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Finding local genome rearrangements
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Abstract 

Background:  The double cut and join (DCJ) model of genome rearrangement is well studied due to its mathemati-
cal simplicity and power to account for the many events that transform gene order. These studies have mostly been 
devoted to the understanding of minimum length scenarios transforming one genome into another. In this paper 
we search instead for rearrangement scenarios that minimize the number of rearrangements whose breakpoints are 
unlikely due to some biological criteria. One such criterion has recently become accessible due to the advent of the 
Hi-C experiment, facilitating the study of 3D spacial distance between breakpoint regions.

Results:  We establish a link between the minimum number of unlikely rearrangements required by a scenario and 
the problem of finding a maximum edge-disjoint cycle packing on a certain transformed version of the adjacency 
graph. This link leads to a 3/2-approximation as well as an exact integer linear programming formulation for our prob-
lem, which we prove to be NP-complete. We also present experimental results on fruit flies, showing that Hi-C data is 
informative when used as a criterion for rearrangements.

Conclusions:  A new variant of the weighted DCJ distance problem is addressed that ignores scenario length in its 
objective function. A solution to this problem provides a lower bound on the number of unlikely moves necessary 
when transforming one gene order into another. This lower bound aids in the study of rearrangement scenarios with 
respect to chromatin structure, and could eventually be used in the design of a fixed parameter algorithm with a 
more general objective function.

Keywords:  Genome rearrangement, Double cut and join, Hi-C, Chromatin conformation, Maximum edge-disjoint 
cycle packing, NP-complete
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Background
The problem of sorting genomes by a minimum number 
of biologically plausible rearrangements has been cen-
tral to the theoretical comparative genomics community 
for roughly a quarter century. Traditionally, the likeli-
hood of a rearrangement scenario has been based solely 
on the parsimony criterion. Unfortunately, a huge num-
ber of possible parsimonious scenarios between a pair 
of genomes exists  [1–3]. This highlights the importance 
of methods that infer scenarios which conform to some 
extra biological constraints.

To this end we interest ourselves in data describing 
the 3D organization of chromatin, which is increasingly 
available due to the advent of an experiment called Hi-C 

[4, 5]. Indeed, the 3D spatial proximity of breakpoint 
regions have an important role in the formation [6, 7] and 
fixation [8] of genome rearrangements.

We have started development of methodology suit-
able for use with this type of constraint. Syntenic blocks 
of similar stretches of genomes are inferred, resulting in 
adjacencies that are candidate breakpoints for rearrange-
ments. One can color these adjacencies for use with a 
cost function, where a DCJ acting on adjacencies having 
the same color is said to be local, and of zero cost, while a 
DCJ acting on adjacencies having different colors is non-
local, and of cost one. In [9] we showed that the problem 
of finding—out of all parsimonious rearrangement sce-
narios—a scenario that minimizes the number of costly 
moves, the minimum local parsimonious scenario 
(MLPS) problem, is polynomial-time solvable. In this 
paper we disregard the parsimony criterion and instead 
focus solely on minimizing the number of costly moves 
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required by a scenario, the minimum local scenario 
(MLS) problem.

In the "Minimum Local Scenario for circular genomes" 
section we treat a restricted case of MLS where only cir-
cular chromosomes are allowed. In the "Minimum Local 
Scenario for general genomes" section we show how 
general genomes can be capped in order to use the pre-
viously obtained results, establishing an exact formula 
for the number of costly moves in a minimum local 
scenario. This formula is based solely on the number 
of edges and the size of a maximum edge-disjoint 
cycle packing of the so-called junction graph, which is 
obtained by merging the vertices of the adjacency graph. 
We show that the MLS problem is NP-Complete, while 
admitting a 3/2-approximation (the "Complexity of MLS" 
section). We also implement an exact algorithm for MLS 
that is exponential in the number of colors but not in the 
number of genes. Despite the NP-hardness of MLS the 
exact algorithm is efficient enough to be applied to the 
comparison of Drosophila melanogaster and Drosophila 
yakuba.

We use the genomes of these fruit flies in the "Experi-
ments" section to demonstrate the utility of MLS. We 
attribute colors to the adjacencies of D. melanogaster 
using k-medoid clustering, randomized clustering, and 
clustering based on the linear ordering of the adjacencies 
along the chromosomes. We observe a significant differ-
ence between the randomized clustering and the other 
two, while only a small difference between the k-medoid 
and linear clustering methods. We conclude that normal-
izing the Hi-C data before clustering is imperative, and 
that further study on both normalization and clustering 
would be beneficial for effective coloring of adjacencies.

Finally, a modification of MLS that attributes a non-
zero cost to local moves could be of interest. Finding a 
minimum cost scenario in this case remains an open 
problem. In  the  "Towards a more general cost function" 
section, however, we provide an upper bound for the 
length of such a scenario, which is of interest in practice, 
as supported by our experimental results (the  "Experi-
ments" section).

Definitions
Genome and DCJ
A genome consists of chromosomes that are linear or 
circular molecules. Chromosomes are partitioned into 
uniquely labeled directed syntenic blocks separated by 
breakpoint regions.

A block has an orientation as indicated by an arrow, 
where the tail of the arrow represents the tail extremity, 
and the head of the arrow represents the head extrem-
ity. We can represent a genome by a set of adjacencies 
between extremities. Such a set for the genome from 

Fig.  1 is 
{

{At}, {Ah,Bt}, {Bh,Ch}, {Ct}
}

. An adjacency is 
either an unordered pair of the extremities that are adja-
cent on a chromosome, called internal adjacency, or a 
single extremity adjacent to one of the two ends of a lin-
ear chromosome, called an external adjacency.

Definition 1  (Double cut and join) A DCJ cuts one or 
two breakpoint regions and joins the resulting ends of 
the chromosomes back according to one of the following 
rules:

1.	 {a, b}, {c, d} → {a, c}, {b, d},
2.	 {a, b}, {c} → {a, c}, {b},
3.	 {a, b} → {a}, {b},
4.	 {a}, {b} → {a, b}.

In Fig.  2 an example of a DCJ corresponding to an 
inversion of a syntenic block is provided.

Renaming of block extremities
A DCJ cuts breakpoints and joins the resulting ends of the 
chromosomes while keeping the rest of the adjacencies in 
tact. The outcome of a DCJ only depends on whether the 
adjacencies it acts upon are internal or external. From 
Definition  1 we see that it does not matter if it acts on 
tail or head extremities, if the two adjacencies belong to 
different chromosomes, or if those chromosomes are lin-
ear or circular. This observation allows us to simplify the 
notation of genomes by renaming the block extremities. 
For example extremities of the genome from Fig.  1 can 
be renamed (Ah,Bt ,Ch,Bh,Ct ,At) = (1, 2, 3, 4, 5, 6) to 
obtain a set of adjacencies 

{

{1, 2}, {3, 4}, {5}, {6}
}

. A DCJ 
scenario can be performed on these adjacencies. Once 
it is finished we can undo the renaming to obtain a new 
genome and a DCJ scenario leading to it. For example a 
move {1, 2}, {3, 4} → {1, 4}, {3, 2} results in a new set of 
adjacencies that, when renaming is undone, results in a 
genome 

{

{Ah,Bh}, {Bt ,Ch}, {Ct}, {At}
}

.
Given two genomes sharing the same n+m syntenic 

blocks we can enumerate the extremities of these blocks 
to obtain the sets of adjacencies

A

B

C

Fig. 1  A genome consisting of a single linear chromosome parti-
tioned into three syntenic blocks
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where {1, 2, . . . , 2n+ 2m} = {q1, q2, . . . , q2n+2m} and A 
has n internal and 2m external adjacencies (i.e. m linear 
chromosomes). A DCJ scenario transforming A into B 
implies a DCJ scenario transforming one genome into 
another. In what follows we will work with such sets of 
adjacencies, and without loss of generality we will call 
them genomes.

Cost of a DCJ scenario

Definition 2  A coloring of the adjacencies of a genome 
A over a set of colors � is a function col : A → � parti-
tioning A into subsets of different colors.

A coloring is used to define the cost of a DCJ move. A 
move is local and of zero cost if it acts on adjacencies 
with equal colors, and it is non-local and of cost 1 oth-
erwise. The cost of a sequence of DCJ moves, a DCJ sce-
nario, is the sum of the costs of its constituent moves. 
For an adjacency p ∈ A we use notation (p, col(p)) for a 
colored adjacency.

A DCJ move might create two new colored adjacencies. 
If the adjacencies of colors x and y are broken by a DCJ 
and two new adjacencies are formed, then, under our 

A =
{

{1, 2}, . . . , {2n− 1, 2n}, {2n+ 1}, . . . , {2n+ 2m}
}

,

B =
{

{q1, q2}, . . . , {q2l−1, q2l}, {q2l+1}, . . . , {q2n+2m}
}

,

model, one of them will be attributed color x and another 
color y. In Fig. 3 two possible outcomes of a DCJ move on 
the genome from Fig. 4 are presented. If an internal adja-
cency of color x is broken into two external adjacencies, 
then one of the adjacencies is attributed a color x and 
another is attributed any color z. The cost of such a move 
is 0 if and only if z = x. 

Definition 3  The complete list of DCJs on colored adja-
cencies is:

1.	 ({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y) or ({a, c},
y), ({b, d}, x),

2.	 ({a, b}, x), ({c}, y) → ({a, c}, x), ({b}, y) or ({a, c}, y),

({b}, x),
3.	 ({a, b}, x) → ({a}, x), ({b}, z) or ({a}, z), ({b}, x) with 

any color z, and
4.	 ({a}, x), ({b}, y) → ({a, b}, x) or ({a, b}, y).

The cost of a move is 0 if x = y or x = z and 1 otherwise.
In our previous work [9] we have treated the minimum 

local parsimonious scenario problem.

Problem 1  (MLPS) For genomes A and B, and a color-
ing of the adjacencies of A, find a minimum cost scenario 
among the DCJ scenarios of minimum length transform-
ing A into B.

We have shown that MLPS is polynomial-time solv-
able. A real evolutionary scenario, however, might be 
non-parsimonious. In this paper we study the minimum 
local scenario problem which asks for potentially 
non-parsimonious scenarios.

Problem  2  (MLS) For genomes A and B, and a color-
ing of the adjacencies of A, find a minimum cost DCJ sce-
nario transforming A into B.

A

B

C

Fig. 2  A genome obtained from the one presented in Fig. 1 via a DCJ 
{Ah , Bt}, {Bh , Ch} → {Ah , Bh}, {Bt , Ch} that inverts a block B

A

B

C
x t

A

B

C
x

y z y z
t

Fig. 3  A DCJ move on the genome from Fig. 4 {Ah , Bt}, {Bh , Ch} → {Ah , Bh}, {Bt , Ch} that inverts a block B can have two different outcomes on a color-
ing
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Adjacency and junction graphs
The Adjacency graph was introduced in [10] for the study 
of DCJ rearrangements. We introduce a transforma-
tion of the adjacency graph, called a junction graph, that 
incorporates the information on a coloring.

Definition 4  (Adjacency graph) For two genomes A and 
B the adjacency graph AG(A,  B) is defined as an undi-
rected bipartite multi-graph whose vertices are A ∪ B, 
and there are exactly |p ∩ q| edges joining any p ∈ A and 
q ∈ B.

Definition 5  (Junction graph) For two genomes A, B 
and a coloring col of A over � we define an undirected 
multi-graph J (A,B, col) = (�,E). For every internal adja-
cency {a, b} ∈ B we add an edge (x, y) to E such that x and 

y are the colors of the adjacencies of A adjacent to {a, b} 
in AG(A, B).

In what follows we will use letters G, J and AG when 
speaking about general graphs, junction graphs and adja-
cency graphs respectively.

Definition 6  (2-break) A 2-break is a transformation 
on a graph that replaces edges (x, y) and (z, t) with either 
(x, z) and (y, t), or (x, t) and (y, z).

Example 1  Consider the genomes from Figs.  1 and 
2 with their block extremities renamed as described 
by  the  "Renaming of block extremities" section. They 
become

A coloring col of A is given in Fig. 4 where col({1, 2}) = y , 
col({3, 4}) = z, col({5}) = t, and col({6}) = x. We 
show AG(A,  B) and J(A,  B,  col) in Fig.  5. A DCJ move 
({1, 2}, y), ({3, 4}, z) → ({1, 4}, y), ({3, 2}, z) transforming A 
into B and coloring col into col′ transforms adjacency and 
junction graphs as presented in Fig. 6.

Definition 7  (Eulerian graph) If all the vertices of a 
graph G are of even degree, then G is said to be Eulerian.

Minimum Local Scenario for circular genomes
In this section we treat the minimum local sce-
nario problem in the restricted case where only circular 
chromosomes are allowed. In this case adjacencies will be 
called pairs. Given sets of pairs

with {1, 2, . . . , 2n} = {q1, q2, . . . , q2n}, our goal is to 
transform A into B using DCJ moves of the form 
{a, b}, {c, d} → {a, c}, {b, d}.

In this case every vertex of an adjacency graph has 
degree two, all of its connected components are cycles 
and the junction graph is Eulerian. All connected com-
ponents of AG(B,  B) are cycles of length 2, thus at the 
end of a DCJ scenario transforming A into B we are left 
with a junction graph whose edges are all self-loops. We 
call such a graph terminal. For an Eulerian graph G we 
denote ℓ(G) as the minimum length of a 2-break scenario 
transforming G into a terminal graph.

A =
{

{1, 2}, {3, 4}, {5}, {6}
}

, and

B =
{

{1, 4}, {3, 2}, {5}, {6}
}

.

A =
{

{1, 2}, . . . , {2n− 1, 2n}
}

,

B =
{

{q1, q2}, . . . , {q2n−1, q2n}
}

,

A

B

y
1 2

z
3 4

t
5

x
6

1 4 3 2 5 6 t

xy

z

Fig. 5  AG(A, B) on the left and J(A, B, col) on the right of the genomes 
A and B given in Example 1

B

B

y
1 4

z
3 2

t
5

x
6

1 4 3 2 5 6 t z

xy

Fig. 6  AG(B, B) on the left and J(B, B, col′) on the right of 
the genomes A and B given in Example 1. A transformation 
J(A, B, col) → J(B, B, col′) is a 2-break (y , z), (y , z) → (y , y), (z , z)

A

B

C
x

y z
t

Fig. 4  A set of colored adjacencies 
{

({At}, x), ({Ah , Bt}, y), ({Bh , Ch}, z), ({Ct}, t)
}

 describes one possible 
coloring of the genome from Fig. 1 where every adjacency is attrib-
uted a unique color
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Lemma 1  For sets of pairs A and B and a coloring col of 
A, the cost of a minimum local scenario transforming 
A into B is equal to ℓ(J (A,B, col)).

Proof  We first transform any DCJ scenario into a 
2-break scenario on J(A, B, col). From Example 1 it should 
be clear that for any DCJ move A → A′, the transfor-
mation J (A,B, col) → J (A′,B, col′) is a 2-break. A DCJ 
move A → A′ of cost zero can be disregarded since 
J (A,B, col) = J (A′,B, col′). This means that a DCJ sce-
nario of cost w transforming A (and its coloring col) into 
B (and its coloring colB) provides us with a 2-break sce-
nario of length at most w transforming J(A, B, col) into a 
terminal graph J (B,B, colB). On the other hand for every 
2-break J → J ′, a DCJ move A → A′ can be found such 
that J (A′,B, col′) = J ′. For any 2-break scenario of length 
l transforming J(A, B, col) into a terminal graph we obtain 
a DCJ scenario of length l, thus of cost at most l, trans-
forming A (and its coloring col) into a genome C (and 
its coloring colC) such that J (C ,B, colC) is terminal. This 
means that C’s pairs belonging to the same connected 
component of AG(C, B) are of the same color. A DCJ sce-
nario transforming C into B and only acting on the pairs 
belonging to the same connected components of an adja-
cency graph can be easily found and such a scenario is of 
zero cost. This ensures that the scenario from A to C, and 
then from C to B, is a DCJ scenario transforming A into B 
of cost at most l.�  �

Linking 2‑break scenarios and maximum edge‑disjoint 
cycle packings
Using Lemma  1 we can shift our attention from a DCJ 
scenario on a set of pairs to a 2-break scenario on a junc-
tion graph J.

Definition 8  (Maximum edge-disjoint cycle packing) 
An MECP  of a graph G is a largest set of edge-disjoint 
cycles in G. If G is Eulerian, then an MECP covers all of 
its edges.

For a graph G = (V ,E) we denote e(G) = |E| and c(G) 
as the size of its MECP.

Lemma 2  A 2-break on an Eulerian graph G can 
increase the size of its MECP by at most one.

Proof  Without loss of generality we can suppose that G′ 
is obtained from G via a 2-break replacing edges (x, y) and 
(z, t) by edges (x, t) and (y, z). We take an MECP of G′ , call 
it C ′, and construct a cycle packing C of G of size at least 
|C ′| − 1 to prove the claim. The set of edge-disjoint cycles 
of C ′ that do not include edges (x, t) or (y, z) form a set of 
edge-disjoint cycles of G, so we include these cycles in C. 
If both newly added edges belong to the same cycle of C ′, 
then we are done since in this case |C| = |C ′| − 1. Other-
wise the edges of the two cycles containing edges (x, t) or 
(y, z) form a cycle in G, as depicted in Fig. 7, providing us 
with the last cycle for C implying |C| = |C ′| − 1. � �

Lemma 3  For a graph G that is a cycle of length l there 
exists a 2-break scenario of length  l − 1 transforming it 
into a terminal graph.

Proof  If l = 1 then G is terminal. Otherwise there exists 
a 2-break that splits a cycle of length l into cycles of 
length 1 and l − 1. We repeat this operation l − 1 times to 
obtain a terminal graph. �

Theorem  1  For a junction graph J we have 
ℓ(J ) = e(J )− c(J ).

Proof  In our restricted case J is Eulerian, so its MECP 
covers all of its edges. We can transform the cycles of a 
given MECP one by one, thus obtaining a terminal graph 
at the end of a scenario. The length of such a scenario is 
e(J )− c(J ) using Lemma 3. On the other hand, the size of 
an MECP of a terminal graph is equal to e(J), and accord-
ing to Lemma 2 we need at least e(J )− c(J ) 2-breaks to 
increase the size of an MECP from c(J) to e(J).�  �

Minimum Local Scenario for general genomes
Given two genomes

A =
{

{1, 2}, . . . , {2n− 1, 2n}, {2n+ 1}, . . . , {2n+ 2m}
}

,

B =
{

{q1, q2}, . . . , {q2l−1, q2l}, {q2l+1}, . . . , {q2n+2m}
}

,

x

t

y
z

x

t

y
z

Fig. 7  Given the two cycles of a cycle packing C ′ of G′ containing edges (x, t) and (y, z) (on the right), we can apply a 2-break to get a cycle of G (on 
the left) containing edges (x, y) and (z, t)
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with {1, 2, . . . , 2n+ 2m} = {q1, q2, . . . , q2n+2m}, our goal 
is to transform A into B using DCJ moves defined in 
Definition 1.

Genome capping
A genome can be extended into a set of pairs analyzed 
in  the  "Minimum Local Scenario for circular genomes" 
section by capping, which is the process of adding artifi-
cial gene extremities.

Definition 9  (Genome extensions) For a genome A we 
define its genome extension Â to be a set of pairs of a 
form:

where l ∈ N and 
{◦1, . . . , ◦2m+2l} = {2n+ 2m+ 1, . . . , 2n+ 4m+ 2l}. We 
define A+ to be a set of all the possible genome exten-
sions of A.

A pair {i, j} where i > 2n+ 2m and j > 2n+ 2m will be 
called a telomeric pair. Internal adjacencies of a genome 
are present in its extension and external adjacencies are 
simply complemented by an artificial gene extremity. This 
means that adjacencies of a genome, and non-telomeric 
pairs of its extension, can be mapped one to one. A color-
ing col of A can be trivially extended to a coloring ˆcol of 
Â ∈ A+ by keeping the same colors for the non-telomeric 
pairs, and by choosing any colors for the telomeric pairs.

For a DCJ move A → A′ acting on two adjacen-
cies of a genome there is an induced DCJ move 
Â → Â′ of the same cost, where Â′ ∈ A′

+ act-
ing on the corresponding pairs of a genome exten-
sion. For example ({a}, x), ({b}, y) → ({a, b}, x) 
induces ({a, ◦i}, x), ({b, ◦j}, y) → ({a, b}, x), ({◦i, ◦j}, y) 
and ({a, b}, x), ({c}, y) → ({a, c}, x), ({b}, y) induces 
({a, b}, x), ({c, ◦i}, y) → ({a, c}, x), ({b, ◦i}, y). A DCJ move 
of the form ({a, b}, x) → ({a}, x), ({b}, z) (i.e. acting on a 
single adjacency) is different, as in this case we need a 
telomeric pair of color z to be present in a genome exten-
sion. For example ({a, b}, x) → ({a}, x), ({b}, z) induces 
({a, b}, x), ({◦i, ◦j}, z) → ({a, ◦i}, x), ({b, ◦j}, z) on a 
genome extension including ({◦i, ◦j}, z).

Lemma 4  For a DCJ scenario transforming genome A 
into B and a coloring of A, there exists genome extensions 
Â ∈ A+ and B̂ ∈ B+,  as well as a scenario of the same cost 
transforming Â into B̂.

Proof  In the DCJ scenario transforming A into B, let 
p be the number of DCJ moves acting on a single adja-
cency. These are of a form {a, b} → {a}, {b}. We take a 

{

{1, 2}, . . . , {2n− 1, 2n}, {2n+ 1, ◦1}, . . . , {2n+ 2m, ◦2m},

{◦2m+1, ◦2m+2}, . . . , {◦2m+2l−1, ◦2m+2l}
}

genome extension Â ∈ A+ with p telomeric pairs. Every 
DCJ move ({a, b}, x) → ({a}, x), ({b}, z) will induce a 
move acting on a different telomeric pair of a genome 
extension and its color will be the color z required by 
the DCJ move on the non-extended genome. In this way 
every DCJ move on a genome will induce a move on a 
genome extension, and after a scenario of cost w we will 
end up with B̂, an extension of genome B. �

Lemma 5  For a DCJ scenario transforming Â ∈ A+ into 
B̂ ∈ B+ and a coloring of A there exists a DCJ scenario of 
the same cost or smaller transforming A into B.

Proof  We start with a pair (A, Â) and apply a scenario 
transforming Â into B̂ step by step, updating A along 
the way accordingly. After the first k moves of a scenario 
whose cost is wk we get a pair (Ak , Âk) with Âk ∈ Ak

+ such 
that there is a scenario of cost at most wk transforming A 
into Ak. A pair (Ak+1, Âk+1) is constructed as follows. The 
k + 1st move of a scenario is Âk → Âk+1.

If Âk+1 ∈ Ak
+, then the next pair is 

(Ak , Âk+1). If Âk+1 /∈ Ak
+, then for a DCJ 

({a1, a2}, x), ({a3, a4}, y) → ({a1, a3}, x), ({a2, a4}, y) trans-
forming Âk into Âk+1, at least one of the four involved pairs 
must contain two gene extremities. This observation allows 
us to find a genome C such that Âk+1 ∈ C+ and there is a 
DCJ move Ak → C of the same cost as Âk → Âk+1. There-
fore the next pair is (C , Âk+1). There are numerous cases 
for C, but they are all trivial to analyze. For example, if a1 
and a2 are both gene extremities and {a3, a4} is a telomeric 
pair then a DCJ ({a1, a2}, x) → ({a1}, x), ({a2}, y) trans-
forms Ak into such a C.

Now Âk+1 ∈ Ak+1
+  and the scenario transforming A 

into Ak+1 is of cost at most wk+1. We continue until we 
obtain (B, B̂) with a scenario transforming A into B of cost 
at most w. �

Define an Eulerian extension of a graph to be an Eule-
rian graph obtained from the initial graph by adding 
some edges. By construction J (Â, B̂, ˆcol) is an Eulerian 
extension of J(A, B, col). We close this section by relating 
Eulerian extensions of J(A, B, col) to the junction graphs 
of genome extensions.

Lemma 6  For every Eulerian extension J ′ of 
J = J (A,B, col) there exists genome extensions Â ∈ A+ 
and B̂ ∈ B+ such that J (Â, B̂, ˆcol) and J ′ have exactly the 
same non-loop edges. We say that such graphs are non-
loop equal.

Proof  We will augment AG(A,  B) with new adjacen-
cies to obtain intermediate versions of adjacency graph 
AG′ before finally arriving at an AG′ = AG(Â, B̂). Our 
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running example will use the graphs shown in Figs.  8 
and 9.

AG′ has exactly the cycles of AG(A,  B). The paths of 
AG(A, B), however, appear in AG′ in a modified form. To 
each path we add new vertices at its endpoints, copying 
the endpoints’ colors (see Fig.  10 for an example). The 
junction graph of AG′ is now non-loop equal to J. In our 
example AG(A, B) has no cycles and its three paths imply 
paths for AG′ as shown in Fig. 10. The junction graph of 
AG′ is given in Fig. 11.

For graphs G′ = (V ,E ∪ E′) and G = (V ,E) we denote 
G′ − G = (V ,E′). Take an Eulerian subgraph H of J ′ − J  
such that F = (J ′ − J )−H is a forest. For H we add a 
union of cycles to AG′ such that H is the junction graph 
of these cycles. F can be partitioned into paths joining 
the vertices of odd degree, and for each of these paths we 
add to AG′ a path with adjacencies of the corresponding 
colors. In our example, H is a cycle (z, y, z) and F has a 
single path (z,  x). These add a cycle and a path to AG′, 
shown in Fig. 12.

Now transform every path of AG′ into a cycle in the 
following way. Each path of AG′ that has endpoints of the 
same color is now transformed into a cycle by merging 
those endpoints into a single vertex of degree two. We are 
left with paths having endpoints of different colors. Con-
sider one such path with an endpoint of color x. Merge 
this vertex with an endpoint of color x from another 
path. Such a path will always exist since every vertex in 
the Eulerian extension J ′ has an even degree, implying 
that there is an even number of paths in AG′ having this 
vertex colored x as an endpoint. Continue this procedure 
until no paths are left. One possible outcome of such an 
operation is given in Fig. 13. The junction graph of AG′ is 
now non-loop equal to J ′ as it can be seen in Fig. 14.

It is easy to reconstruct B̂ ∈ B+, Â ∈ A+ and its color-
ing ˆcol such that AG′ = AG(Â, B̂, ˆcol), which guarantees 
that J (Â, B̂, ˆcol) is non-loop equal to J ′.�  �

A closed formula for minimum local scenario

Theorem  2  The cost w of a minimum local sce-
nario transforming genome A into B is e(J )− c(J ) where 
J = J (A,B, col).

Proof  For a cycle packing C of J of cardinality c(J), define 
an Eulerian extension J ′ by duplicating every edge of J not 
belonging to C. Denote the number of such edges by k. 
A union of C, and the k cycles of length 2 created by the 
added edges, will be a cycle packing C ′ of J ′. Using Theo-
rem 1 we obtain

where ℓ(J ′) is the minimum length of a 2-break scenario 
transforming J ′ into a terminal graph. Using Lemma  6 
we construct sets of pairs Â ∈ A+ and B̂ ∈ B+ such that 
J (Â, B̂, ˆcol) is non-loop equal to J ′. Using Lemma  1 we 
construct a DCJ scenario of cost at most ℓ(J ′) transform-
ing Â into B̂, from which we can construct a DCJ scenario 
of cost at most ℓ(J ′) transforming A into B while using 
Lemma 5. This implies that w ≤ ℓ(J ′) ≤ e(J )− c(J ).

For a DCJ scenario of cost w transforming A into B 
we use Lemma  4 to construct the sets of pairs Â ∈ A+ 
and B̂ ∈ B+, and a scenario of cost w transforming Â 
into B̂. This leads to a 2-break scenario transforming 
J ′ = J (Â, B̂, ˆcol) into a terminal graph of length at most 
w using Lemma 1. Theorem 1 ensures an existence of a 
cycle packing C ′ of J ′ such that w ≥ e(J ′)− |C ′|. Define C 
to be the union of the cycles in C ′ consisting entirely of 
the edges of J = J (A,B, colA). Counting edges and cycles 
gives

Due to the construction of C every cycle in C ′ \ C 
admits at least one edge from J ′ not belonging to J, 
and thus e(J ′)− e(J ) ≥ |C ′ \ C|. So we have inequality 
w ≥ e(J )− |C| ≥ e(J )− c(J ). � �

Constructions in lemmas 1, 4, 5 and 6 used in Theorem 2 
are all polynomial. The next section shows that comput-
ing c(J) is at the heart of the complexity of the minimum 
local scenario.

ℓ(J ′) = e(J ′)− c(J ′) ≤ e(J ′)− |C ′|

= e(J )+ k − c(J )− k = e(J )− c(J ),

w ≥ e(J ′)− |C ′| = e(J )− |C| + e(J ′)− e(J )− |C ′ \ C|.

x y x yA

B

x y z

Fig. 8  The adjacency graph AG(A, B) consisting of three paths. Adja-
cencies of A are colored using colors x, y, z as indicated

x

y

z

x

y

z

Fig. 9  The junction graph J(A, B, col) on the left and one possible 
Eulerian extension J′ on the right
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Complexity of MLS
NP‑completeness of MLS

Theorem  3  The decision version of minimum local 
scenario is NP-complete.

Proof  The decision version of MLS is clearly in NP. We 
reduce the decision version of MECP on Eulerian graphs, 
which is NP-hard  [11] (and APX-hard  [12]), to MLS. 
Without loss of generality, take an instance G = (V ,E) 
and a bound k of MECP, where G is Eulerian and con-
nected. We will construct genomes A, B and a coloring 
col such that J (A,B, col) = G. Consider an Eulerian tour 
u1,u2, . . . ,un,u1 of G and set

The vertices of V are the colors of col such that 
col

(

{2i − 1, 2i}
)

= ui for all i ∈ {1, . . . , n}. By construc-
tion J (A,B, col) = G. Theorem  2 says that an optimal 
solution to MLS of cost w implies the existence of a cycle 
packing of size e(G)− w. Thus there is an MECP of size k 
if and only if e(G)− w ≥ k.�  �

A 3/2‑approximation for MLS
For a cycle packing C of a graph G, denote the number of 
its length-one and length-two cycles by c1(C) and c2(C) 
respectively, and the number of longer cycles by c+(C). 
Denote the number of G’s edges and length-one cycles by 
e(G) and c1(G) respectively. Finally, denote by c2(G) the 
maximum of c2(C) among all of the cycle packings of G.

Lemma 7  For every Eulerian graph G

A =
{

{1, 2}, {3, 4}, . . . , {2n− 1, 2n}
}

, and

B =
{

{2, 3}, {4, 5}, . . . , {2n, 1}
}

.

ℓ(G) ≥
2

3
e(G)−

1

3
c2(G)−

2

3
c1(G).

x x y z z x x y y xxyy

Fig. 10  AG′ after the paths of AG(A, B) are extended. AG(A, B) is a subgraph of AG′. Newly added vertices end edges are white and dashed respec-
tively

x

y

z

Fig. 11  The junction graph of AG′ is loop equal to J

z y z x

Fig. 12  The extension to AG′ yielding J′ − J as its junction graph

x x y z z x x y xyy z y

Fig. 13  AG′ after merging the endpoints of the paths

x

y

z

Fig. 14  The junction graph of AG′, which is non-loop equal to J′
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Proof  ℓ(G) = e(G)− c(G) using Theorem  1. For 
a maximum edge-disjoint cycle packing C of 
G we have c(J ) = |C| = c1(C)+ c2(C)+ c+(C) and 
e(G) ≥ c1(C)+ 2c2(C)+ 3c+(C), which implies

Theorem  4  For genomes A, B and a coloring col of A, 
the cost wMLS of a MLS transforming A into B respects

Proof  Take an MECP C of J. It covers an Eulerian sub-
graph J ′ of J. Using Theorem 2 we have wMLS = e(J )− |C| , 
and by counting edges and using Theorem 1 we obtain

from which using Lemma 7 and a simple counting argu-
ment we get

� �

In Theorem  2 we have shown how a cycle pack-
ing C of J = J (A,B, col) gives a DCJ scenario of cost 
w ≤ e(J )− |C| transforming A into B. For a cycle pack-
ing C consisting of c2(J ) pairwise edge-disjoint cycles 
of length two and c1(J ) loops, there is a scenario of cost 
w ≤ e(J )− c2(J )− c1(J ) = w′. Using Theorem 4 we have

yielding the approximation ratio

An exact algorithm for MLS
Consider a junction graph J with c1(J ) loops and c2(J ) 
length two cycles. The observation that there exists an 
MECP  of J that includes all of these cycles allows us to 
simplify the problem by removing them from J. This 

ℓ(G)−
2

3
e(G) =

1

3
e(G)− |C| ≥ −

1

3
c2(C)−

2

3
c1(C), so

ℓ(G) ≥
2

3
e(G)−

1

3
c2(C)−

2

3
c1(C)

≥
2

3
e(G)−

1

3
c2(G)−

2

3
c1(G).

�

wMLS ≥
2

3
e(J )−

1

3
c2(J )−

2

3
c1(J ), where J = J (A,B, col).

wMLS = e(J )− |C| = e(J ′)− |C| + e(J )− e(J ′)

= ℓ(J ′)+ e(J )− e(J ′),

wMLS ≥
2

3
e(J ′)−

1

3
c2(J

′)−
2

3
c1(J

′)+ e(J )− e(J ′) ≥

2

3
e(J )−

1

3
c2(J )−

2

3
c1(J ).

wMLS ≥
2

3
e(J )−

1

3
c2(J )−

2

3
c1(J ) =

2

3
(w′ +

1

2
c2(J )),

α =
w

wMLS
≤

3

2

w

w′ + 1
2c2(J )

≤
3

2
.

leaves us with a simple graph J̄  such that the cost of 
MLS  is equal to e(J )− c1(J )− c2(J )− c(J̄ ). A straight-
forward way to compute c(J̄ ) is to take the set S of all of 
J̄ ’s simple cycles and solve the maximum set packing 
problem on their sets of edges formulated as an integer 
linear program:

The number of simple cycles might be exponential in the 
number of colors and not the number of syntenic blocks. 
We see in  the  "Experiments" section that our algorithm 
solves MLS on instances between Drosophila mela-
nogaster and Drosophila yakuba.

Towards a more general cost function
Our work opens the door to the development of a more 
general model for genome rearrangements with posi-
tional constraints, where local moves are attributed 
nonzero cost. In such a model the costs of local and 
non-local moves would be respectively ωL and ωN with 
0 < ωL < ωN . For any DCJ scenario ρ we will denote 
ω(ρ), N (ρ) and L(ρ) as its cost, its number of non-local, 
and local moves respectively. We categorize the differ-
ent DCJ problems based on the cost pair (ωL,ωN ) with 
0 ≤ ωL ≤ ωN , where we look for a ρ that minimizes the 
cost function ω(ρ) = ωLL(ρ)+ ωNN (ρ):

• • (0, 1) is the minimum local scenario problem,
• • (1, 1) is the traditional double cut and join prob-

lem,
• • (ωL,ωN ) with ωL

ωN−ωL
> n, where n is the number of 

adjacencies, is the minimum local parsimonious 
scenario problem,

• • (ωL,ωN ) with 0 < ωL < ωN is the problem that we 
consider in this section.

It is clear that for positive k the cost pairs (ωL,ωN ) and 
(kωL, kωN ) define the same minimum scenarios, so for 
0 < ωL < ωN it suffices to treat the normalized pair 
(1, 1+ α) with a positive α. For a scenario ρ we denote 
δ(ρ) = N (ρ)+ L(ρ)− dDCJ as the difference of its length 
and the length of a parsimonious DCJ scenario. If δ were 
small we would have an algorithmic tool in the search for 
genomic distances. For (ωL,ωN ) = (1, 1+ α), we have

By dMLPS and dMLS we denote the numbers of non-local 
moves in minimum local parsimonious scenario 

Maximize
∑

c∈S

xc

Subject to
∑

c:e∈c

xc ≤ 1 for each edge e of J̄

and xc ∈ {0, 1} for every simple cycle c ∈ S.

ω(ρ) = L(ρ)+ N (ρ)+ N (ρ)α = δ(ρ)+ dDCJ + N (ρ)α,
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and minimum local scenario respectively. For a 
scenario ρ∗ minimizing the cost L(ρ)+ (1+ α)N (ρ) 
we have dDCJ + dMLPSα ≥ ω(ρ∗), as dDCJ + dMLPSα 
is the cost of a MLPS. Subtracting dDCJ we obtain 
dMLPSα ≥ δ(ρ∗)+ N (ρ∗)α. By definition N (ρ∗) ≥ dMLS, 
and so we obtain

In general dMLPS − dMLS might be large, however we 
have shown in [13] that at least for D. melanogaster and 
D. yakuba it is small in practice. This means that the 
problem of finding a scenario of minimum cost among 
those with a small δ, for example δ = 1, might be of prac-
tical interest.

Experiments
Our theoretical work is based on a coloring of adjacen-
cies where rearrangements are considered to be more 
likely when acting on those of the same color, and where 
the colors of the adjacencies are preserved across large 
evolutionary distances. Although there are many factors 
that may effect the likelihood of a rearrangement, in this 
section we focus on a coloring that partitions a genome 
into local 3D regions using Hi-C data. This idea is sup-
ported by the hypothesis that rearrangements are more 
likely to occur between breakpoints in close spatial prox-
imity [6, 7], and an observation that syntenic blocks dis-
tant in the 1D sense in human, but adjacent in mouse, 
were observed in close 3D proximity in the human more 
often than expected [8].

We use Hi-C data as a similarity function for pairs 
of adjacencies. We propose a simple weight function 
of a coloring based on this similarity, and an algorithm 
k-medoidsthat provides colorings maximizing the 
weight. Unfortunately it is not clear exactly how Hi-C 
values are linked to 3D distance in the nucleus, thus there 
is no definitive way to know how well our clusters cap-
ture the 3D structure of a genome.

We compare these colorings to two other clustering 
algorithms: linear, which respects the 1D structure of 
the chromosomes, and random, which attributes colors 
to adjacencies at random. We report results in the "Clus-
tering algorithms", "Colorings inferred from the adja-
cency graph" and "Divergence from linearity" sections.

All results of this section are possible due to the fact 
that, despite the NP-hardness of the minimum local 
scenario problem, we find that it can be computed 
exactly (using our algorithm from  the  "An exact algo-
rithm for MLS" section) for all of the colorings obtained 
for D. melanogaster and D. yakuba.

(dMLPS − dMLS)α ≥ δ(ρ∗).

Hi‑C data and normalization
A Hi-C experiment is conducted on a population of 
cells, thereby providing a rough estimate of the number 
of cells in which a pair of genomic loci were found to be 
in close 3D proximity. Hi-C estimates of the number of 
cells in which a pair of genomic loci were found to be in 
close 3D proximity are organized into matrices of con-
tacts within fixed-sized windows. Due to the nature of 
Hi-C contacts, which decrease dramatically with respect 
to chromosomal distance (it roughly follows a power 
law), we applied the normalization done by Lieberman-
Aiden et  al. (see the appendix of  [4]) to the matrices 
published in  [5]. For intra-chromosomal matrices, this 
normalization ensures that rearrangements with distant 
breakpoints (in the 1D genetic coordinate sense) have 
increased relative importance to the close ones (in 1D). 
Specifically, a normalized intra-chromosomal heatmap 
entry INTRAij gets the value

where averageAtDist(d) is the expected Hi-C value of 
two loci separated by distance d (in the 1D sense) over 
all chromosomes. A normalized inter-chromosomal Hi-C 
value is

where interactionx is the sum of all Hi-C values for locus 
x, and interactionall is the sum of all Hi-C values (intra- 
and inter-chromosomal). This inter-chromosomal nor-
malization accentuates the importance of values that 
come from loci with a bias towards fewer contacts, while 
diminishing the importance of values that come from loci 
with a bias towards a large number of contacts.

We use both non-normalized and normalized Hi-C 
data as similarity functions for pairs of adjacencies. These 
similarity functions are used to define the weight of a 
coloring.

Clustering algorithms
In what follows the terms coloring and clustering will be 
used interchangeably. We perform our experiments on 
the genomes of D. melanogaster and D. yakuba which 
were partitioned into 64 syntenic blocks using Orthoclus-
ter tool [14]. The DCJ distance between the two genomes 
is 51. D. melanogaster is used as genome A with a color-
ing that we obtain from the Hi-C data published in  [5]. 
No Hi-C for D. yakuba is publicly available at the time of 
writing.

INTRAij = Hij/averageAtDist(|i − j|),

INTERij = Hij/

( interactioni ∗ interactionj

interactionall

)

,
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The first of the clustering methods we used is clustering 
around medoids, which was chosen for its simplicity and 
speed [15]. A medoid of a cluster is an element that maxi-
mizes the sum of the similarities to the rest of a cluster. 
This sum is the cluster’s weight, and when summed over 
all the clusters it provides us with a clustering weight. We 
use this algorithm with Hi-C data as a similarity function 
for the pairs of adjacencies.

The k-medoids algorithm starts with k randomly ini-
tialized centroids. The rest of the elements are then asso-
ciated to the centroids that are most similar to them. The 
medoids of the obtained clusters are then computed and 
they become the new centroids around which the ele-
ments will be clustered. We continue this procedure until 
the clustering weight stops increasing.

The linear algorithm respects the 1D structure of 
the 6 chromosome arms of D. melanogaster. For a given 
k ≥ 6 we choose k − 6 syntenic blocks at random and cut 
the chromosomes at these blocks. In this way we obtain 
k segments of the chromosomes, each of which has at 
least one adjacency. We then attribute a distinct color to 
each segment and assign to each adjacency the color of 
its segment.

The random algorithm attributes colors to the adja-
cencies uniformly at random while ensuring that for 
every color there is at least one adjacency of that color.

Clustering weight is well defined for any clustering. 
Non-normalized and normalized Hi-C data provides 
two similarity functions for the pairs of adjacencies and 
thus two different clustering weights: non-normalized 
and normalized. In Fig. 15 we compare MLS to cluster-
ing weights for the number of colors k = 15. We generate 

100 random clusterings (black) and 100 linear clus-
terings (green) and compute their normalized and non-
normalized clustering weights and MLS. We generate 
100 k-medoids clusterings using non-normalized Hi-C 
(blue) and 100 k-medoids clusterings using normalized 
Hi-C (red). The meaning of olive, brown and orange out-
liers in Fig. 15 will be explained in the "Colorings inferred 
from the adjacency graph" and "Divergence from linear-
ity" sections.

Both linear and k-medoids have significantly lower 
MLS than random clusterings, however the MLS is very 
similar for linear and both k-medoids clusterings, with 
average cost being close to 19. Separation between the 
clustering weights of linear, random and k-medoids 
is more pronounced for normalized Hi-C.

Colorings inferred from the adjacency graph
The k-medoids, linearand random algorithms color 
the adjacencies of a single genome using Hi-C data or 
1D structure. However if we use the adjacencies of both 
genomes we can construct colorings with a much lower 
MLS cost. For example, if we chose a coloring for which 
the connected components of an adjacency graph are 
monochromatic, then the junction graph is terminal 
and MLS is equal to 0. The adjacency graph of D. mela-
nogaster and D. yakuba has 19 connected components. 
This means that for k ≤ 19 there exists a coloring with 
MLS equal to 0. We call such coloring optimal.

Another extreme case is a linear coloring minimizing 
MLS. When every chromosome is assigned its own color 
MLS is equal to 8. By increasing the number of colors for 
a linear clustering we can only increase its MLS, thus a 
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Fig. 15  Comparison of MLS and clustering weights for random (black points), k-medoids (non-normalized blue and normalized red points) and 
linear (green points) clusterings for k = 15 clusters. minimum linear  (olive point) is a manually constructed linear clustering with the smallest possible 
MLS (defined in the "Colorings inferred from the adjacency graph" section). optimal (orange and brown) points are clusterings with 0 MLS (defined in 
the "Divergence from linearity" section). The mean MLS value is 35 for random, 19.5 for linear, 20.0 for blue k-medoids points, and 18.4 for red k-medoids 
points
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lower MLS bound for linear clustering is 8. This lower 
bound was not observed when running linear, how-
ever using the adjacency graph of D. melanogaster and D. 
yakuba we have manually constructed colorings of up to 
19 colors with MLS  equal to 8. We call these colorings 
minimum linear.

Divergence from linearity
Clusters in optimal and k-medoids clusterings mostly 
contain adjacencies from only one or two chromosomes. 
Moreover, those adjacencies are mostly contiguous in 
the 1D sense on the chromosomes. We define divergence 
from linearity in order to quantify non-linearity of these 
colorings, and to see if it is related to MLS.

Definition 10  (Divergence from linearity) Consider a 
set S of adjacencies colored with color x. Partition it into 
nonempty subsets S1, S2 . . . , Sl of adjacencies belonging 
to the chromosomes chr1, chr2 . . . , chrl. Sort these sub-
sets according to the 1D structure of the chromosomes. 
Say that Si has a gap if there is an adjacency p followed by 
q in Si, but in chri there is some adjacency r in between 
p and q. The divergence from linearity of S is the total 
number of gaps in S plus l − 1. Sum these values for all 
the colors to obtain the divergence from linearity for a 
coloring.

The divergence from linearity of the linear coloring 
is 0. We use a greedy algorithm to find optimal color-
ings minimizing and maximizing the divergence from 
linearity.

In Fig.  16 we compare MLS to the divergence from 
linearity for k = 15 colors. We observe that k-medoids 
clusters using non-normalized Hi-C are more linear 
than those using normalized Hi-C, with their mean val-
ues being 5.3 and 16.5 respectively. This was expected 
due to the nature of normalization, which accentuates 
the importance of the Hi-C values of the adjacencies 
that are distant in 1D sense or coming from different 
chromosomes.

We see that the linear and k-medoids clusterings for 
non-normalized Hi-C are almost the same due to the low 
divergence from linearity of the latter. This explains why 
they have almost the same non-normalized clustering 
weight, as can be seen in Fig. 15. optimal and minimum 
linear provides the bounds for MLS and divergence 
from linearity.

Similar plots are provided for k = 6 and 12 in Fig.  17 
and for k = 18 and 24 in Fig. 18. They indicate that the 
mean of MLS stays similar for linear and k-medoids 
and increases with k. The divergence from linearity of 
k-medoids for normalized Hi-C does too, while that of 
non-normalized Hi-C stays close to 5.

Conclusion and further work
Aside from problems that consider rearrangement length, 
little is known about weighted rearrangements  [16–20]. 
In [9], we showed that with a simple cost function based 
on a partition of the adjacencies of one of the genomes 
into equivalence classes, one can choose—from the expo-
nentially large set of shortest scenarios—a scenario that 
minimizes the number of moves acting across classes.

In this paper we showed that the genome rearrange-
ment problem with an objective function based solely 
on the cost of DCJs is NP-Hard, even for a simple binary 
cost function. We gave a 3/2-approximation derived 
from bounds on the sizes of cycles in a cycle packing 
of the junction graph. We also presented an exact algo-
rithm and found that an exact solution can be computed 
quickly between D. melanogaster and D. yakuba.

Our algorithms depend on a coloring of the adjacen-
cies between syntenic blocks. We use MLS to study these 
colorings by clustering normalized and non-normalized 
Hi-C data from D. melanogaster. We find that our clus-
terings based on normalized data with the unsophisti-
cated k-medoids technique give marginally lower MLS 
costs than clusterings that strictly preserve the linear 
ordering of the adjacencies. Both of those non-random 
clusterings give much lower MLS costs than randomized 
clusterings. Our rough linearity measure shows that, as 
k-medoid clusterings become more linear, the cost of the 
MLS decreases. A concerted effort towards the develop-
ment of normalization and clustering is required to study 
these relationships in more detail.

Fig. 16  A comparison of MLS and divergence from linearity for the 
number of clusters k = 15. We generated 1000 random (black), linear 
(green), and k-medoids clusterings using non-normalized Hi-C (blue) 
and k-medoids clusterings using normalized Hi-C (red). minimum linear 
(olive), optimal minimizing divergence from linearity (orange), and 
optimal maximizing divergence from linearity (brown) are also plotted. 
Mean divergence from linearity for blue k-medoids points is 5.3 and 
16.5 for red k-medoids points
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Our model supports the coloring of a single genome 
only, yet this coloring may be capable of representing the 
3D spatial structure between two genomes. Indeed, if 
spatial organization is somewhat conserved across large 
evolutionary distances, the chromatin conformation from 
a single genome could be informative for the inference of 
rearrangements over an entire scenario. Such conserva-
tion has been demonstrated in at least two cases. Recent 
results show that syntenic regions in mouse and human 
share a high degree of similarity in their higher order 
chromatin structure [21]. Further, syntenic blocks distant 
in the 1D sense in human, but adjacent in mouse, were 
observed in close 3D proximity in the human more often 

than expected; the authors concluded that there is a cer-
tain degree of conservation in spatial structure [8]. Ideally, 
adjacencies in these conserved regions would get the same 
color. Despite this large-scale conservation, however, fur-
ther extension of the model to accommodate discrepan-
cies in the Hi-C data between species is of future interest.

Our work opens the door to the development of more 
complex models of genome rearrangement with posi-
tional constraints, where local moves would be attrib-
uted nonzero cost. To this end we established a useful 
link between the weighted distance and the difference 
between minimum local parsimonious scenario 
and minimum local scenario in the "Towards a more 

Fig. 17  A comparison of MLS and divergence from linearity for the number of clusters k = 6 on the left and k = 12 on the right. The clusterings 
and their colors in the plot are exactly as in Fig. 16. For k = 6 there exists a single linear clustering where the 6 chromosomes are assigned unique 
colors, and it coincides with the minimum linear clustering

Fig. 18  Comparison of MLS and divergence from linearity for the number of clusters k = 18 on the left and k = 24 on the right. For k = 18 the clus-
terings and their colors in the plot are exactly as in Fig. 16. For k = 24 there are 100 random (black points) clusterings as opposed to 1000 of Fig. 16. 
optimal clusterings do not exist for k > 19, however using the adjacency graph we could still construct the colorings with a very low MLS cost. We 
did not compute MLS values of minimum linear clusterings for k > 19
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general cost function" section. Preliminary experimental 
results indicate that the problem of finding a minimum 
cost scenario among those of almost minimum length 
would be of practical interest.
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