
Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3
https://doi.org/10.1186/s13015-018-0122-7

RESEARCH

A safe and complete algorithm
for metagenomic assembly
Nidia Obscura Acosta, Veli Mäkinen and Alexandru I. Tomescu* 

Abstract 

Background:  Reconstructing the genome of a species from short fragments is one of the oldest bioinformat-
ics problems. Metagenomic assembly is a variant of the problem asking to reconstruct the circular genomes of all
bacterial species present in a sequencing sample. This problem can be naturally formulated as finding a collection of
circular walks of a directed graph G that together cover all nodes, or edges, of G.

Approach:  We address this problem with the “safe and complete” framework of Tomescu and Medvedev (Research in
computational Molecular biology—20th annual conference, RECOMB 9649:152–163, 2016). An algorithm is called safe
if it returns only those walks (also called safe) that appear as subwalk in all metagenomic assembly solutions for G. A
safe algorithm is called complete if it returns all safe walks of G.

Results:  We give graph-theoretic characterizations of the safe walks of G, and a safe and complete algorithm finding
all safe walks of G. In the node-covering case, our algorithm runs in time O(m2

+ n
3), and in the edge-covering case

it runs in time O(m2
n); n and m denote the number of nodes and edges, respectively, of G. This algorithm constitutes

the first theoretical tight upper bound on what can be safely assembled from metagenomic reads using this problem
formulation.

Keywords:  Genome assembly, Contig assembly, Metagenomics, Graph algorithm, Circular walk

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
One of the oldest bioinformatics problems is to recon-
struct the genome of an individual from short fragments
sequenced from it, called reads (see [1–3] for some
genome assembly surveys). Its most common mathemati-
cal formulations refer to an assembly (directed) graph
built from the reads, such as a string graph [4, 5] or a de
Bruijn graph [6, 7]. The nodes of such a graph are labeled
with reads, or with sub-strings of the reads.1 Standard
assembly problem formulations require to find e.g., a
node-covering circular walk in this graph [8], an edge-
covering circular walk [8–11],2 a Hamiltonian cycle [12,
13] or an Eulerian cycle [7]. 1  We refer the reader to [4–7] for definitions of string graphs and de Bruijn

graphs, as they are not essential to this paper.
2  Node- and edge-covering walks usually refer to node- and edge-centric de
Bruijn graphs, respectively. In the node-centric de Buijn graph, all k-mers in
the reads are nodes of the graph, and edges are added between all k-mers
that have a suffix-prefix overlap of length k − 1. In the edge-centric de Bruijn
graph, it is further required that the k + 1-mer obtained by overlapping the
two k-mers of an edge also appears in the reads. Thus for edge-centric de
Bruijn graphs it reasonable to require that the walk covers all edges, because
all edges also appear in the reads; this may not be the case for node-centric
de Bruijn graphs.

Real assembly graphs have however many possible
solutions, due mainly to long repeated sub-strings of
the genome. Thus, assembly programs used in prac-
tice, e.g., [5, 14–18], output only (partial) strings that are
promised to occur in all solutions to the assembly prob-
lem. Following the terminology of [19], we will refer to
such a partial output as a safe solution to an assembly
problem; an algorithm outputting all safe solutions will be
called complete. Even though practical assemblers incor-
porate various heuristics, they do have safe solutions at

Open Access

Algorithms for
Molecular Biology

*Correspondence: alexandru.tomescu@helsinki.fi
Helsinki Institute for Information Technology HIIT, Department
of Computer Science, University of Helsinki, Helsinki, Finland

http://orcid.org/0000-0002-5747-8350
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-018-0122-7&domain=pdf

Page 2 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

their core. Improving these can improve practical assem-
bly results, and ultimately characterizing all safe solutions
to an assembly problem formulation gives a tight upper
bound on what can be reliably assembled from the reads.

We will assume here that the genome to be assembled
is a node or edge-covering circular walk of the input
graph, since Hamiltonian or Eulerian cycle formulations
unrealistically assume that each position of the genome is
sequenced exactly the same number of times. The quest
for safe solutions for this assembly problem formulation
has a long history. Its beginnings can be traced to [20],
which assembled the paths whose internal nodes have
in-degree and out-degree equal to one. The method [7]
assembled those paths whose internal nodes have out-
degree equal to one, with no restriction on their in-
degree. Other strategies such as [9, 21, 22] are based on
iteratively reducing the assembly graph, for example by
contracting edges whose target has in-degree equal to
one. In [19], Tomescu and Medvedev found the first safe
and complete algorithms for this problem, by giving a
graph-theoretic characterization of all walks of a graph
that are common to all of its node or edge-covering cir-
cular walks. The algorithm for finding them, though
proven to work in polynomial time, launches an exhaus-
tive visit of all walks starting at each edge, and extend-
ing each walk as long as it satisfies the graph-theoretic
characterization.

The present paper is motivated by metagenomic
sequencing [23, 24], namely the application of genomic
sequencing to environment samples, such as soils, oceans,
or parts of the human body. For example, metagenomic
sequencing helped discover connections between bacte-
ria in the human gut and bowel diseases [25, 26] or obe-
sity [27]. A metagenomic sample contains reads from all
the circular bacterial genomes present in it.

Because of the multiple genomes present in the sample,
one can no longer formulate a solution for the metagen-
omic assembly problem as a single circular walk cover-
ing all the nodes or edges. A natural analog is to find a
collection of circular walks of an assembly graph (i.e., the
circular bacterial genomes), which together cover all the
nodes, or edges, of the graph (i.e., they together explain

all the reads). In general, we do not know how many bac-
terial species are in the sample, so we cannot place any
bound on the number of circular walks. Hence, in our
above formulation they can be any arbitrary number. See
the next section for formal definitions, and Fig. 1 for a
simple example.

It can be easily verified that the walks from [7, 9, 20–
22]—which are safe for single circular covering walks—
are also safe for this metagenomic problem formulation.
However, even though many practical metagenomic
assemblers exist, e.g., [28–34], no other safe solutions are
known for this problem formulation.

In this paper we solve this problem, by giving a graph-
theoretic characterization of all walks w of a graph G
such that for any metagenomic assembly solution R of G,
w is a sub-walk of some circular walk in R. As opposed
to the exhaustive search strategy from [19], in this paper
we devise a new type of safe and complete algorithm
for which we can tightly bound the running time. This
works by outputting one solution to the metagenomic
assembly problem, and then marking all its sub-walks
that satisfy our characterization. The algorithm for the
node-covering case can be implemented with a complex-
ity of O(m2

+ n3), and the one for the edge-covering case
with a complexity of O(m2n); n and m denote the num-
ber of nodes and edges, respectively, of the input graph.
This is achieved by pre-processing the graph and the
metagenomic assembly solution so that for each of its
sub-walks we can check in constant time if they satisfy
our characterization.

We then show how to modify this algorithm to explic-
itly output all maximal safe walks (i.e., not contained in
another safe walk), with a logarithmic slowdown, namely
O(m2

+ n3 log n) and O(m2n log n), respectively. This is
based on constructing a suffix-tree from the metagenomic
assembly solution, and traversing it using suffix links.

Related work
This paper also falls into a broad line of research deal-
ing with real-life problems that cannot model sufficiently
well the real data. Other strategies for dealing with
these in practice are to enumerate all solutions (as done

a b c

Fig. 1  Node-safe walks. In a, the walk (a, b, c, d) is node-safe, because every circular walk covering node e contains (a, b, c, d) as sub-walk (we draw
one such circular walk in orange). In b, the walk (a, b, c, d) is not node-safe, because the graph admits two circular walks covering all nodes (in blue
and red) that do not contain it as sub-walk; it does not satisfy condition (b) of Theorem 2. In c the walk (a, b, c, d) is not safe because there is a node-
covering circular walk not containing it as sub-walk (in green); it does not satisfy condition (a) of Theorem 2

Page 3 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

e.g. in [35]), or to find the best k solutions (see e.g., [35,
36]).

Other bioinformatics studies that considered partial
solutions common to all solutions are [37, 38], which
studied base-pairings common to all optimal alignments
of two biological sequences under edit distance. In com-
binatorial optimization, safety has been studied under
the name of persistency. For a given problem on undi-
rected graphs, the persistent nodes or edges are those
present in all solutions to the problem [39]. This question
was first studied for the maximum matching problem
of a bipartite graph [39], and later developed for more
general assignment problems [40]. Later papers studied
persistent nodes present in all maximum stable sets of
a graph [41], or persistent edges present in all traveling
salesman solutions on a particular class of graphs where
the problem is polynomially solvable [42].

Persistency has been recently generalized from sin-
gle edges to sets of edges by the notions of transversal
and blocker [43]: a d-traversal is a set of edges intersect-
ing any optimum solution in at least d elements, and a
d-blocker is a subset of edges whose removal deteriorates
the value of the optimum solution by at least d. These
notions have been studied for maximum matchings in
arbitrary graphs [43], maximum stable sets [44], or for
the maximum weight clique problem [45]. The problem
closest to ours is the one of finding a minimum-cardi-
nality d-transversal of all s–t paths in a directed graph,
shown to be polynomially solvable in [44].

Preliminaries and main definitions
In this paper by graph we always mean a directed graph.
The number of nodes and edges in a graph G are denoted
by n and m, respectively. We do not allow parallel edges,
but allow self-loops and edges of opposite directions. For
any node v ∈ V (G), we use N−(v) to denote its set of in-
neighbors, and N+(v) to denote its set of out-neighbors.

A walk in a graph is a sequence
w = (v0, e0, v1, e1, . . . , vt , et , vt+1) where v0, . . . , vt+1 are
nodes, and each ei is an edge from vi to vi+1 (t ≥ −1). The
length of w is its number of edges, namely t + 1. Walks of
length at least one are called proper. Sometimes, we may
omit explicitly writing the edges of w, and write only its
nodes, i.e., w = (v0, v1, . . . , vt , vt+1). We will also say that
an edge (x, y) ∈ E(G) is a walk of length 1.

A path is a walk where all nodes are distinct. A walk
whose first and last nodes coincide is called a circular
walk. A path (walk) with first node u and last node v will
be called a path (walk) from u to v, and will be denoted as
u-v path (walk). A cycle is a circular walk of length at least
one (a self-loop) whose first and last nodes coincide, and
all other nodes are distinct. If u = v, then by v–u path we

denote a cycle passing through v. A walk is called node-
covering or edge-covering if it passes through each node,
or respectively edge, of the graph at least once.

Given a non-circular walk w = (v0, v1, . . . , vt−1) and
a walk w′

= (u0, . . . ,ud−1), we say that w′ is a sub-walk
of w if there exists an index in w where an occurrence
of w′ starts. If w = (v0, v1, . . . , vt−1, vt = v0) is a circu-
lar walk, then we allow w′ to “wrap around” w. More
precisely, we say that w′ is a sub-walk of w if d ≤ t and
there exists an index i ∈ {0, . . . , t − 1} such that vi = u0,
vi+1 mod t = u1 ,  ..., vi+d−1 mod t = ud−1.

The following reconstruction notion captures the
notion of solution to the metagenomic assembly problem.

Definition 1  (Node-covering metagenomic reconstruc-
tion) Given a graph G, a node-covering metagenomic
reconstruction of G is a collection R of circular walks in G,
such that every node of G is covered by some walk in R.

The following definition captures the walks that appear
in all node-covering metagenomic reconstructions of a
graph (see Fig. 1 for an example).

Definition 2  (Node-safe walk) Let G be a graph with at
least one node-covering metagenomic reconstruction,
and let w be a walk in G. We say that w is a node-safe walk
in G if for any node-covering metagenomic reconstruc-
tion R of G, there exists a circular walk C ∈ R such that w
is a sub-walk of C.

We analogously define edge-covering metagenomic
reconstructions and edge-safe walks of a graph G, by
replacing node with edge throughout. Reconstructions
consisting of exactly one circular node-covering walk
were considered in [19]. The following notion of node-
omnitig was shown in [19] to characterize the node-safe
walks of such reconstructions.

Definition 3  (Node-omnitig, [19]) Let G be a graph and
let w = (v0, e0, v1, e1, . . . , vt , et , vt+1) be a walk in G. We
say that w is a node-omnitig if both of the following con-
ditions hold:

• • for all 1 ≤ i ≤ j ≤ t, there is no proper vj–vi path with
first edge different from ej, and last edge different
from ei−1, and

• • for all 0 ≤ j ≤ t, the edge ej is the only vj–vj+1 path.

Theorem 1  [19] Let G be a strongly connected graph
different from a cycle. A walk w in G is a sub-walk of all
node-covering circular walks in G if and only if w is a
node-omnitig.

Page 4 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

Observe that the circular walks in a node-covering
metagenomic reconstruction of a graph G stay inside its
strongly connected components (because e.g., the graph
of strongly connected components is acyclic). Likewise, a
graph G admits at least one edge-covering metagenomic
reconstruction if and only if G is made up of a disjoint
union of strongly connected graphs. Thus, in the rest
of the paper we will assume that the input graphs are
strongly connected.

Characterizations of safe walks
In this section we give characterizations of node- and
edge-safe walks. The difference between our characteri-
zation below and Theorem 1 lies in the additional con-
dition (b). Note that (b) refers to cycles, whereas the
elements of a node-covering metagenomic reconstruc-
tion are arbitrary circular walks; this is essential in our
algorithm from the next section.

Theorem 2  Let G be a strongly connected graph. A walk
w = (v0, e0, v1, e1, . . . , vt , et , vt+1) in G is a node-safe walk
in G if and only if the following conditions hold:

(a)	 w is a node-omnitig, and
(b)	 there exists x ∈ V (G) such that w is a sub-walk of

all cycles passing through x.

Proof  (⇒) Assume that w is safe. Suppose first that
(a) does not hold, namely that w is not an omnitig. This
implies that either (i) there exists a proper vj-vi path p
with 1 ≤ i ≤ j ≤ t with first edge different from ej, last
edge different from ei−1, or (ii) there exists j, 0 ≤ j ≤ t,
and a vj-vj+1 path p′ different from the edge ej.

Suppose (i) is true. For any node-covering metagen-
omic reconstruction R of G, and any circular walk C ∈ R
such that w is a sub-walk of C, we replace C in R by the
circular walk C ′, not containing w as sub-walk, obtained
as follows. Whenever C visits w until node vj, C ′ continues
with the vj–vi path p, then it follows (vi, ei, . . . , ej−1, vj) ,
and finally continues as C. Since p is proper, and its first
edge is different from ej and its last edge is different from
ei−1, the only way that w can appear in C ′ is as a sub-walk
of p. However, this implies that both vj and vi appear twice
on p, contradicting the fact that p is a vj–vi path. Since
each such circular walk C ′ covers the same nodes as C,
the collection R′ of circular walks obtained by performing
all such replacements is also a node-covering metagen-
omic reconstruction G. This contradicts the safety of w.

Suppose (ii) is true. As above, for any node-covering
metagenomic reconstruction R and any C ∈ R contain-
ing w as sub-walk, we replace C with the circular walk C ′
obtained as follows. Whenever C traverses the edge ej, C ′

traverses instead p′, and thus covers the same nodes as C,
but does not contain w as sub-walk. This also contradicts
the safety of w.

Suppose now that (b) does not hold, namely, that
for every x ∈ V (G), there exists a cycle cx passing
through x such that w is not a sub-walk of cx. The set
R = {cx: x ∈ V (G)} is a node-covering metagenomic
reconstruction of G such that w is not a sub-walk of any
of its elements. This contradicts the safety of w.
(⇐) Let R be a node-covering metagenomic recon-

struction of G, and let C ∈ R be a circular walk covering
the vertex x. If C is a cycle, then (b) implies that w is a
sub-walk of C, from which the safety of w follows.

Otherwise, let G[C] be the subgraph of G induced by
the edges of C. Clearly, C is a node-covering circular walk
of G[C], and thus G[C] is strongly connected. Moreover,
we can argue that w is a node-omnitig in G[C], as fol-
lows. By taking the shortest proper circular sub-walk of C
passing through x we obtain a cycle C̃ passing through x.
From (b), we get that w is a sub-walk of C̃. Since all edges
of C̃ appear in G[C], then also all edges of w appear in
G[C] and thus w is a walk in G[C]. The two conditions
from the definition of node-omnitigs are preserved under
removing edges from G, thus w is a node-omnitig also in
G[C]. By applying Theorem 1 to G[C] we obtain that w
is a sub-walk of all node-covering circular walks of G[C],
and in particular, also of C. We have thus shown that for
every node-covering metagenomic reconstruction R of G,
there exists C ∈ R such that w is a sub-walk of C. There-
fore, w is a node-safe walk for G.� �

The following statement is a simple corollary of condi-
tion (b) from Theorem 2.

Corollary 3  Let G be a strongly connected graph, and
let w be a safe walk in G. Then w is either a path or a cycle.

We now give the analogous characterization of edge-
safe walks. We first recall the analogous definition of
edge-omnitigs from [19]. This is the same as Definition 3,
except that the second condition is missing.

Definition 4  (Edge-omnitig, [19]) Let G be a graph and
let w = (v0, e0, v1, e1, . . . , vt , et , vt+1) be a walk in G. We
say that w is an edge-omnitig if for all 1 ≤ i ≤ j ≤ t, there
is no proper vj–vi path with first edge different from ej,
and last edge different from ei−1.

In [19], it was proven an equivalent of Theorem 1 in
terms of edges, stating that edge-omnitigs character-
ize the walks of a strongly connected graph G that are
sub-walks of all edge-covering circular walks of G. Our

Page 5 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

characterization of the edge-safe walks considered in this
paper is:

Theorem 4  Let G be a strongly connected graph. A walk
w = (v0, e0, v1, e1, . . . , vt , et , vt+1) in G is an edge-safe walk
in G if and only if the following conditions hold:

(a)	 w is an edge-omnitig, and
(b)	 there exists e ∈ E(G) such that w is a sub-walk of all

cycles passing through e.

Theorem 4 could be proved by carefully following the
proof outline of Theorem 2. However, below we give a
simpler proof, by reducing Theorem 4 to the node-cover-
ing case in the graph S(G) obtained from G by sub-divid-
ing every edge once.

Given a graph G, we let S(G) denote the graph obtained
from G by subdividing each edge once. Namely, each
edge (u, v) of G is replaced by two edges (u, xuv), and
(xuv , v), where xuv is a new node for every edge. Observe
that the nodes xuv have exactly one in-neighbor, u, and
exactly one out-neighbor, v. We can analogously define
this operation for a walk w in G, and then consider the
walk S(w) in S(G).

Proof of Theorem 4  The proof follows the outline given
in Fig. 2. We first argue that w is an edge-safe walk in G
if and only if S(w) is a node-safe walk in S(G). Indeed,
observe that the edge-covering metagenomic recon-
structions of G are in bijection with the node-covering
metagenomic reconstructions of S(G), the bijection being
R �→ {S(C): C ∈ R}. Moreover, w is a sub-walk of a walk
C in G if and only if S(w) is a sub-walk of S(C) in S(G).
Therefore, w is an edge-safe walk in G if and only if S(w)
is a node-safe walk in S(G).

It remains to show that w satisfies conditions (a) and
(b) of Theorem 4 for G if and only if S(w) satisfies condi-
tions (a) and (b) of Theorem 2 for S(G).

Condition (a): It immediately follows from the defi-
nition that if S(w) is a node-omnitig in S(G) then w
is an edge-omnitig in G. Assume now that w is an

edge-omnitig in G. By the construction of S(G) and S(w),
between any two consecutive nodes of S(w) there can be
only one path in S(G) (namely, the edge connecting the
two nodes). Therefore, S(w) is a node-omnitig in S(G).

Condition (b): Suppose that there exists an edge
e = (u, v) ∈ E(G) such that all cycles in G passing
through e contain w as sub-walk. Then by construc-
tion all cycles in S(G) passing through xuv ∈ V (S(G))
also contain S(w) as sub-walk. Conversely, suppose that
there exists a node x ∈ V (S(G)) such that all cycles in
S(G) passing through x contain S(w) as sub-walk. If
x is a node of the type xuv for some edge (u, v) of G,
then it also holds that all cycles in G passing through
(u, v) ∈ E(G) contain w as sub-walk. Otherwise, if
x ∈ V (G), then let (x, y) be an arbitrary edge of G out-
going from x; this exists because G is strongly con-
nected. We claim that all cycles in G passing through
(x, y) ∈ E(G) contain w as sub-walk. Indeed, let zxy be
the node of S(G) corresponding to the edge (x, y). The
set of cycles of S(G) passing through zxy is a subset of
the set of cycles of S(G) passing through x. Therefore,
all cycles of S(G) passing through zxy contain S(w) as
sub-walk. We have now reduced this case to the previ-
ous one, when x is a node of the type xuv for some edge
(u, v) of G, and the claim follows. � �

The algorithm for finding all node‑safe walks
In this section we give an algorithm for finding all node-
safe walks of a strongly connected graph. In the next sec-
tion we show how to implement this algorithm to run
in O(m2

+ n3) time. Our results for edge-safe walks are
analogous, and will be given in the last section.

We begin with an easy lemma stating a simple condi-
tion when a maximum overlap of two node-omnitigs is a
node-omnitig.

Lemma 5  Let G be a graph, and let
w = (v0, e0, v1, . . . , vt , et , vt+1) be a walk of length
at least two in G. We have that w is a node-
omnitig if and only if w1 = (v0, e0, v1, . . . , vt) and
w2 = (v1, e1, v2, . . . , vt , et , vt+1) are node-omnitigs and

Fig. 2  The proof outline of Theorem 4

Page 6 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

there is no vt–v1 path with first edge different than et and
last edge different than e0.

Proof  The forward implication is trivial, as by defini-
tion sub-walks of node-omnitigs are node-omnitigs.
For the backward implication, since both w1 and w2 are
node-omnitigs, then for all 0 ≤ j ≤ t, the edge ej is the
only vj–vj+1 path. Since w1 is a node-omnitig, then for all
1 ≤ i ≤ j ≤ t − 1, there is no proper vj-vi path with first
edge different from ej, and last edge different from ei−1.
If there is no vt-v1 path with first edge different than et
and last edge different than e0, we obtain that w is a node-
omnitig.� �

The following definition captures condition (b) from
Theorem 2. Note that the walk w can also be a single
node.

Definition 5  (Certificate) Let G be a graph and let w be
a walk in G. A node x ∈ V (G) such that w is a sub-walk of
all cycles passing through x is called a certificate of w. The
set of all certificates of w will be denoted Cert(w).

By Theorem 2, node-safe walks are those node-omnit-
igs with at least one certificate. In the following lemma
we relate the certificates of a node-omnitig with the cer-
tificates of its nodes. Later, in Lemma 8, we will show
that the certificates of single nodes can be computed
efficiently.

Lemma 6  Let G be a graph and let
w = (v0, e0, v1, . . . , vt , et , vt+1) be a proper node-omnitig in G.
Then Cert(w) = Cert(v0) ∩ Cert(v1) ∩ · · · ∩ Cert(vt+1).

Proof  We prove the claim by double-inclusion. The inclu-
sion Cert(w) ⊆ Cert(v0) ∩ Cert(v1) ∩ · · · ∩ Cert(vt+1)
is trivial, since all cycles passing through a node
x ∈ Cert(w) also contain each of v0, . . . , vt+1.

We now prove the reverse inclusion by induction on
the length of w. We first check the base case when w
has length one. Assume for a contradiction that there is
a cycle C passing through x ∈ Cert(v0) ∩ Cert(v1) and
not having w = (v0, e0, v1) as sub-path. Then, after visit-
ing x, (i) C first traverses v0 and then reaches v1 with a
path different than e0, or (ii) C first traverses v1 and then
v0. The case (i) is immediately excluded, since w is a node-
omnitig and e0 is the only v0–v1. If (ii) holds, then there is
a x-v1 path P1 and a v0-x path P0. However, the concatena-
tion of P0 with P1 is a v0-v1 path different than the edge e0,
which again contradicts the fact that w is a node-omnitig.

We now use the inductive hypothesis to show
that if x ∈ Cert(v0) ∩ Cert(v1) ∩ · · · ∩ Cert(vt+1) ,
then x ∈ Cert(w). We partition w into the two walks
w0 = (v0, e0, v1, . . . , vt) and wt = (vt , et , vt+1). By induc-
tion, since x ∈ Cert(v0) ∩ Cert(v1) ∩ · · · ∩ Cert(vt)
we have x ∈ Cert(w0). Analogously, since
x ∈ Cert(vt) ∩ Cert(vt+1), we have x ∈ Cert(wt). Since
vt is a node in both w0 and wt, then any cycle passing
through x, once it passes through w0 it must continue
passing through wt. Therefore, any cycle passing through
x passes also through w, and hence x ∈ Cert(w). � �

Given a circular walk C = (v0, e0, v1, . . . , vd−1, ed−1,

vd = v0), i ∈ {0, . . . , d − 1} and k ∈ {0, . . . , d}, we denote
by C(i, k) the sub-walk of C starting at vi and of length k,
that is, C(i, k) = (vi, ei, vi+1 mod d , . . . , v(i+k) mod d).

Algorithm 1 finds all node-safe walks of a strongly con-
nected graph G (possibly with duplicates), but does not
return each node-safe walk explicitly. Instead, it returns
a node-covering circular walk C of G and the set of pairs
(i, k) such that C(i, k) is a node-safe walk.

The algorithm works by scanning C and checking
whether each sub-walk of C starting at index i and of
length k is a node-omnitig and has at least one certifi-
cate. If so, then it stores the index i in a set Sk, for every
k. The algorithm first deals with the case k = 1: it first
checks whether C(i, 1) is a node-omnitig (Line 7) and
whether it has at least one certificate (Line 8). The case
k > 1 is analogous. It first checks whether C(i, k − 1)
and C(i + 1 mod d, k − 1) are omnitigs (by checking
the memberships i ∈ Sk−1 and i + 1 mod d ∈ Sk−1) and
that there is no path as in the definition of node-omnitig
(Line 11). Then it checks whether C(i, k) has at least one
certificate (Line 12).

In the next section we show how to pre-process G and
C to perform these verifications in constant time. This
algorithm can be modified to output node-safe walks also
without duplicates. For clarity, we explain this idea in the
proof of Theorem 13, where we also show how to output
only maximal node-safe walks, i.e., those that are not
sub-walks of any other node-safe walk.

Theorem 7  Given a strongly connected graph G, Algo-
rithm 1 correctly computes all the node-safe walks of G,
possibly with duplicates.

Proof  We will first prove by induction on k that the
set Sk contains all those indices i for which C(i, k) is
a node-safe walk of length k. In the base case k = 1,
we explicitly check if each C(i, 1) is a node-omnitig

Page 7 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

(Line 7). We also check if C(i, 1) has at least
 one certificate, by checking (due to Lemma 6) whether
Cert(vi) ∩ Cert(vi+1 mod 1) �= ∅ (Line 8). Thus, for
each i we checked whether C(i, 1) is a node-safe walk
(due to Theorem 2), and the claim follows for S1. We
assume now that the claim is true for Sk−1. For each
i, by Lemma 5, C(i, k) is a node-omnitig if and only if
C(i, k − 1) and C(i + 1 mod d, k − 1) are node-omnit-
igs, and there is no vi+k−1 mod d-vi+1 mod d path with
first edge different than ei+k−1 mod d and last edge dif-
ferent than ei. This is verified in Line 11. In Line 12 we
check whether Cert(C(i, k)) �= ∅ by checking whether
Cert(vi) ∩ · · · ∩ Cert(vi+k mod d) �= ∅ (due to Lemma 6).
Thus the claim is true for all Sk.

By Corollary 3, all node-safe walks of G are paths or
cycles, thus of length at most n. By the definition of node-
safe, they are also sub-walks of C. Thus for each node-safe
walk w of G of length k ≤ n, there exists i ∈ {0, . . . , d − 1}
such that w = C(i, k) and i ∈ Sk.� �

An O(m2
+ n

3) implementation for node‑safe walks
In this section we describe the implementation of Algo-
rithm 1. We first show how to compute the certificates of
all nodes.

Lemma 8  Let G be a strongly connected graph with n
nodes and m edges. We can compute the sets Cert(x) for
all, in time x ∈ V (G)O(mn).

Proof  We start by initializing Cert(x) = {x} for every
node x (recall that G is strongly connected). We then con-
struct the graph G′ by subdividing every node of G once.
That is, we replace every node x of G with two nodes xin
and xout, and add the edge (xin, xout) to G′. Moreover, for
every edge (y, z) of G, we add to G′ the edge (yout , zin).
Observe that also G′ is strongly connected.

For every x ∈ V (G), we compute Cert(x) as follows. We
consider the graph G′

x obtained from G′ by removing the
edge (xin, xout). We compute the strongly connected com-
ponents of G′

x, in time O(m). We then iterate through all
y ∈ V (G) \ {x} and check in constant time whether yin
and yout still belong to the same strongly connected com-
ponent of G′

x. If not, then x belongs to all cycles of G pass-
ing through y, and thus we add y to Cert(x). This takes in
total O(mn) time.� �

The following lemma shows how to check in constant
time the first condition in the definition of node-omnitig.

Lemma 9  Let G be a graph with m edges. We can pre-
process G in time O(m2) and space O(m2) such that for
every two distinct edges, (x1, y1), (x2, y2) ∈ E(G) we can
answer in O(1) time if there is a x1–y2 path in G with first
edge different than (x1, y1) and last edge different than
(x2, y2).

Page 8 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

Proof  We show how to pre-compute a table
a(·, ·) of size O(m2) that for any two distinct edges
(x1, y1), (x2, y2) ∈ E(G) stores the answer to the query.
See Fig. 3 for an illustration.

We iterate through all edges (x1, y1) ∈ E(G), and con-
sider the graph G(x1,y1) obtained from G by removing
(x1, y1). We launch a graph visit in G(x1,y1) from x1 to
compute to which nodes there is a path from x1. By con-
struction, any such path starts with an edge different
than (x1, y1). We then consider each node z ∈ V (G). We
first iterate once through the in-neighbors of z to com-
pute how many of its in-neighbors are reachable from x1
in G(x1,y1); say this number is dz. We then iterate a sec-
ond time through the in-neighbors of z, and for each in-
neighbor w, we let rw be equal to 1 if w is reachable from
x1 in G(x1,y1), and 0 otherwise. We have that there is a x1
-z path in G with first edge different than (x1, y1) and last
edge different than (w, z) if and only if dz − rw > 0. Thus
we set

The complexity of this algorithm is O(m2), because for
every edge (x1, y1), we compute the set of nodes reachable
from x1 in time O(m), and then we process each edge of
G(x1,y1) exactly two times. � �

Using e.g., the result of [46], we can also verify the sec-
ond condition in the definition of node-omnitig in con-
stant time.

Lemma 10  Let G be a graph with m edges, we can
pre-process G in time O(m) such that for every edge
(x, y) ∈ E(G) we can answer in O(1) time whether (x, y) is
the only x–y path .

Proof  A strong bridge is an edge whose removal
increases the number of strongly connected components
of a graph (see e.g., [46]). It is easy to see that an edge
(x, y) ∈ E(G) is the only x–y path if and only if (x, y) is a
strong bridge. In [46] it was shown that all strong bridges
can be computed in linear time in the size of the graph,
from which our claim follows. � �

a((x1, y1), (w, z)) =

{
true, if dz − rw > 0,
false, if dz − rw = 0.

The following lemma shows how to check in con-
stant time condition (b) from Theorem 2. The idea
is to pre-compute, for every index i in C, the small-
est (i.e., left-most) index i − n ≤ ℓ(i) ≤ i such that
Cert(vℓ(i)) ∩ · · · ∩ Cert(vi) �= ∅. C(i, k) has a non-empty
set of certificates if and only if ℓ(i) is at distance at least k
to i, that is, k ≤ i − ℓ(i).

Lemma 11  Let G be a graph with n nodes and m edges,
and let C = (v0, e0, v1, . . . , vd−1, ed−1, vd = v0) be a cir-
cular walk in G, with n ≤ d ≤ n2. We can pre-process G
and C in time , such that for every O(n3) i ∈ {0, . . . , d − 1}
and, we can answer in k ∈ {0, . . . , n} O(1) time if
Cert(vi) ∩ · · · ∩ Cert(vi+k mod d) �= ∅.

Proof  To simplify the notation, given an integer i, by vi
we always mean vi mod d. By Lemma 8, we can compute
Cert(x), for every x ∈ V (G), in O(mn) ∈ O(n3) time. In
addition to computing the index ℓ(i), we also compute the
intersection Li = Cert(vℓ(i)) ∩ · · · ∩ Cert(vi). Each such
intersection set is stored as an array of length n telling in
how many of Cert(vℓ(i)), . . . ,Cert(vi) each x ∈ V (G) is
contained; Li is non-empty if and only if there is an entry
in this array with a value equaling the number of sets
Cert(vℓ(i)), . . . ,Cert(vi).

We begin by computing ℓ(i) and Li for i = 0 in a straight-
forward manner, by trying ℓ(i) = t = i − 1, i − 2, . . . as
long as the resulting intersection is non-empty. Namely, we
initialize Li = Cert(vi) , and update it as Li := Li ∩ Cert(vt)

. We keep decreasing t as long as Li is non-empty. If t
reaches 0, then all sets Cert(x) have a common element,
and the answer is “yes” for any query. Computing each
intersection takes time O(n), and there are O(d) intersec-
tions to compute, giving a total of O(dn) ∈ O(n3) time.

For i > 0, we compute ℓ(i) as follows. We first
compute Li−1 ∩ Cert(vi). If this is non-empty, then
Li := Li−1 ∩ Cert(vi) and ℓ(i) := ℓ(i − 1). By the way we
store intersection sets, this can be done in O(n) time.

Otherwise, we keep increasing ℓ(i) by one from
t = ℓ(i − 1) until the corresponding intersection
Cert(vt) ∩ · · · ∩ Cert(vi) is non-empty. We then set Li
to this intersection and ℓ(i) = t. By the way we store the
intersections, it follows that we can compute the new
intersection in time O(n), by scanning the current inter-
section and removing the elements of Cert(vt) from it, by
decreasing by one the counters of its elements. Overall,
such new intersections are computed at most d times,
because for each i we start this scan from index ℓ(i − 1)
onwards, and always ℓ(i − 1) ≤ ℓ(i) ≤ i holds. This gives
a total complexity of O(nd) ∈ O(n3). � �

We are now ready to combine these lemmas into the
main theorem of this section.Fig. 3  An illustration of the proof of Lemma 9

Page 9 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

Theorem 12  Algorithm 1 can be implemented to run in
time O(m2

+ n3) for any strongly connected graph with n
nodes and m edges.

Proof  Any strongly connected graph admits a node-cov-
ering circular walk C = (v0, e0, v1, . . . , vd−1, ed−1, vd = v0)
of length d ∈ {n, . . . , n2}, that can be constructed in time
O(nm) ∈ O(n3). For example, one can label the nodes of
G as v1, . . . , vn, start at v1, then follow an arbitrary path
until v2 (which exists since G is strongly connected), and
then continue from v2 in the same manner. This is the
same argument given in [19].

By Lemma 8, we can compute in time O(mn) ∈ O(n3)
the sets Cert(x) for all x ∈ V (G). We pre-process G
and C as indicated in Lemmas 9, 10, and 11, in time
O(m2

+ n3) . For every length k ∈ {1, . . . , n}, and every
index i ∈ {0, . . . , d − 1}, this allows us to perform all
checks in constant time. Checking membership to Sk−1
can also be done in constant time, by storing each set Sk
as a bitvector of length d.� �

In the next section we discuss how to optimize Algo-
rithm 1 to start with a node-covering metagenomic
reconstruction of minimum total length. However, there
are graphs in which any node-covering metagenomic
reconstruction has length �(n2), see Fig. 4.

Additional results
Maximal node‑safe walks without duplicates
In a practical genome assembly setting we want to recon-
struct fragments of the genomes as long as possible. As
such, we are interested only in maximal node-safe walks,
that is, in node-safe walks that are not sub-walks of any
other node-safe walk. A trivial way to obtain these is to
take the output of Algorithm 1, convert it into the set of
all node-safe walks of G, and run a suffix-tree-based algo-
rithm for removing the non-maximal ones, in time lin-
ear in their total length. However, given a node-covering

circular walk C of length d ≤ n2, the total length of the
node-safe walks is at most

∑n
k=0 kd ∈ O(n4).

In the next theorem we show how to reduce this time
complexity to O(m2

+ n3 log n). The main observation is
that a node-safe walk of length k is maximal if it is not
extended into a node-safe walk of length k + 1. We avoid-
ing outputting duplicate maximal walks by traversing a
suffix-tree built from C to check for previous occurrences
of each walk of length k.

Theorem 13  Given a strongly connected graph G with n
nodes and m edges, Algorithm 1 can be modified to output
the maximal node-safe walks of G explicitly and without
duplicates, with a running time of O(m2

+ n3 log n).

Proof  Let C = (v0, . . . , vd = v0) be a node-covering cir-
cular walk C of G, of length n ≤ d ≤ n2. At any position
in C there can start the occurrence of at most one max-
imal node-safe walk. By Corollary 3, the length of each
node-safe walk is at most n, thus the sum of the lengths
of all maximal node-safe walks of G is O(n3). This implies
that if we find the occurrences in C of all maximal node-
safe walks without duplicates, then we can output all of
them explicitly within the stated time bound.

A node-safe walk w of length k is maximal if no occur-
rence C(i, k) of w in C was extended left or right at step
k + 1. We can keep track of all previous occurrences of
w in C, as follows. Initially, we build the suffix tree T of
the (linear) string C ′

= v0v1 . . . vdv1 . . . vn−2# over the
alphabet � = V (G) ∪ {#}, where # is a new symbol. This
takes time linear in the size of C ′ and in the alphabet
size |�| = n, thus O(n2) [47]. As we scan C for a length
k + 1 ∈ {1, . . . , n}, we maintain, as we discuss below, a
pointer in T to the node ui such that the label of the path
from the root to ui spells C(i, k). In ui we store the infor-
mation of whether any occurrence the walk w = C(i, k)
was extended at step k + 1.

As we advance from i to i + 1, we follow a so-called
suffix-link in T to move to the node u∗ such that the label
from the root of T to u∗ spells C(i + 1, k − 1) (i.e., C(i, k)
with its first character removed). For a detailed discus-
sion on the properties of the suffix tree, see e.g., [48]. We
then follow the normal tree edge exiting from u∗ labeled
vi+1 mod d. We thus advance to the node ui+1 of T such
that the path from the root to ui+1 spells C(i + 1, k). See
Fig. 5 for an illustration. After traversing once C at step
k + 1 and detecting which node-safe walks of length k are
maximal, we traverse C again to output these node-safe
walk.

After building the suffix tree using [47], the children of
each node are organized in lexicographic order. Descend-
ing in the tree takes at most O(log(|�|)) = O(log n)
time per step for binary searching the first character of

Fig. 4  An extremal graph G showing that the upper bound on the
complexity of Algorithm 1 from Theorem 12 is attained. The vertex
set of G is {a1, . . . , an/2, b1, . . . , bn/2}. Any node- or edge-covering
metagenomic reconstruction of G consists of circular walk(s) whose
total length is �(n2)

Page 10 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

each edge. Following suffix links can be be amortized to
the descending operations [48]. Thus, the above addi-
tional phase takes time O(n3 log n). The pre-compu-
tations needed in the proof of Theorem 12 take time
O(m2

+ n3) , from which the claimed time complexity
bound follows. � �

The algorithm for finding edge‑safe walks
In this section we adapt Algorithm 1 and its implemen-
tation to find edge-safe walks, as characterized by The-
orem 4. This will result in an algorithm running in time
O(m2n). The proof of the following theorem is entirely
analogous to the node-safe case.

Theorem 14  Let G be a strongly connected graph with n
nodes and m edges. In time we can output an edge-cover-
ing circular walk O(m2n) C, and the set of all pairs (i, k)
such that C(i, k) is an edge-safe walk of G.

Proof  The proof is analogous to the node-safe case, and
thus we briefly sketch the differences. In the edge-cover-
ing case, the set of certificates of a walk w consists of the
edges e such that all cycles passing through e contain w as
sub-walk. Analogously to Lemma 6, we have that the set
of certificates of a walk w equals the intersection of the
sets of certificates of its individual edges. The algorithm
for the edge-safe case is that same as Algorithm 1, with
the difference that we now start with an edge-covering
circular walk C and we do not check anymore that each
C(i, 1) is the only vi–vi+1 path.

By the same argument given in the proof of Theo-
rem 12, such a circular walk C has length at most mn and
can be found in time O(mn). The certificates of all edges
can be similarly computed in time O(m2) (now there is no
need to subdivide nodes into single edges). Lemma 9 can
be applied verbatim without modifications. The analog
of Lemma 11 now starts with an edge-covering circular
walk C of length O(mn). The only difference in its proof is
that the sets of certificates now have size at most m, thus
their intersection takes time O(m). This implies that we
can pre-compute G and C in time O(m2n).

After this pre-processing phase, the algorithm itself
works in time O(mn2), since the edge-covering circular
walk C has length O(mn).� �

With a proof identical to the one of Theorem 13, we
also obtain the following result.

Theorem 15  Given a strongly connected graph G with
n nodes and m edges, we can output the maximal edge-
safe walks of G explicitly and without duplicates, in time
of O(m2n log n).

Optimizations to the algorithms
A trivial way to optimize Algorithm 1 is to start with a
node-covering circular walk of minimum length. How-
ever, this is an NP-hard problem, since G has a node-
covering circular walk of length n if and only if G is
Hamiltonian. Observe though that instead of a single
node-covering circular walk, we can start with a node-
covering metagenomic reconstruction possibly consist-
ing of multiple circular walks, and apply Algorithm 1 to
each walk in the reconstruction. This is correct by defini-
tion, since node-safe walks are sub-walks of some walk in
any node-covering metagenomic reconstruction.

Finding a node-covering metagenomic reconstruction
whose circular walks have minimum total length can be
solved with a minimum-cost circulation problem (see
e.g., [49, 50] for basic results on minimum-cost circula-
tions). From G, we construct the graph G′ by subdivid-
ing every node of G once (recall the construction from
Lemma 8). We set demand 1 and cost 0 on each edge
(xin, xout), with x ∈ V (G). On all edges corresponding to
original edges of G we set demand 0 and cost 1. A circu-
lation f in G′ satisfying the demands can be decomposed
into cycles, which form a node-covering metagen-
omic reconstruction in G. The total length of these
cycles in G equals the cost of f. Since G′ has no capaci-
ties, a minimum-cost circulation in G′ can be found in
time O(n logU(m+ n log n)), where U is the maximum

Fig. 5  Illustration of the proof of Theorem 13; we are scanning C with
k = 2. We illustrate the algorithm using the suffix trie of C ′: the suffix
tree is obtained by compacting the unary paths into single edges,
and then many of the suffix links become implicit; we draw the suffix-
link from u2 to u∗ with a dashed arrow. Following an implicit suffix link
needs to be simulated using explicit suffix link from a parent. The cost
of this can be amortized to the descending in the tree

Page 11 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

value of a demand, using the algorithm of Gabow and
Tarjan [51]. All demands in G′ are 1, thus this bound
becomes O(nm+ n2 log n).

In the algorithm for finding all edge-covering circular
walks, we need to find an edge-reconstruction whose
circular walks have minimum total length. This can be
solved as above, without subdividing the nodes of G. We
add to every edge the demand 1 and cost 1 and then com-
pute a minimum-cost circulation. The decomposition of
the optimal circulation into cycles forms an edge-recon-
struction of G.

Conclusions and future work
We consider [19] and the present work as starting points
for characterizing all safe solutions for natural assembly
problem formulations, and thus obtaining safe and com-
plete algorithms.

As future work, we plan to study formulations where
the assembly solution is made up of non-circular cover-
ing walks, or where the assembly solutions consist of
a given number of covering walks (e.g., a given number
of chromosomes). In terms of real graph instances, the
worst-case complexity of our algorithm may be prohibi-
tive, and thus improving it is an important problem.

We also leave for future work an idealized experimen-
tal study similar to what was done for the single genome
case in [19]. This compared the lengths and biological
content of some classes of safe solutions known in the lit-
erature, on de Bruijn graphs constructed from error-free,
single-stranded simulated reads.

The ultimate goal of a “safe and complete” approach
is to be adapted to the peculiarities of real data, such as
sequencing errors, insufficient sequencing coverage,
reverse complements. However, our belief is that we
first need a clean and solid theoretical foundation, which
can later be extended, or weakened, to account for such
features.

Authors’ contributions
NOA and AIT devised the problem formulation, NOA found the graph-
theoretic characterizations of safe walks, and NOA, VM and AIT devised the
algorithms. All authors read and approved the final manuscript.

Acknowledgements
We thank Paul Medvedev for discussions on the proof of Theorem 4, and
Martin Milanič for pointing us topersistent solutions and blockers.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was partially supported by the Academy of Finland under Grant
284598 (CoECGR) to NOA and VM and Grant 274977 to AIT.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 10 February 2017 Accepted: 20 January 2018

References
	1.	 Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation

sequencing data. Genomics. 2010;95(6):315–27.
	2.	 Nagarajan N, Pop M. Sequence assembly demystified. Nat Rev Genet.

2013;14(3):157–67.
	3.	 Simpson JT, Pop M. The theory and practice of genome sequence

assembly. Annu Rev Genom Hum Genet. 2015;16:153–62. https://doi.
org/10.1146/annurev-genom-090314-050032.

	4.	 Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21(suppl–2):79–85.

	5.	 Simpson JT, Durbin R. Efficient de novo assembly of large genomes using
compressed data structures. Genome Res. 2011;22(3):549–56.

	6.	 Idury RM, Waterman MS. A new algorithm for DNA sequence assembly. J
Comput Biol. 1995;2(2):291–306.

	7.	 Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA
fragment assembly. Proc Nat Acad Sci. 2001;98:9748–53.

	8.	 Nagarajan N, Pop M. Parametric complexity of sequence assembly:
theory and applications to next generation sequencing. J Comput Biol.
2009;16(7):897–908.

	9.	 Medvedev P, Brudno M. Maximum likelihood genome assembly. J Com-
put Biol. 2009;16(8):1101–16.

	10.	 Medvedev P, Georgiou K, Myers G, Brudno M. Computability of models
for sequence assembly. WABI. 2007;4645:289–301.

	11.	 Kapun E, Tsarev F. De Bruijn superwalk with multiplicities problem is NP-
hard. BMC Bioinform. 2013;14(Suppl 5):7.

	12.	 Lysov IP, Florent’ev VL, Khorlin AA, Khrapko KR, Shik VV. Determination of
the nucleotide sequence of DNA using hybridization with oligonucleo-
tides. A new method. Doklady Akademii nauk SSSR. 1988;303(6):1508–11.

	13.	 Narzisi G, Mishra B, Schatz MC. On algorithmic complexity of biomolecu-
lar sequence assembly problem. Algorithms for computational biology.
2014. Springer, Cham, p. 183–95.

	14.	 Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol İ. ABySS:
a parallel assembler for short read sequence data. Genome Res.
2009;19(6):1117–23.

	15.	 Butler J, Maccallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES,
Nusbaum C, Jaffe DB. Allpaths: de novo assembly of whole-genome
shotgun microreads. Genome Res. 2008;18(5):810–20.

	16.	 Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K.
De novo assembly of human genomes with massively parallel short read
sequencing. Genome Res. 2010;20(2):265.

	17.	 Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat Genet.
2012;44(2):226–32.

	18.	 Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821–9.

	19.	 Tomescu AI, Medvedev P. Safe and complete contig assembly via omnit-
igs. In: Singh M. (ed.). Research in computational molecular biology-20th
annual conference, RECOMB 2016, Santa Monica, CA, USA, April 17–21,
2016. In: Proceedings lecture notes in computer science. 2016, vol 9649,
p. 152– 63. Springer, cham. https://doi.org/10.1007/978-3-319-31957-5.

	20.	 Kececioglu JD, Myers EW. Combinatiorial algorithms for DNA sequence
assembly. Algorithmica. 1995;13(1/2):7–51.

	21.	 Jackson BG. Parallel methods for short read assembly. Ph.D. Thesis, Iowa
State University. 2009.

	22.	 Kingsford C, Schatz MC, Pop M. Assembly complexity of prokaryotic
genomes using short reads. BMC Bioinform. 2010;11(1):21.

https://doi.org/10.1146/annurev-genom-090314-050032
https://doi.org/10.1146/annurev-genom-090314-050032
https://doi.org/10.1007/978-3-319-31957-5

Page 12 of 12Obscura Acosta et al. Algorithms Mol Biol (2018) 13:3

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	23.	 Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA,
Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas
MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson
H, Pfannkoch C, Rogers Y-H, Smith HO. Environmental genome shotgun
sequencing of the Sargasso sea. Science. 2004;304(5667):66–77. https://
doi.org/10.1126/science.1093857.

	24.	 Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM,
Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. Community structure
and metabolism through reconstruction of microbial genomes from the
environment. Nature. 2004;428(6978):37–43.

	25.	 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,
Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang
B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen
T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-
Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin
N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O,
Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J. A human gut micro-
bial gene catalogue established by metagenomic sequencing. Nature.
2010;464(7285):59–65.

	26.	 Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois A, Khleb-
nikov A, van Hylckama Vlieg JET, Punit S, Glickman JN, Onderdonk A,
Glimcher LH, Garrett WS. Bifidobacterium animalis subsp. lactis fermented
milk product reduces inflammation by altering a niche for colito-
genic microbes. Proc Nat Acad Sci. 2010;107(42):18132–7. https://doi.
org/10.1073/pnas.1011737107.

	27.	 Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE,
Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath
AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins.
Nature. 2009;457(7728):480–4. https://doi.org/10.1038/nature07540.

	28.	 Namiki T, Hachiya T, Tanaka H, Sakakibara Y. Metavelvet: an exten-
sion of velvet assembler to de novo metagenome assembly from
short sequence reads. Nucleic Acids Res. 2012;40(20):155. https://doi.
org/10.1093/nar/gks678.

	29.	 Laserson J, Jojic V, Koller D. Genovo: de novo assembly for metage-
nomes. J Comput Biol. 2011;18(3):429–33. https://doi.org/10.1089/
cmb.2010.0244.

	30.	 Peng Y, Leung HCM, Yiu SM, Chin FYL. Meta-idba: a de novo assembler
for metagenomic data. Bioinformatics. 2011;27(13):94–101. https://doi.
org/10.1093/bioinformatics/btr216.

	31.	 Koren S, Treangen TJ, Pop M. Bambus 2: scaffolding metagenomes. Bioin-
formatics. 2011;27(21):2964–71. https://doi.org/10.1093/bioinformatics/
btr520.

	32.	 Peng Y, Leung HCM, Yiu SM, Chin FYL. Idba-ud: a de novo assembler
for single-cell and metagenomic sequencing data with highly uneven
depth. Bioinformatics. 2012;28(11):1420–8. https://doi.org/10.1093/
bioinformatics/bts174.

	33.	 Boisvert S, Raymond F, Godzaridis É, Laviolette F, Corbeil J, et al. Ray Meta:
scalable de novo metagenome assembly and profiling. Genome Biol.
2012;13(12):122.

	34.	 Haider B, Ahn TH, Bushnell B, Chai J, Copeland A, Pan C. Omega: an
overlap-graph de novo assembler for metagenomics. Bioinformatics.
2014;30(19):2717–22. https://doi.org/10.1093/bioinformatics/btu395.

	35.	 Vingron M. Near-optimal sequence alignment. Curr Opin Struct Biol.
1996;6(3):346–52.

	36.	 Eppstein D. k-best enumeration. Encyclopedia of algorithms. Berlin:
Springer; 2015.

	37.	 Vingron M, Argos P. Determination of reliable regions in protein sequence
alignments. Protein Eng. 1990;3(7):565–9. https://doi.org/10.1093/
protein/3.7.565.

	38.	 Chao K-M, et al. Locating well-conserved regions within a pairwise align-
ment. Comput Appl Biosci. 1993;9(4):387–96.

	39.	 Costa MC. Persistency in maximum cardinality bipar-
tite matchings. Oper Res Lett. 1994;15(3):143–9. https://doi.
org/10.1016/0167-6377(94)90049-3.

	40.	 Cechlárová K. Persistency in the assignment and transportation
problems. Math Methods Oper Res. 1998;47(2):243–54. https://doi.
org/10.1007/BF01194399.

	41.	 Boros E, Golumbic MC, Levit VE. On the number of vertices belonging
to all maximum stable sets of a graph. Discret Appl Math. 2002;124(1—-
3):17–25. https://doi.org/10.1016/S0166-218X(01)00327-4.

	42.	 Lacko V. Persistency in the traveling salesman problem on halin graphs.
Discussiones Mathematicae Graph Theory. 2000;20(2):231–42. https://doi.
org/10.7151/dmgt.1122.

	43.	 Zenklusen R, Ries B, Picouleau C, de Werra D, Costa M, Bentz C. Block-
ers and transversals. Discret Math. 2009;309(13):4306–14. https://doi.
org/10.1016/j.disc.2009.01.006.

	44.	 Costa M, de Werra D, Picouleau C. Minimum d-blockers and d-transversals
in graphs. J Comb Optim. 2011;22(4):857–62. https://doi.org/10.1007/
s10878-010-9334-6.

	45.	 Pajouh FM, Boginski V, Pasiliao EL. Minimum vertex blocker clique prob-
lem. Networks. 2014;64(1):48–64. https://doi.org/10.1002/net.21556.

	46.	 Italiano GF, Laura L, Santaroni F. Finding strong bridges and strong articu-
lation points in linear time. Theor Comput. 2012;447:74–84. https://doi.
org/10.1016/j.tcs.2011.11.011.

	47.	 Farach M. Optimal suffix tree construction with large alphabets. In: Proc.
38th IEEE symposium on foundations of computer science (FOCS). 1997.
p. 137–43.

	48.	 Crochemore M, Rytter W. Jewels of stringology. Singapore: World Scien-
tific Publishing; 2002. p. 1310.

	49.	 Schrijver A. Combinatorial optimization. Berlin: Springer; 2003.
	50.	 Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-scale algorithm

design. Cambridge: Cambridge University Press; 2015.
	51.	 Gabow HN, Tarjan RE. Faster scaling algorithms for network problems.

SIAM J Comput. 1989;18(5):1013–36.

https://doi.org/10.1126/science.1093857
https://doi.org/10.1126/science.1093857
https://doi.org/10.1073/pnas.1011737107
https://doi.org/10.1073/pnas.1011737107
https://doi.org/10.1038/nature07540
https://doi.org/10.1093/nar/gks678
https://doi.org/10.1093/nar/gks678
https://doi.org/10.1089/cmb.2010.0244
https://doi.org/10.1089/cmb.2010.0244
https://doi.org/10.1093/bioinformatics/btr216
https://doi.org/10.1093/bioinformatics/btr216
https://doi.org/10.1093/bioinformatics/btr520
https://doi.org/10.1093/bioinformatics/btr520
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1093/bioinformatics/btu395
https://doi.org/10.1093/protein/3.7.565
https://doi.org/10.1093/protein/3.7.565
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.1007/BF01194399
https://doi.org/10.1007/BF01194399
https://doi.org/10.1016/S0166-218X(01)00327-4
https://doi.org/10.7151/dmgt.1122
https://doi.org/10.7151/dmgt.1122
https://doi.org/10.1016/j.disc.2009.01.006
https://doi.org/10.1016/j.disc.2009.01.006
https://doi.org/10.1007/s10878-010-9334-6
https://doi.org/10.1007/s10878-010-9334-6
https://doi.org/10.1002/net.21556
https://doi.org/10.1016/j.tcs.2011.11.011
https://doi.org/10.1016/j.tcs.2011.11.011

	A safe and complete algorithm for metagenomic assembly
	Abstract
	Background:
	Approach:
	Results:

	Background
	Related work

	Preliminaries and main definitions
	Characterizations of safe walks
	The algorithm for finding all node-safe walks
	An implementation for node-safe walks
	Additional results
	Maximal node-safe walks without duplicates
	The algorithm for finding edge-safe walks
	Optimizations to the algorithms

	Conclusions and future work
	Authors’ contributions
	References

