considered partial 
solutions common to all solutions are [37, 38], which 
studied base-pairings common to all optimal alignments 
of two biological sequences under edit distance. In com-
binatorial optimization, safety has been studied under 
the name of persistency. For a given problem on undi-
rected graphs, the persistent nodes or edges are those 
present in all solutions to the problem [39]. This question 
was first studied for the maximum matching problem 
of a bipartite graph  [39], and later developed for more 
general assignment problems  [40]. Later papers studied 
persistent nodes present in all maximum stable sets of 
a graph  [41], or persistent edges present in all traveling 
salesman solutions on a particular class of graphs where 
the problem is polynomially solvable [42].

Persistency has been recently generalized from sin-
gle edges to sets of edges by the notions of transversal 
and blocker [43]: a d-traversal is a set of edges intersect-
ing any optimum solution in at least d elements, and a 
d-blocker is a subset of edges whose removal deteriorates 
the value of the optimum solution by at least d. These 
notions have been studied for maximum matchings in 
arbitrary graphs  [43], maximum stable sets  [44], or for 
the maximum weight clique problem  [45]. The problem 
closest to ours is the one of finding a minimum-cardi-
nality d-transversal of all s–t paths in a directed graph, 
shown to be polynomially solvable in [44].

Preliminaries and main definitions
In this paper by graph we always mean a directed graph. 
The number of nodes and edges in a graph G are denoted 
by n and m, respectively. We do not allow parallel edges, 
but allow self-loops and edges of opposite directions. For 
any node v ∈ V (G), we use N−(v) to denote its set of in-
neighbors, and N+(v) to denote its set of out-neighbors.

A walk in a graph is a sequence 
w = (v0, e0, v1, e1, . . . , vt , et , vt+1) where v0, . . . , vt+1 are 
nodes, and each ei is an edge from vi to vi+1 (t ≥ −1). The 
length of w is its number of edges, namely t + 1. Walks of 
length at least one are called proper. Sometimes, we may 
omit explicitly writing the edges of w, and write only its 
nodes, i.e., w = (v0, v1, . . . , vt , vt+1). We will also say that 
an edge (x, y) ∈ E(G) is a walk of length 1.

A path is a walk where all nodes are distinct. A walk 
whose first and last nodes coincide is called a circular 
walk. A path (walk) with first node u and last node v will 
be called a path (walk) from u to v, and will be denoted as 
u-v path (walk). A cycle is a circular walk of length at least 
one (a self-loop) whose first and last nodes coincide, and 
all other nodes are distinct. If u = v, then by v–u path we 

denote a cycle passing through v. A walk is called node-
covering or edge-covering if it passes through each node, 
or respectively edge, of the graph at least once.

Given a non-circular walk w = (v0, v1, . . . , vt−1) and 
a walk w′

= (u0, . . . ,ud−1), we say that w′ is a sub-walk 
of w if there exists an index in w where an occurrence 
of w′ starts. If w = (v0, v1, . . . , vt−1, vt = v0) is a circu-
lar walk, then we allow w′ to “wrap around” w. More 
precisely, we say that w′ is a sub-walk of w if d ≤ t and 
there exists an index i ∈ {0, . . . , t − 1} such that vi = u0, 
vi+1 mod t = u1 ,  ..., vi+d−1 mod t = ud−1.

The following reconstruction notion captures the 
notion of solution to the metagenomic assembly problem.

Definition 1  (Node-covering metagenomic reconstruc-
tion) Given a graph G, a node-covering metagenomic 
reconstruction of G is a collection R of circular walks in G, 
such that every node of G is covered by some walk in R.

The following definition captures the walks that appear 
in all node-covering metagenomic reconstructions of a 
graph (see Fig. 1 for an example).

Definition 2  (Node-safe walk) Let G be a graph with at 
least one node-covering metagenomic reconstruction, 
and let w be a walk in G. We say that w is a node-safe walk 
in G if for any node-covering metagenomic reconstruc-
tion R of G, there exists a circular walk C ∈ R such that w 
is a sub-walk of C.

We analogously define edge-covering metagenomic 
reconstructions and edge-safe walks of a graph G, by 
replacing node with edge throughout. Reconstructions 
consisting of exactly one circular node-covering walk 
were considered in  [19]. The following notion of node-
omnitig was shown in [19] to characterize the node-safe 
walks of such reconstructions.

Definition 3  (Node-omnitig, [19]) Let G be a graph and 
let w = (v0, e0, v1, e1, . . . , vt , et , vt+1) be a walk in G. We 
say that w is a node-omnitig if both of the following con-
ditions hold:

• • for all 1 ≤ i ≤ j ≤ t, there is no proper vj–vi path with 
first edge different from ej, and last edge different 
from ei−1, and

• • for all 0 ≤ j ≤ t, the edge ej is the only vj–vj+1 path.

Theorem  1  [19] Let G be a strongly connected graph 
different from a cycle. A walk w in G is a sub-walk of all 
node-covering circular walks in G if and only if w is a 
node-omnitig.
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Observe that the circular walks in a node-covering 
metagenomic reconstruction of a graph G stay inside its 
strongly connected components (because e.g., the graph 
of strongly connected components is acyclic). Likewise, a 
graph G admits at least one edge-covering metagenomic 
reconstruction if and only if G is made up of a disjoint 
union of strongly connected graphs. Thus, in the rest 
of the paper we will assume that the input graphs are 
strongly connected.

Characterizations of safe walks
In this section we give characterizations of node- and 
edge-safe walks. The difference between our characteri-
zation below and Theorem  1 lies in the additional con-
dition (b). Note that (b) refers to cycles, whereas the 
elements of a node-covering metagenomic reconstruc-
tion are arbitrary circular walks; this is essential in our 
algorithm from the next section.

Theorem 2  Let G be a strongly connected graph. A walk 
w = (v0, e0, v1, e1, . . . , vt , et , vt+1) in G is a node-safe walk 
in G if and only if the following conditions hold:

(a)	 w is a node-omnitig, and
(b)	 there exists x ∈ V (G) such that w is a sub-walk of 

all cycles passing through x.

Proof  (⇒) Assume that w is safe. Suppose first that 
(a) does not hold, namely that w is not an omnitig. This 
implies that either (i) there exists a proper vj-vi path p 
with 1 ≤ i ≤ j ≤ t with first edge different from ej, last 
edge different from ei−1, or (ii) there exists j, 0 ≤ j ≤ t, 
and a vj-vj+1 path p′ different from the edge ej.

Suppose (i) is true. For any node-covering metagen-
omic reconstruction R of G, and any circular walk C ∈ R 
such that w is a sub-walk of C, we replace C in R by the 
circular walk C ′, not containing w as sub-walk, obtained 
as follows. Whenever C visits w until node vj, C ′ continues 
with the vj–vi path p, then it follows (vi, ei, . . . , ej−1, vj) , 
and finally continues as C. Since p is proper, and its first 
edge is different from ej and its last edge is different from 
ei−1, the only way that w can appear in C ′ is as a sub-walk 
of p. However, this implies that both vj and vi appear twice 
on p, contradicting the fact that p is a vj–vi path. Since 
each such circular walk C ′ covers the same nodes as C, 
the collection R′ of circular walks obtained by performing 
all such replacements is also a node-covering metagen-
omic reconstruction G. This contradicts the safety of w.

Suppose (ii) is true. As above, for any node-covering 
metagenomic reconstruction R and any C ∈ R contain-
ing w as sub-walk, we replace C with the circular walk C ′ 
obtained as follows. Whenever C traverses the edge ej, C ′ 

traverses instead p′, and thus covers the same nodes as C, 
but does not contain w as sub-walk. This also contradicts 
the safety of w.

Suppose now that (b) does not hold, namely, that 
for every x ∈ V (G), there exists a cycle cx passing 
through x such that w is not a sub-walk of cx. The set 
R = {cx: x ∈ V (G)} is a node-covering metagenomic 
reconstruction of G such that w is not a sub-walk of any 
of its elements. This contradicts the safety of w.
(⇐) Let R be a node-covering metagenomic recon-

struction of G, and let C ∈ R be a circular walk covering 
the vertex x. If C is a cycle, then (b) implies that w is a 
sub-walk of C, from which the safety of w follows.

Otherwise, let G[C] be the subgraph of G induced by 
the edges of C. Clearly, C is a node-covering circular walk 
of G[C], and thus G[C] is strongly connected. Moreover, 
we can argue that w is a node-omnitig in G[C], as fol-
lows. By taking the shortest proper circular sub-walk of C 
passing through x we obtain a cycle C̃ passing through x. 
From (b), we get that w is a sub-walk of C̃. Since all edges 
of C̃ appear in G[C], then also all edges of w appear in 
G[C] and thus w is a walk in G[C]. The two conditions 
from the definition of node-omnitigs are preserved under 
removing edges from G, thus w is a node-omnitig also in 
G[C]. By applying Theorem  1 to G[C] we obtain that w 
is a sub-walk of all node-covering circular walks of G[C], 
and in particular, also of C. We have thus shown that for 
every node-covering metagenomic reconstruction R of G, 
there exists C ∈ R such that w is a sub-walk of C. There-
fore, w is a node-safe walk for G.�  �

The following statement is a simple corollary of condi-
tion (b) from Theorem 2.

Corollary 3  Let G be a strongly connected graph, and 
let w be a safe walk in G. Then w is either a path or a cycle.

We now give the analogous characterization of edge-
safe walks. We first recall the analogous definition of 
edge-omnitigs from [19]. This is the same as Definition 3, 
except that the second condition is missing.

Definition 4  (Edge-omnitig, [19]) Let G be a graph and 
let w = (v0, e0, v1, e1, . . . , vt , et , vt+1) be a walk in G. We 
say that w is an edge-omnitig if for all 1 ≤ i ≤ j ≤ t, there 
is no proper vj–vi path with first edge different from ej, 
and last edge different from ei−1.

In  [19], it was proven an equivalent of Theorem  1 in 
terms of edges, stating that edge-omnitigs character-
ize the walks of a strongly connected graph G that are 
sub-walks of all edge-covering circular walks of G. Our 
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characterization of the edge-safe walks considered in this 
paper is:

Theorem 4  Let G be a strongly connected graph. A walk 
w = (v0, e0, v1, e1, . . . , vt , et , vt+1) in G is an edge-safe walk 
in G if and only if the following conditions hold:

(a)	 w is an edge-omnitig, and
(b)	 there exists e ∈ E(G) such that w is a sub-walk of all 

cycles passing through e.

Theorem 4 could be proved by carefully following the 
proof outline of Theorem  2. However, below we give a 
simpler proof, by reducing Theorem 4 to the node-cover-
ing case in the graph S(G) obtained from G by sub-divid-
ing every edge once.

Given a graph G, we let S(G) denote the graph obtained 
from G by subdividing each edge once. Namely, each 
edge (u,  v) of G is replaced by two edges (u, xuv), and 
(xuv , v), where xuv is a new node for every edge. Observe 
that the nodes xuv have exactly one in-neighbor, u, and 
exactly one out-neighbor, v. We can analogously define 
this operation for a walk w in G, and then consider the 
walk S(w) in S(G).

Proof of Theorem 4  The proof follows the outline given 
in Fig. 2. We first argue that w is an edge-safe walk in G 
if and only if S(w) is a node-safe walk in S(G). Indeed, 
observe that the edge-covering metagenomic recon-
structions of G are in bijection with the node-covering 
metagenomic reconstructions of S(G), the bijection being 
R �→ {S(C): C ∈ R}. Moreover, w is a sub-walk of a walk 
C in G if and only if S(w) is a sub-walk of S(C) in S(G). 
Therefore, w is an edge-safe walk in G if and only if S(w) 
is a node-safe walk in S(G).

It remains to show that w satisfies conditions (a) and 
(b) of Theorem 4 for G if and only if S(w) satisfies condi-
tions (a) and (b) of Theorem 2 for S(G).

Condition (a): It immediately follows from the defi-
nition that if S(w) is a node-omnitig in S(G) then w 
is an edge-omnitig in G. Assume now that w is an 

edge-omnitig in G. By the construction of S(G) and S(w), 
between any two consecutive nodes of S(w) there can be 
only one path in S(G) (namely, the edge connecting the 
two nodes). Therefore, S(w) is a node-omnitig in S(G).

Condition (b): Suppose that there exists an edge 
e = (u, v) ∈ E(G) such that all cycles in G passing 
through e contain w as sub-walk. Then by construc-
tion all cycles in S(G) passing through xuv ∈ V (S(G)) 
also contain S(w) as sub-walk. Conversely, suppose that 
there exists a node x ∈ V (S(G)) such that all cycles in 
S(G) passing through x contain S(w) as sub-walk. If 
x is a node of the type xuv for some edge (u,  v) of G, 
then it also holds that all cycles in G passing through 
(u, v) ∈ E(G) contain w as sub-walk. Otherwise, if 
x ∈ V (G), then let (x, y) be an arbitrary edge of G out-
going from x; this exists because G is strongly con-
nected. We claim that all cycles in G passing through 
(x, y) ∈ E(G) contain w as sub-walk. Indeed, let zxy be 
the node of S(G) corresponding to the edge (x, y). The 
set of cycles of S(G) passing through zxy is a subset of 
the set of cycles of S(G) passing through x. Therefore, 
all cycles of S(G) passing through zxy contain S(w) as 
sub-walk. We have now reduced this case to the previ-
ous one, when x is a node of the type xuv for some edge 
(u, v) of G, and the claim follows. � �

The algorithm for finding all node‑safe walks
In this section we give an algorithm for finding all node-
safe walks of a strongly connected graph. In the next sec-
tion we show how to implement this algorithm to run 
in O(m2

+ n3) time. Our results for edge-safe walks are 
analogous, and will be given in the last section.

We begin with an easy lemma stating a simple condi-
tion when a maximum overlap of two node-omnitigs is a 
node-omnitig.

Lemma 5  Let G be a graph, and let 
w = (v0, e0, v1, . . . , vt , et , vt+1) be a walk of length 
at least two in G. We have that w is a node-
omnitig if and only if w1 = (v0, e0, v1, . . . , vt) and 
w2 = (v1, e1, v2, . . . , vt , et , vt+1) are node-omnitigs and 

Fig. 2  The proof outline of Theorem 4
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there is no vt–v1 path with first edge different than et and 
last edge different than e0.

Proof  The forward implication is trivial, as by defini-
tion sub-walks of node-omnitigs are node-omnitigs. 
For the backward implication, since both w1 and w2 are 
node-omnitigs, then for all 0 ≤ j ≤ t, the edge ej is the 
only vj–vj+1 path. Since w1 is a node-omnitig, then for all 
1 ≤ i ≤ j ≤ t − 1, there is no proper vj-vi path with first 
edge different from ej, and last edge different from ei−1. 
If there is no vt-v1 path with first edge different than et 
and last edge different than e0, we obtain that w is a node-
omnitig.�  �

The following definition captures condition (b) from 
Theorem  2. Note that the walk w can also be a single 
node.

Definition 5  (Certificate) Let G be a graph and let w be 
a walk in G. A node x ∈ V (G) such that w is a sub-walk of 
all cycles passing through x is called a certificate of w. The 
set of all certificates of w will be denoted Cert(w).

By Theorem 2, node-safe walks are those node-omnit-
igs with at least one certificate. In the following lemma 
we relate the certificates of a node-omnitig with the cer-
tificates of its nodes. Later, in Lemma  8, we will show 
that the certificates of single nodes can be computed 
efficiently.

Lemma 6  Let G be a graph and let 
w = (v0, e0, v1, . . . , vt , et , vt+1) be a proper node-omnitig in G. 
Then Cert(w) = Cert(v0) ∩ Cert(v1) ∩ · · · ∩ Cert(vt+1).

Proof  We prove the claim by double-inclusion. The inclu-
sion Cert(w) ⊆ Cert(v0) ∩ Cert(v1) ∩ · · · ∩ Cert(vt+1) 
is trivial, since all cycles passing through a node 
x ∈ Cert(w) also contain each of v0, . . . , vt+1.

We now prove the reverse inclusion by induction on 
the length of w. We first check the base case when w 
has length one. Assume for a contradiction that there is 
a cycle C passing through x ∈ Cert(v0) ∩ Cert(v1) and 
not having w = (v0, e0, v1) as sub-path. Then, after visit-
ing x, (i) C first traverses v0 and then reaches v1 with a 
path different than e0, or (ii) C first traverses v1 and then 
v0. The case (i) is immediately excluded, since w is a node-
omnitig and e0 is the only v0–v1. If (ii) holds, then there is 
a x-v1 path P1 and a v0-x path P0. However, the concatena-
tion of P0 with P1 is a v0-v1 path different than the edge e0, 
which again contradicts the fact that w is a node-omnitig.

We now use the inductive hypothesis to show 
that if x ∈ Cert(v0) ∩ Cert(v1) ∩ · · · ∩ Cert(vt+1) , 
then x ∈ Cert(w). We partition w into the two walks 
w0 = (v0, e0, v1, . . . , vt) and wt = (vt , et , vt+1). By induc-
tion, since x ∈ Cert(v0) ∩ Cert(v1) ∩ · · · ∩ Cert(vt) 
we have x ∈ Cert(w0). Analogously, since 
x ∈ Cert(vt) ∩ Cert(vt+1), we have x ∈ Cert(wt). Since 
vt is a node in both w0 and wt, then any cycle passing 
through x, once it passes through w0 it must continue 
passing through wt. Therefore, any cycle passing through 
x passes also through w, and hence x ∈ Cert(w). � �

Given a circular walk C = (v0, e0, v1, . . . , vd−1, ed−1,

vd = v0), i ∈ {0, . . . , d − 1} and k ∈ {0, . . . , d}, we denote 
by C(i, k) the sub-walk of C starting at vi and of length k, 
that is, C(i, k) = (vi, ei, vi+1 mod d , . . . , v(i+k) mod d).

Algorithm 1 finds all node-safe walks of a strongly con-
nected graph G (possibly with duplicates), but does not 
return each node-safe walk explicitly. Instead, it returns 
a node-covering circular walk C of G and the set of pairs 
(i, k) such that C(i, k) is a node-safe walk.

The algorithm works by scanning C and checking 
whether each sub-walk of C starting at index i and of 
length k is a node-omnitig and has at least one certifi-
cate. If so, then it stores the index i in a set Sk, for every 
k. The algorithm first deals with the case k = 1: it first 
checks whether C(i,  1) is a node-omnitig (Line  7) and 
whether it has at least one certificate (Line 8). The case 
k > 1 is analogous. It first checks whether C(i, k − 1) 
and C(i + 1 mod d, k − 1) are omnitigs (by checking 
the memberships i ∈ Sk−1 and i + 1 mod d ∈ Sk−1) and 
that there is no path as in the definition of node-omnitig 
(Line 11). Then it checks whether C(i, k) has at least one 
certificate (Line 12).

In the next section we show how to pre-process G and 
C to perform these verifications in constant time. This 
algorithm can be modified to output node-safe walks also 
without duplicates. For clarity, we explain this idea in the 
proof of Theorem 13, where we also show how to output 
only maximal node-safe walks, i.e., those that are not 
sub-walks of any other node-safe walk.

Theorem  7  Given a strongly connected graph G, Algo-
rithm  1 correctly computes all the node-safe walks of G, 
possibly with duplicates.

Proof  We will first prove by induction on k that the 
set Sk contains all those indices i for which C(i,  k) is 
a node-safe walk of length k. In the base case k = 1,  
we explicitly check if each C(i,  1) is a node-omnitig 



Page 7 of 12Obscura Acosta et al. Algorithms Mol Biol  (2018) 13:3 

(Line  7). We also check if C(i,  1) has at least  
 one certificate, by checking (due to Lemma 6) whether 
Cert(vi) ∩ Cert(vi+1 mod 1) �= ∅ (Line  8). Thus, for 
each i we checked whether C(i,  1) is a node-safe walk 
(due to Theorem  2), and the claim follows for S1. We 
assume now that the claim is true for Sk−1. For each 
i, by Lemma  5, C(i,  k) is a node-omnitig if and only if 
C(i, k − 1) and C(i + 1 mod d, k − 1) are node-omnit-
igs, and there is no vi+k−1 mod d-vi+1 mod d path with 
first edge different than ei+k−1 mod d and last edge dif-
ferent than ei. This is verified in Line  11. In Line  12 we 
check whether Cert(C(i, k)) �= ∅ by checking whether 
Cert(vi) ∩ · · · ∩ Cert(vi+k mod d) �= ∅ (due to Lemma  6). 
Thus the claim is true for all Sk.

By Corollary  3, all node-safe walks of G are paths or 
cycles, thus of length at most n. By the definition of node-
safe, they are also sub-walks of C. Thus for each node-safe 
walk w of G of length k ≤ n, there exists i ∈ {0, . . . , d − 1} 
such that w = C(i, k) and i ∈ Sk.�  �

An O(m2
+ n

3) implementation for node‑safe walks
In this section we describe the implementation of Algo-
rithm 1. We first show how to compute the certificates of 
all nodes.

Lemma 8  Let G be a strongly connected graph with n 
nodes and m edges. We can compute the sets Cert(x) for 
all, in time x ∈ V (G)O(mn).

Proof  We start by initializing Cert(x) = {x} for every 
node x (recall that G is strongly connected). We then con-
struct the graph G′ by subdividing every node of G once. 
That is, we replace every node x of G with two nodes xin 
and xout, and add the edge (xin, xout) to G′. Moreover, for 
every edge (y,  z) of G, we add to G′ the edge (yout , zin). 
Observe that also G′ is strongly connected.

For every x ∈ V (G), we compute Cert(x) as follows. We 
consider the graph G′

x obtained from G′ by removing the 
edge (xin, xout). We compute the strongly connected com-
ponents of G′

x, in time O(m). We then iterate through all 
y ∈ V (G) \ {x} and check in constant time whether yin 
and yout still belong to the same strongly connected com-
ponent of G′

x. If not, then x belongs to all cycles of G pass-
ing through y, and thus we add y to Cert(x). This takes in 
total O(mn) time.�  �

The following lemma shows how to check in constant 
time the first condition in the definition of node-omnitig.

Lemma 9  Let G be a graph with m edges. We can pre-
process G in time O(m2) and space O(m2) such that for 
every two distinct edges, (x1, y1), (x2, y2) ∈ E(G) we can 
answer in O(1) time if there is a x1–y2 path in G with first 
edge different than (x1, y1) and last edge different than 
(x2, y2).
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Proof  We show how to pre-compute a table 
a(·, ·) of size O(m2) that for any two distinct edges 
(x1, y1), (x2, y2) ∈ E(G) stores the answer to the query. 
See Fig. 3 for an illustration.

We iterate through all edges (x1, y1) ∈ E(G), and con-
sider the graph G(x1,y1) obtained from G by removing 
(x1, y1). We launch a graph visit in G(x1,y1) from x1 to 
compute to which nodes there is a path from x1. By con-
struction, any such path starts with an edge different 
than (x1, y1). We then consider each node z ∈ V (G). We 
first iterate once through the in-neighbors of z to com-
pute how many of its in-neighbors are reachable from x1 
in G(x1,y1); say this number is dz. We then iterate a sec-
ond time through the in-neighbors of z, and for each in-
neighbor w, we let rw be equal to 1 if w is reachable from 
x1 in G(x1,y1), and 0 otherwise. We have that there is a x1
-z path in G with first edge different than (x1, y1) and last 
edge different than (w, z) if and only if dz − rw > 0. Thus 
we set

The complexity of this algorithm is O(m2), because for 
every edge (x1, y1), we compute the set of nodes reachable 
from x1 in time O(m), and then we process each edge of 
G(x1,y1) exactly two times. � �

Using e.g., the result of [46], we can also verify the sec-
ond condition in the definition of node-omnitig in con-
stant time.

Lemma 10  Let G be a graph with m edges, we can 
pre-process G in time O(m) such that for every edge 
(x, y) ∈ E(G) we can answer in O(1) time whether (x, y) is 
the only x–y path .

Proof  A strong bridge is an edge whose removal 
increases the number of strongly connected components 
of a graph (see e.g.,  [46]). It is easy to see that an edge 
(x, y) ∈ E(G) is the only x–y path if and only if (x, y) is a 
strong bridge. In [46] it was shown that all strong bridges 
can be computed in linear time in the size of the graph, 
from which our claim follows. � �

a((x1, y1), (w, z)) =

{
true, if dz − rw > 0,
false, if dz − rw = 0.

The following lemma shows how to check in con-
stant time condition (b) from Theorem  2. The idea 
is to pre-compute, for every index i in C, the small-
est (i.e., left-most) index i − n ≤ ℓ(i) ≤ i such that 
Cert(vℓ(i)) ∩ · · · ∩ Cert(vi) �= ∅. C(i,  k) has a non-empty 
set of certificates if and only if ℓ(i) is at distance at least k 
to i, that is, k ≤ i − ℓ(i).

Lemma 11  Let G be a graph with n nodes and m edges, 
and let C = (v0, e0, v1, . . . , vd−1, ed−1, vd = v0) be a cir-
cular walk in G, with n ≤ d ≤ n2. We can pre-process G 
and C in time , such that for every O(n3) i ∈ {0, . . . , d − 1} 
and, we can answer in k ∈ {0, . . . , n} O(1) time if 
Cert(vi) ∩ · · · ∩ Cert(vi+k mod d) �= ∅.

Proof  To simplify the notation, given an integer i, by vi 
we always mean vi mod d. By Lemma  8, we can compute 
Cert(x), for every x ∈ V (G), in O(mn) ∈ O(n3) time. In 
addition to computing the index ℓ(i), we also compute the 
intersection Li = Cert(vℓ(i)) ∩ · · · ∩ Cert(vi). Each such 
intersection set is stored as an array of length n telling in 
how many of Cert(vℓ(i)), . . . ,Cert(vi) each x ∈ V (G) is 
contained; Li is non-empty if and only if there is an entry 
in this array with a value equaling the number of sets 
Cert(vℓ(i)), . . . ,Cert(vi).

We begin by computing ℓ(i) and Li for i = 0 in a straight-
forward manner, by trying ℓ(i) = t = i − 1, i − 2, . . . as 
long as the resulting intersection is non-empty. Namely, we 
initialize Li = Cert(vi) , and update it as Li := Li ∩ Cert(vt)

. We keep decreasing t as long as Li is non-empty. If t 
reaches 0, then all sets Cert(x) have a common element, 
and the answer is “yes” for any query. Computing each 
intersection takes time O(n), and there are O(d) intersec-
tions to compute, giving a total of O(dn) ∈ O(n3) time.

For i > 0, we compute ℓ(i) as follows. We first 
compute Li−1 ∩ Cert(vi). If this is non-empty, then 
Li := Li−1 ∩ Cert(vi) and ℓ(i) := ℓ(i − 1). By the way we 
store intersection sets, this can be done in O(n) time.

Otherwise, we keep increasing ℓ(i) by one from 
t = ℓ(i − 1) until the corresponding intersection 
Cert(vt) ∩ · · · ∩ Cert(vi) is non-empty. We then set Li 
to this intersection and ℓ(i) = t. By the way we store the 
intersections, it follows that we can compute the new 
intersection in time O(n), by scanning the current inter-
section and removing the elements of Cert(vt) from it, by 
decreasing by one the counters of its elements. Overall, 
such new intersections are computed at most d times, 
because for each i we start this scan from index ℓ(i − 1) 
onwards, and always ℓ(i − 1) ≤ ℓ(i) ≤ i holds. This gives 
a total complexity of O(nd) ∈ O(n3). � �

We are now ready to combine these lemmas into the 
main theorem of this section.Fig. 3  An illustration of the proof of Lemma 9
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Theorem 12  Algorithm 1 can be implemented to run in 
time O(m2

+ n3) for any strongly connected graph with n 
nodes and m edges.

Proof  Any strongly connected graph admits a node-cov-
ering circular walk C = (v0, e0, v1, . . . , vd−1, ed−1, vd = v0) 
of length d ∈ {n, . . . , n2}, that can be constructed in time 
O(nm) ∈ O(n3). For example, one can label the nodes of 
G as v1, . . . , vn, start at v1, then follow an arbitrary path 
until v2 (which exists since G is strongly connected), and 
then continue from v2 in the same manner. This is the 
same argument given in [19].

By Lemma 8, we can compute in time O(mn) ∈ O(n3) 
the sets Cert(x) for all x ∈ V (G). We pre-process G 
and C as indicated in Lemmas  9,  10, and 11, in time 
O(m2

+ n3) . For every length k ∈ {1, . . . , n}, and every 
index i ∈ {0, . . . , d − 1}, this allows us to perform all 
checks in constant time. Checking membership to Sk−1 
can also be done in constant time, by storing each set Sk 
as a bitvector of length d.�  �

In the next section we discuss how to optimize Algo-
rithm  1 to start with a node-covering metagenomic 
reconstruction of minimum total length. However, there 
are graphs in which any node-covering metagenomic 
reconstruction has length �(n2), see Fig. 4.

Additional results
Maximal node‑safe walks without duplicates
In a practical genome assembly setting we want to recon-
struct fragments of the genomes as long as possible. As 
such, we are interested only in maximal node-safe walks, 
that is, in node-safe walks that are not sub-walks of any 
other node-safe walk. A trivial way to obtain these is to 
take the output of Algorithm 1, convert it into the set of 
all node-safe walks of G, and run a suffix-tree-based algo-
rithm for removing the non-maximal ones, in time lin-
ear in their total length. However, given a node-covering 

circular walk C of length d ≤ n2, the total length of the 
node-safe walks is at most 

∑n
k=0 kd ∈ O(n4).

In the next theorem we show how to reduce this time 
complexity to O(m2

+ n3 log n). The main observation is 
that a node-safe walk of length k is maximal if it is not 
extended into a node-safe walk of length k + 1. We avoid-
ing outputting duplicate maximal walks by traversing a 
suffix-tree built from C to check for previous occurrences 
of each walk of length k.

Theorem 13  Given a strongly connected graph G with n 
nodes and m edges, Algorithm 1 can be modified to output 
the maximal node-safe walks of G explicitly and without 
duplicates, with a running time of O(m2

+ n3 log n).

Proof  Let C = (v0, . . . , vd = v0) be a node-covering cir-
cular walk C of G, of length n ≤ d ≤ n2. At any position 
in C there can start the occurrence of at most one max-
imal node-safe walk. By Corollary  3, the length of each 
node-safe walk is at most n, thus the sum of the lengths 
of all maximal node-safe walks of G is O(n3). This implies 
that if we find the occurrences in C of all maximal node-
safe walks without duplicates, then we can output all of 
them explicitly within the stated time bound.

A node-safe walk w of length k is maximal if no occur-
rence C(i, k) of w in C was extended left or right at step 
k + 1. We can keep track of all previous occurrences of 
w in C, as follows. Initially, we build the suffix tree T of 
the (linear) string C ′

= v0v1 . . . vdv1 . . . vn−2# over the 
alphabet � = V (G) ∪ {#}, where # is a new symbol. This 
takes time linear in the size of C ′ and in the alphabet 
size |�| = n, thus O(n2) [47]. As we scan C for a length 
k + 1 ∈ {1, . . . , n}, we maintain, as we discuss below, a 
pointer in T to the node ui such that the label of the path 
from the root to ui spells C(i, k). In ui we store the infor-
mation of whether any occurrence the walk w = C(i, k) 
was extended at step k + 1.

As we advance from i to i + 1, we follow a so-called 
suffix-link in T to move to the node u∗ such that the label 
from the root of T to u∗ spells C(i + 1, k − 1) (i.e., C(i, k) 
with its first character removed). For a detailed discus-
sion on the properties of the suffix tree, see e.g., [48]. We 
then follow the normal tree edge exiting from u∗ labeled 
vi+1 mod d. We thus advance to the node ui+1 of T such 
that the path from the root to ui+1 spells C(i + 1, k). See 
Fig. 5 for an illustration. After traversing once C at step 
k + 1 and detecting which node-safe walks of length k are 
maximal, we traverse C again to output these node-safe 
walk.

After building the suffix tree using [47], the children of 
each node are organized in lexicographic order. Descend-
ing in the tree takes at most O(log(|�|)) = O(log n) 
time per step for binary searching the first character of 

Fig. 4  An extremal graph G showing that the upper bound on the 
complexity of Algorithm 1 from Theorem 12 is attained. The vertex 
set of G is {a1, . . . , an/2, b1, . . . , bn/2}. Any node- or edge-covering 
metagenomic reconstruction of G consists of circular walk(s) whose 
total length is �(n2)
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each edge. Following suffix links can be be amortized to 
the descending operations [48]. Thus, the above addi-
tional phase takes time O(n3 log n). The pre-compu-
tations needed in the proof of Theorem  12 take time 
O(m2

+ n3) , from which the claimed time complexity 
bound follows. � �

The algorithm for finding edge‑safe walks
In this section we adapt Algorithm 1 and its implemen-
tation to find edge-safe walks, as characterized by The-
orem 4. This will result in an algorithm running in time 
O(m2n). The proof of the following theorem is entirely 
analogous to the node-safe case.

Theorem 14  Let G be a strongly connected graph with n 
nodes and m edges. In time we can output an edge-cover-
ing circular walk   O(m2n) C, and the set of all pairs (i, k) 
such that C(i, k) is an edge-safe walk of G.

Proof  The proof is analogous to the node-safe case, and 
thus we briefly sketch the differences. In the edge-cover-
ing case, the set of certificates of a walk w consists of the 
edges e such that all cycles passing through e contain w as 
sub-walk. Analogously to Lemma 6, we have that the set 
of certificates of a walk w equals the intersection of the 
sets of certificates of its individual edges. The algorithm 
for the edge-safe case is that same as Algorithm 1, with 
the difference that we now start with an edge-covering 
circular walk C and we do not check anymore that each 
C(i, 1) is the only vi–vi+1 path.

By the same argument given in the proof of Theo-
rem 12, such a circular walk C has length at most mn and 
can be found in time O(mn). The certificates of all edges 
can be similarly computed in time O(m2) (now there is no 
need to subdivide nodes into single edges). Lemma 9 can 
be applied verbatim without modifications. The analog 
of Lemma 11 now starts with an edge-covering circular 
walk C of length O(mn). The only difference in its proof is 
that the sets of certificates now have size at most m, thus 
their intersection takes time O(m). This implies that we 
can pre-compute G and C in time O(m2n).

After this pre-processing phase, the algorithm itself 
works in time O(mn2), since the edge-covering circular 
walk C has length O(mn).�  �

With a proof identical to the one of Theorem  13, we 
also obtain the following result.

Theorem  15  Given a strongly connected graph G with 
n nodes and m edges, we can output the maximal edge-
safe walks of G explicitly and without duplicates, in time 
of O(m2n log n).

Optimizations to the algorithms
A trivial way to optimize Algorithm  1 is to start with a 
node-covering circular walk of minimum length. How-
ever, this is an NP-hard problem, since G has a node-
covering circular walk of length n if and only if G is 
Hamiltonian. Observe though that instead of a single 
node-covering circular walk, we can start with a node-
covering metagenomic reconstruction possibly consist-
ing of multiple circular walks, and apply Algorithm 1 to 
each walk in the reconstruction. This is correct by defini-
tion, since node-safe walks are sub-walks of some walk in 
any node-covering metagenomic reconstruction.

Finding a node-covering metagenomic reconstruction 
whose circular walks have minimum total length can be 
solved with a minimum-cost circulation problem (see 
e.g., [49, 50] for basic results on minimum-cost circula-
tions). From G, we construct the graph G′ by subdivid-
ing every node of G once (recall the construction from 
Lemma  8). We set demand 1 and cost 0 on each edge 
(xin, xout), with x ∈ V (G). On all edges corresponding to 
original edges of G we set demand 0 and cost 1. A circu-
lation f in G′ satisfying the demands can be decomposed 
into cycles, which form a node-covering metagen-
omic reconstruction in G. The total length of these 
cycles in G equals the cost of f. Since G′ has no capaci-
ties, a minimum-cost circulation in G′ can be found in 
time O(n logU(m+ n log n)), where U is the maximum 

Fig. 5  Illustration of the proof of Theorem 13; we are scanning C with 
k = 2. We illustrate the algorithm using the suffix trie of C ′: the suffix 
tree is obtained by compacting the unary paths into single edges, 
and then many of the suffix links become implicit; we draw the suffix-
link from u2 to u∗ with a dashed arrow. Following an implicit suffix link 
needs to be simulated using explicit suffix link from a parent. The cost 
of this can be amortized to the descending in the tree
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value of a demand, using the algorithm of Gabow and 
Tarjan  [51]. All demands in G′ are 1, thus this bound 
becomes O(nm+ n2 log n).

In the algorithm for finding all edge-covering circular 
walks, we need to find an edge-reconstruction whose 
circular walks have minimum total length. This can be 
solved as above, without subdividing the nodes of G. We 
add to every edge the demand 1 and cost 1 and then com-
pute a minimum-cost circulation. The decomposition of 
the optimal circulation into cycles forms an edge-recon-
struction of G.

Conclusions and future work
We consider [19] and the present work as starting points 
for characterizing all safe solutions for natural assembly 
problem formulations, and thus obtaining safe and com-
plete algorithms.

As future work, we plan to study formulations where 
the assembly solution is made up of non-circular cover-
ing walks, or where the assembly solutions consist of 
a given number of covering walks (e.g., a given number 
of chromosomes). In terms of real graph instances, the 
worst-case complexity of our algorithm may be prohibi-
tive, and thus improving it is an important problem.

We also leave for future work an idealized experimen-
tal study similar to what was done for the single genome 
case in [19]. This compared the lengths and biological 
content of some classes of safe solutions known in the lit-
erature, on de Bruijn graphs constructed from error-free, 
single-stranded simulated reads.

The ultimate goal of a “safe and complete” approach 
is to be adapted to the peculiarities of real data, such as 
sequencing errors, insufficient sequencing coverage, 
reverse complements. However, our belief is that we 
first need a clean and solid theoretical foundation, which 
can later be extended, or weakened, to account for such 
features.
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