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Abstract 

Background:  A profile-comparison method with position-specific scoring matrix (PSSM) is among the most accurate 
alignment methods. Currently, cosine similarity and correlation coefficients are used as scoring functions of dynamic 
programming to calculate similarity between PSSMs. However, it is unclear whether these functions are optimal for 
profile alignment methods. By definition, these functions cannot capture nonlinear relationships between profiles. 
Therefore, we attempted to discover a novel scoring function, which was more suitable for the profile-comparison 
method than existing functions, using neural networks.

Results:  Although neural networks required derivative-of-cost functions, the problem being addressed in this study 
lacked them. Therefore, we implemented a novel derivative-free neural network by combining a conventional neural 
network with an evolutionary strategy optimization method used as a solver. Using this novel neural network system, 
we optimized the scoring function to align remote sequence pairs. Our results showed that the pairwise-profile 
aligner using the novel scoring function significantly improved both alignment sensitivity and precision relative to 
aligners using existing functions.

Conclusions:  We developed and implemented a novel derivative-free neural network and aligner (Nepal) for 
optimizing sequence alignments. Nepal improved alignment quality by adapting to remote sequence alignments 
and increasing the expressiveness of similarity scores. Additionally, this novel scoring function can be realized using 
a simple matrix operation and easily incorporated into other aligners. Moreover our scoring function could poten-
tially improve the performance of homology detection and/or multiple-sequence alignment of remote homologous 
sequences. The goal of the study was to provide a novel scoring function for profile alignment method and develop 
a novel learning system capable of addressing derivative-free problems. Our system is capable of optimizing the per-
formance of other sophisticated methods and solving problems without derivative-of-cost functions, which do not 
always exist in practical problems. Our results demonstrated the usefulness of this optimization method for derivative-
free problems.

Keywords:  Dynamic programming, Profile alignment, Neural network, Evolutionary strategy, Derivative-free 
optimization
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Background
The profile-comparison alignment method with a posi-
tion-specific scoring matrix (PSSM) [1] is a highly accu-
rate alignment method. The PSSM is a two dimensional 
vector (matrix) that stores sequence lengths, with each 
element in the vector consisting of a 20-dimensional 
numerical vector where each value represents the like-
lihood of the existence of each amino acid at a site in a 
biological sequence. Here, we designed the vector inside 
a PSSM as a position-specific scoring vector (PSSV). In 
profile alignment, cosine similarity or the correlation 
coefficient between two PSSVs is generally computed to 
measure similarity or dissimilarity between the two sites 
in the sequences of interest using dynamic programming 
(DP) [2, 3]. Profile alignment methods using these func-
tions have long been used successfully [4], and the per-
formance of profile alignment has improved in recent 
decades. As examples, HHalign improved alignment 
quality using profiles constructed with a hidden Markov 
model, which provided more information than a PSSM 
[5], MUSTER incorporated protein-structure informa-
tion into a profile [3], and MRFalign utilized Markov ran-
dom fields to improve alignment quality [6]. However, 
although various methods have been devised from differ-
ent perspectives, studies to develop the scoring function 
for PSSV comparison using sophisticated technologies 
are lacking. Moreover, there remains room for improve-
ment in the performance of sequence alignment, espe-
cially for remote sequence alignment [7–9]; therefore, it 
is important to continue developing aligners from various 
perspectives. Although cosine similarity or a correlation 
coefficient is normally used for comparison of PSSVs, in 
principle, they are unable to capture nonlinear relation-
ships between vectors. However, the similarity between 
two amino acid positions is not always explained by lin-
ear relationship, which is merely one of a particular case 
of a nonlinear relationships. Because scoring functions 
are directly related to the quality of biological-sequence 
alignment, development of a novel function capable of 
capturing nonlinear relationships reflecting similarity 
between two sites in sequences is required.

The expression of nonlinear functions can be realized 
by neural networks. A neural network is a computing 
system that mimics biological nervous systems. Theo-
retically, if a proper activation function is set on middle 
layer(s) of a network, it can approximate any function 
including nonlinear functions [10]. Neural networks have 
attracted interest from various areas of research, includ-
ing bioinformatics, due to recent advances in computa-
tional technologies and the explosive increase in available 
biological data. In recent years, these algorithms have 
been vigorously applied for bioinformatics purposes, 
including several studies associated with application of 

deep neural network models to predict protein–protein 
interactions [11, 12], protein structure [13, 14], and vari-
ous other biological conditions, such as residue-contact 
maps, backbone angles, and solvent accessibility [15, 16]. 
These neural networks used backpropagation as a solver, 
which requires a derivative-of-cost function to search 
for optimal parameters [17]. However, few studies have 
implemented derivative-free neural networks.

Since neural networks are capable of implementing 
nonlinear functions, they are suitable for developing 
novel scoring functions for PSSV comparison. Therefore, 
in this study we used a neural network to optimize a non-
linear scoring function associated with PSSV compari-
son by combining two PSSVs as an input vector. Since 
we lacked a target vector normally required to imple-
ment supervised learning, we calculated the entire DP 
table for the input sequences, and the difference between 
the resultant alignment and the correct alignment was 
used to calculate cost of learning. Due to the nature of 
the problem, we could not use the backpropagation 
method as a solver for optimal weight and bias searches, 
because we lacked the derivative-of-cost function nor-
mally required. These issues are common when applying 
such methods to real-world problems. It is impossible 
to calculate a derivative for problems where the output 
vectors are not directly used for computation of cost 
function such as cross entropy or square error [18]. In 
this study, the outputs of a neural network were similar-
ity score between two PSSVs and not directly used for 
computation of the cost function but indirectly used for 
computation of dynamic programming. The possibility of 
computing neural network inferences without derivatives 
would be useful for solving such problems.

Here, we used a covariance matrix adaptation-evolu-
tion strategy (CMA-ES) [19] as a solver for the neural 
network to implement a derivative-free neural network 
system. CMA-ES is an adaptive-optimization method 
that modifies the basic evolutionary strategy [20]. As 
advantages, it requires a smaller number of hyperpa-
rameters than other evolutionary strategy methods 
[19], and when the dimensionality of an objective func-
tion is large, it offers higher computation speeds rela-
tive to other derivative-free optimization methods, such 
as the Nelder–Mead method, which requires compu-
tation times proportional to the dimensionality of the 
objective function [21]. In this study, we implemented a 
derivative-free neural network system using CMA-ES 
and produced a high-performance scoring function for 
remote-sequence alignment. Our goal was to develop a 
novel scoring function for profile alignment method and 
provide a novel derivative-free learning method useful 
for optimizing derivative-free problems.
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Methods
Dataset
We downloaded the non-redundant subset of SCOP40 
(release 1.75) [22], in which sequence identity between 
any sequence pair is <  40%, from ASTRAL [23]. We 
selected the remote-sequence subset, because we wanted 
to improve remote-sequence alignment quality, which is 
generally a difficult problem for sequence aligners. SCOP 
is a protein-domain database where sequences are classi-
fied in a hierarchical manner by class, fold, superfamily, 
and family. To guarantee independence between a learn-
ing and test dataset, all notations of superfamily in the 
dataset were sorted in alphabetical order, and all super-
families, the ordered numbers of which were multiples 
of three, were classified into a learning dataset, whereas 
the others were classified into a test dataset. This proce-
dure is often used in existing studies for protein sequence 
analysis [8, 9], in order to cope with a problem of overfit-
ting. We obtained 3726 and 6843 sequences in the learn-
ing and test datasets, respectively. We then randomly 
extracted a maximum of 10 pairs of sequences from each 
superfamily to negate a bias induced by different vol-
umes of each superfamily and used these sequence pairs 
for subsequence construction of a PSSM. We confirmed 
that sequences in each pair were from the same family 
in order to obtain decent reference alignments. We ulti-
mately obtained 1721 and 3195 sequence pairs in the 
learning and test datasets, respectively. These datasets 
are provided at https://github.com/yamada-kd/nepal.

Construction of profiles and reference alignments
We constructed PSSMs for all sequences in the learning 
and test datasets using DELTA-BLAST version 2.2.30+ 
with the Conserved Domain Database for DELTA-
BLAST version 3.12 [24]. Reference alignments were 
constructed through structural alignment of protein 
steric structures, which corresponded to sequences of 
interest using TM-align [25]. All structure data were also 
downloaded from ASTRAL [23].

Learning network
Figure  1 shows the learning network computed in this 
study. We calculated similarity scores between two PSSVs 
using the neural network. Initially, the summation of 
matrix products between xa (PSSV A) and W1a, xb (PSSV 
B) and W1b, and 1 (bias) and b1 in the neural network 
were calculated. Here, xa and xb were 20-element vector 
calculated from a DELTA-BLAST search, where each ele-
ment of the vector represented the likelihood of existence 
of each amino acid, and W1a, W1b, 1, and b1 were weight 
and bias parameters of the neural network. The resultant 
vector was transformed by an activating function, φ(u). 

The rectified linear unit [26] was utilized as the activation 
function:

 
The summation of the dot products between the trans-

formed vector, φ(u) and w2, and 1 and b2 was calculated, 
where u was a vector representing the middle layer, and 
w2, 1, and b2 were parameters of the neural network. The 

(1)ϕ(u) = max(0, u).
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Fig. 1  Schematic diagram of the learning network. Upper case letters 
in italics and bold, lowercase letters in italics and bold, and lowercase 
letters in italics represent matrix, vector, and scalar values, respec-
tively. Here, xa and xb represent the input vector, W1a, W1b, and w2 
are weight matrices and vectors, b1 and b2 are bias vectors and scalar 
values, u is the middle layer vector, and y is the output value (the 
similarity score between PSSV A and PSSV B). The activating function 
is represented by φ(u). The square bracket represents the index of 
each vector

https://github.com/yamada-kd/nepal


Page 4 of 8Yamada ﻿Algorithms Mol Biol  (2018) 13:5 

resultant value was used as the similarity score for the 
two sites. Namely, the forward calculation was computed 
by the equation:

where y, a scalar value, is the similarity score.
The complete DP table was calculated using the simi-

larity score, and a final pairwise alignment was produced. 
The pairwise alignment and its corresponding reference 
alignment were compared to each other, and an align-
ment sensitivity score was calculated. Subtraction of the 
alignment-sensitivity score from 1 was used as the cost 
for searching the optimal weight using the neural net-
work with CMA-ES.

We set the weights W1a and W1b equal to each other 
(shared weight) in order to apply the same value to the 
network outputs, even though the input order of the two 
PSSVs was opposite one another:

The number of units of the middle layer was set to 144. 
To compute backward calculations for the network, we 
used CMA-ES. As hyperparameters for CMA-ES, we 
set σ, λ, and μ to 0.032, 70, and 35, respectively. Here, 
σ is almost equivalent to the step size (learning rate) of 
the normal gradient-descent method, and λ and μ indi-
cate the number of descendant and survival individuals 
in the evolutionary process, respectively. We input train-
ing datasets into the learning system in a batch manner. 
The maximum number of epochs was set to a relatively 
small number (150) to accommodate our computational 
environment. During learning, the performance of the 
scoring function was evaluated on the validation data-
set starting from the 50th epoch to the final epoch in five 
steps, and a scoring function that maximized the valida-
tion score was selected as the final product of the learn-
ing process. The initial weight and bias were derived from 
parameters that mimicked the correlation coefficient. 
To generate the initial weight, we randomly generated 
200,000 PSSV pairs and learned them using multilayer 
perceptron with hyperparameters (the dimensions of the 
weight and activating function) identical to those already 
described. In addition to the parameters, we simultane-
ously optimized the open- and extension-gap penalties, 
the initial values of which were set to −  1.5 and −  0.1, 
respectively. The source code for our learning method is 
provided at https://github.com/yamada-kd/nepal.

Alignment algorithm
In this study, we implemented the semi-global alignment 
method (global alignment with free-end-gaps) [27, 28].

(2)y = w2ϕ(xaW 1a + xbW 1b + b1)+ b2,

(3)W 1a = W 1b.

Metrics of alignment quality
Alignment quality was evaluated using alignment sensi-
tivity and precision [9]. The alignment sensitivity was cal-
culated by dividing the number of correctly aligned sites 
by the number of non-gapped sites in a reference align-
ment. By contrast, alignment precision was calculated 
by dividing the number of correctly aligned sites by the 
number of non-gapped sites in a test alignment.

Calculation of residue interior propensity
The relative accessible surface area (rASA) for residues 
of all proteins in the learning and test datasets was cal-
culated by areaimol in the CCP4 package version 6.5.0 
[29]. The residues associated with rASA <  0.25 were 
counted as interior residues, and the other residues were 
counted as surface residues based on methods used pre-
viously [30]. We divided the ratio of the interior residues 
by the background probability associated with these resi-
dues to calculate the residue interior propensity, which 
represented the likelihood of a residue existing inside a 
protein. A propensity >  1 signified that the probability 
of the residue being inside the protein was higher than 
expected.

Statistical analysis
Statistical tests, including Wilcoxon signed-rank test with 
Bonferroni correction and Spearman’s rank correlation, 
were computed using the functions pairwise.wilcox.test() 
and cor.test() from R version 2.15.3 (https://cran.r-pro-
ject.org/), respectively.

Results and discussion
Gap optimization of existing functions
First, we conducted gap-penalty optimization of the 
existing scoring functions, such as cosine similar-
ity and correlation coefficient, on the learning dataset. 
We computed both alignment sensitivity and precision 
for aligners using these functions, changing open- and 
extension-gap penalties by increments of 0.1 from − 2.0 
to − 0.6 and from − 0.4 to − 0.1, respectively, with the 
best alignment sensitivity selected as the optimal combi-
nation. As shown in Table 1, the best gap-penalty com-
bination for cosine similarity and correlation coefficient 
was (− 1.0, − 0.1) and (− 1.5, − 0.1), respectively.

Table 1  Gap optimization of the existing scoring function

Open and extension indicate optimized open- and extension-gap penalties, 
respectively, and cosine and CC represent aligners using cosine similarity and 
correlation coefficient as scoring functions, respectively

Open Extension Sensitivity Precision

Cosine − 1.0 − 0.1 0.6837 0.6550

CC − 1.5 − 0.1 0.6882 0.6613

https://github.com/yamada-kd/nepal
https://cran.r-project.org/
https://cran.r-project.org/
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Optimization of the scoring function and gap penalties
We then optimized the scoring function on the neural 
network with CMA-ES. During learning, we randomly 
divided the learning dataset into two subsets (train-
ing and validation datasets) and observed training and 
validation curves to confirm overfitting did not occur. 
The learning and validation dataset included 1536 and 
160 pairwise PSSM sets and the corresponding refer-
ence alignments as targets, respectively. Because calcu-
lation of learning using our parameter settings requires 
> 100,000 × DP (the size of the training dataset × λ) per 
epoch, the consumption of computer resources was large, 
and calculation time was long, even when 24 threads 
were used with the C++ program. Therefore, we set the 
maximum limit for epoch to a relatively small number 
(150). To maximize the learning within the finite learn-
ing time, we monitored the performance of intermedi-
ate scoring functions on the validation dataset every fifth 
epoch. According to the validation scores, we ultimately 
selected a scoring function derived from the 145th 
epoch, which maximized the validation score, as the final 
product of learning. In addition to the scoring function, 
open- and extension-gap penalties are also vital param-
eters for DP, which outputs optimal alignments against 
four parameters, including the pairwise sequences, a 
scoring function, and open- and extension-gap penalties. 
We optimized the gap penalties along with other param-
eters, and simultaneously optimized gap penalties using 
a scoring function to obtain final weight and bias matri-
ces representing the substance of a novel scoring func-
tion and optimal gap-penalty combinations, respectively. 
Our results allowed realization of an optimal combina-
tion of open- and extension-gap penalties for the final 
weight and bias matrices (approximately − 1.7 and − 0.2, 
respectively).

We implemented a pairwise-profile aligner with the 
weight and bias matrices as a novel scoring function 
and named it Neural network Enhanced Profile Align-
ment Library (Nepal). Nepal accepts pairwise sequences 
and their corresponding PSSM as an input and outputs 
a pairwise alignment for the input sequences. The scor-
ing function is performed by a neural network, and the 
similarity score, y, between two PSSVs (xa and xb) is cal-
culated using Eq. 2, with three weight (W1a, W1b, and w2) 
and two bias (b1 and b2) matrices the final products of 
learning. Our aligner and scoring function (weight and 
bias matrices) can be downloaded from https://github.
com/yamada-kd/nepal.

Benchmarking of Nepal and other aligners using an 
existing function on the test dataset
We then conducted a benchmark test of Nepal and other 
aligners using an existing function on the test dataset. In 

addition to profile-comparison methods, we examined 
the performance of sequence-comparison aligners with 
different substitution matrices, such as BLOSUM62 [31] 
and MIQS [32], as references. We used − 10 and − 2 as 
open- and extension-gap penalties, respectively, based on 
a previous study [32]. When calculating alignment qual-
ity, the test dataset was further categorized into remote 
and medium subsets depending on the pairwise sequence 
identity of the reference alignments. The remote and 
medium subsets included sequence pairs where each 
sequence identity was not <  0 and <  20% and not <  20 
and < 40%, respectively. Generally, a pairwise alignment 
between sequences of lower identity under the twilight 
zone is a more difficult problem [7].

Table  2 shows the alignment-quality scores for each 
method. Results showed that among the existing meth-
ods, including sequence-comparison methods, the pro-
file-comparison method, which implemented correlation 
coefficient as a scoring function, performed the best. By 
contrast, Nepal improved both alignment sensitivity and 
precision relative to the profile-comparison method. 
We evaluated the statistical significance between all 
pairwise combinations of methods individually based 
on alignment sensitivity or precision on every dataset 
subset using a Wilcoxon signed rank test with Bonfer-
roni correction. The results indicated that the improved 
results derived from Nepal were statistically significant 
(α < 0.01), suggesting that the novel derivative-free neural 
network succeeded in optimizing the scoring function. 

Table 2  Comparison of Nepal with other alignment meth-
ods

Cosine, CC, MIQS, and BL62, indicate profile comparison methods with cosine 
similarity and correlation coefficient and sequence comparison methods with 
MIQS and BLOSUM62

** P < 0.01, Wilcoxon signed rank test with Bonferroni correction
a  Sequence identity (%) of each division

Remote
[0,20)a

(1405 files)

Medium
[20,40)a

(1790 files)

All
[0,40)a

(3195 files)

Sensitivity

 Nepal 0.5317 0.8343 0.7012

 Cosine 0.5045** 0.8246** 0.6838**

 CC 0.5135** 0.8269** 0.6891**

 MIQS 0.2775** 0.7316** 0.5319**

 BL62 0.2333** 0.6955** 0.4923**

Precision

 Nepal 0.5031 0.8102 0.6751

 Cosine 0.4753** 0.7999** 0.6571**

 CC 0.4858** 0.8032** 0.6636**

 MIQS 0.2654** 0.7134** 0.5164**

 BL62 0.2317** 0.6902** 0.4885**

https://github.com/yamada-kd/nepal
https://github.com/yamada-kd/nepal
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Comparison between sequence-based methods with dif-
ferent substitution matrices, such as MIQS and BLO-
SUM62, showed that the improvement derived from 
using MIQS as compared with BLOSUM62 was more 
significant for the remote subset than the medium sub-
set. This result was reasonable, because MIQS was origi-
nally developed to improve remote homology alignment. 
This trend was also observed in the relationship between 
Nepal and the profile aligners using correlation coeffi-
cient. Here, Nepal improved both alignment sensitivity 
and precision by ~ 4 and ~ 1% in the remote and medium 
subsets, respectively. This indicated that the novel scor-
ing function was optimized for remote sequence align-
ment rather than alignment of closer sequences. This was 
expected, because alignment of sequences with closer 
identities is easier than those with remote identities. 
Therefore, during optimization, the novel scoring func-
tion would be naturally optimized for remote sequence 
alignment. These results suggested that the learning sys-
tem described in this study represented a scoring func-
tion useful for remote sequence alignment. Remote 
homology detection is the most important problem for 
sequence-similarity searches [32, 33]. The novel scoring 
function presented in the present study could be use-
ful for improving the performance of existing similarity 
search methods.

Importance of attributes according to the 
connection‑weight method
We calculated the importance of 20 attributes of input 
vectors using the connection-weight method [34], where 
absolute connection values represent the importance 
of each amino acid for profile alignment. As shown 
in Fig.  2a, the connection weights against each attrib-
ute (each amino acid) were distributed to various val-
ues, indicating that the scoring function described here 
adequately distinguished the importance of an attrib-
ute against other attributes, depending on the variety of 
amino acids.

Based on these results, the connection weights of 
hydrophobic residues, such as Leu, Ile, and Val, were of 
higher value. These residues are located mostly inside the 
hydrophobic cores of proteins. Additionally, as shown 
in Fig.  2b, other residues, which often buried within 
proteins, such as Ala, Cys, and Tyr, were also of higher 
importance. By contrast, residues often located on the 
protein surface, such as Asp, Pro, Lys, and Asn, were of 
lower importance. The Spearman’s rank correlation coef-
ficient between the connection weight and interior pro-
pensity was ~ 0.6 (P < 0.05), meaning that the importance 
of attributes was related to the propensity of residues 
to be located on the interior of the protein. While resi-
dues located at the protein surface are subject to higher 

mutation rates, buried residues are less susceptible to 
mutation [35], because protein structure can be dis-
rupted by mutation of residues buried in the core of the 
protein, which could potentially result in collapse of the 
hydrophobic core [36]. The scoring function presented 
in this study was optimized for the alignment of remote 
homologous sequences. According to a previous study 
based on substitution matrices [37], residue hydropho-
bicity was the dominant property of remote sequence 
substitution rather than simple mutability. This fact par-
tially explains why residues occupying interior locations 
are considered more meaningful for remote sequence 
alignment. Because our scoring function was optimized 
for remote sequence alignment, it considered these 
amino acids as important attributes. This characteristic 
of the scoring function represents a superior attribute of 
our method relative to existing methods.

Additionally, although the connection weight con-
sisted of various values, it contributed to increases in the 
expressive power of the novel scoring function. We cal-
culated the similarity score between PSSV A (a) and B 
(b), resulting in 0.488207 and 0.387911 when calculated 
using the correlation coefficient and Nepal methods, 
respectively (Fig. 3, middle panel). The scores calculated 
using the correlation coefficient did not change when the 
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1st and 18th sites or the 4th and 19th sites were swapped. 
These results could be inappropriate, because the con-
verted PSSV obtained after swapping was not identical 
to the original, which could represent a potential draw-
back of using unweighted linear functions, such as cosine 
similarity and correlation coefficient. By contrast, the 
Nepal scores changed after swapping and varied along 
with changes in the PSSV. This expressiveness represents 
a merit of nonlinear functions. There were ~  290,000 
overlaps following the calculation of similarity scores to 
six decimal places against 1 million randomly generated 
PSSVs using the correlation coefficient method, whereas 
there were ~  180,000 overlaps when Nepal was used. 
These overlaps would negatively affect DP computation, 
because higher overlap scores would cause difficulties in 
determining the correct path, especially during the com-
putation of a maximum of three values derived from dif-
ferent sides of DP cell. Our results showed that the use of 
different weights by the connection-weight method and 
based on amino acid variety is one reason why the Nepal 
scoring method improved alignment quality as compared 
with the existing scoring functions.

Conclusions
In this study, we optimized a scoring function for pair-
wise-profile alignment using a machine-learning method 
mimicking a nonlinear function. Our method enabled 
computational optimization, regardless of whether given 

problem involved a derivative-of-cost function, given 
that this scenario is not always present in real-world 
problems. In this study, we developed a novel deriva-
tive-free neural network with CMA-ES and successfully 
applied this learning system to optimize a scoring func-
tion for pairwise-profile alignment. Nepal significantly 
improved the alignment quality of profile alignments, 
especially for alignments based on remote relationships, 
as compared with existing scoring functions. Moreover, 
Nepal improved alignment quality based on the adapta-
tion to remote sequence alignment and the increasing 
expressiveness of the similarity score. This method alone 
is not practical as a standalone pairwise-profile aligner; 
however, because the novel scoring function involves a 
simple matrix operation using parameters provided on 
the website, the performance of distant homology detec-
tion or multiple-sequence-alignment methods for remote 
homologous sequences might be further improved by 
incorporation of our scoring function. Finally, the goal 
of the study was not only to provide an alternative align-
ment method but also to provide a novel learning system 
capable of addressing derivative-free problems. Our sys-
tem will be useful for optimizing the scoring functions 
of other sophisticated methods such as similarity search, 
multiple-sequence alignment and etc.
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