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Abstract 

Background:  One way to estimate the evolutionary distance between two given genomes is to determine the 
minimum number of large-scale mutations, or genome rearrangements, that are necessary to transform one into 
the other. In this context, genomes can be represented as ordered sequences of genes, each gene being repre-
sented by a signed integer. If no gene is repeated, genomes are thus modeled as signed permutations of the form 
π = (π1π2 . . . πn) , and in that case we can consider without loss of generality that one of them is the identity permu-
tation ιn = (12 . . . n) , and that we just need to sort the other (i.e., transform it into ιn ). The most studied genome rear-
rangement events are reversals, where a segment of the genome is reversed and reincorporated at the same location; 
and transpositions, where two consecutive segments are exchanged. Many variants, e.g., combining different types of 
(possibly constrained) rearrangements, have been proposed in the literature. One of them considers that the number 
of genes involved, in a reversal or a transposition, is never greater than two, which is known as the problem of sorting 
by super short operations (or SSOs).

Results and conclusions:  All problems considering SSOs in permutations have been shown to be in P , except for 
one, namely sorting signed circular permutations by super short reversals and super short transpositions. Here we 
fill this gap by introducing a new graph structure called cyclic permutation graph and providing a series of intermedi-
ate results, which allows us to design a polynomial algorithm for sorting signed circular permutations by super short 
reversals and super short transpositions.
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Background
In bioinformatics, comparative genomics consists in analyz-
ing the contents of two (or more) genomes in order to extract 
information. In particular, estimating the evolutionary dis-
tance between two extant species can be achieved by count-
ing the minimum number of large-scale evolution events 
(called genome rearrangements) that separate two genomes. 
This is usually modeled as the following algorithmic prob-
lem: given two genomes g1 and g2 represented as ordered 
sequences of (possibly signed) genes, and a set M of allowed 
genome rearrangement events, determine the minimum 
number of events from M needed to obtain g2 from g1.

The first such genome rearrangement problems have 
been studied in the 1990s, and the topic has given rise to 

a very large literature since then (see, for example, Fertin 
et  al.  [1] for a survey). Two well-studied rearrangements 
are reversals, in which a segment of the genome is reversed 
and reincorporated at the same location, and transposi-
tions, where two consecutive segments are exchanged.

If every gene appears exactly once in g1 (resp. g2 ), a 
genome can be represented by a (possibly signed) permu-
tation, and one can without loss of generality rewrite the 
two input genomes (g1, g2) into (g ′1, g

′
2) , leaving the dis-

tance unchanged, and in such a way that g ′2 is the positive 
identity permutation ιn , where n is the number of genes 
in g1 and g2 . In that case, we talk about sorting genome g ′1.

Sorting by reversals has been shown to be in P for signed 
genomes  [2] and to be NP-hard for unsigned genomes  [3], 
where the best known approximation factor is 1.375 [4]. Sort-
ing by transpositions is NP-hard in unsigned genomes [5], and 
the best known approximation factor is 1.375 [6]. Sorting by 
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reversals and transpositions is of unknown complexity both 
for signed and unsigned permutations, and the best known 
approximation factors is 2 for signed permutations [7] and 2k 
for unsigned permutations [8], where k is the approximation 
of the algorithm used for cycle decomposition [9].

Many other variants have been considered, notably consid-
ering different combinations and constraints for the set M 
of allowed rearrangements [1]. One of these variants consid-
ers that the number of genes involved in any rearrangement 
in M is never greater than two—such rearrangements are 
called super short operations (or SSOs). Although such mod-
els are of more theoretical interest, they are also motivated 
by the fact that rearrangements affecting large portions of a 
genome are less likely to occur [10] and that short reversals 
are prevalent in the evolution of some species [11, 12].

Sorting by SSOs has been studied in linear and circular 
genomes, signed and unsigned, when the allowed opera-
tions are reversals and/or transpositions. To cover circular 
genomes adequately, we will define in “Genome represen-
tation and super short operations” section cyclic SSOs, a 
particular type of SSOs which modify the permutation cycli-
cally. On (a) unsigned permutations, we have that a super 
short reversal has the same effect of a super short transpo-
sition, which results in two different versions: (a.1) Sorting 
Permutations by SSOs and (a.2) Sorting Permutations by 
cyclic SSOs. Besides, as we will see in the next section, since 
transpositions cannot change the signs of elements, we do 
not use transpositions only on (b) signed permutations, so 
this operation must be used together with super short rever-
sals. This results in four different problems: (b.1) Sorting 
Signed Permutations by Super Short Reversals, (b.2) Sorting 
Signed Permutations by cyclic Super Short Reversals, (b.3) 
Sorting Signed Permutations by SSOs, and (b.4) Sorting 
Signed Permutations by cyclic SSOs.

The summary of problems and the known results until 
now are shown in Table 1. In all cases the problem has been 
shown to be in P , except for the latter case, which was left 
open, and which we solve in this paper. More precisely, we 
prove that sorting signed circular permutations by super 
short reversals and transpositions is in P , thereby closing 
a gap in the literature concerning super short operations.

This paper is organized as follows. “Preliminaries and 
notations” section presents some important concepts 
and notations that we use throughout the paper, nota-
bly the cp-graph that we introduce here and extensively 
use. “Related results” section presents a review on Sort-
ing Permutations by SSOs and cyclic SSOs. In “Sorting 
Signed Permutations by cyclic SSOs” section, we provide 
a series of intermediate results, which allows us to design 
a polynomial algorithm for sorting signed linear per-
mutations by cyclic super short reversals and transposi-
tions. From this, we derive our main result, i.e., a proof 
that sorting signed circular permutations by super short 
reversals and transpositions is in P . “Conclusion” section 
concludes the paper.

Preliminaries and notations
In this section we present the important concepts and 
notations that we use throughout the paper.

Genome representation and super short operations
A genome g can be transformed into a reduced mathe-
matical representation by modeling it as an n-tuple whose 
elements represent its genes. In this paper, we assume 
that g contains no duplicated genes, thus the n-tuple is 
a permutation π = (π1π2 . . . πn) , with |πi| ∈ {1, 2, . . . , n} 
and |πi| �= |πj| whenever i �= j . Each element πi has a sign, 
+ or −, indicating the gene orientation, and we say that 
π is a signed permutation. If the genome represented by 
π is circular, then the elements πn and π1 are considered 
to be adjacent and we say that π is a circular permutation 
(also called n-cycle in the literature); otherwise π is a lin-
ear permutation.

Given two permutations π = (π1π2 . . . πn) and 
σ = (σ1σ2 . . . σn) , the composition between π and 
σ , denoted by π · σ results in the permutation 
α = (α1α2 . . . αn) . If σi < 0 , then αi = −π|σi| , and αi = πσi 
otherwise. The inverse of σ , denoted by σ−1 , is the permu-
tation such that σ−1 · σ = ιn . That said, we can rewrite a 
pair of permutations (π , σ) as (α, ιn) , with α = σ−1 · π , 
such that the distance between permutations π and 
σ is the same as the distance between permutations 
α and ιn . For example, if π = (+ 1− 3+ 2+ 5− 4) 
and σ = (+2+ 4 − 5− 1+ 3) , we have that 
σ−1 = (− 4 + 1+ 5+ 2− 3) , so the distance between 
permutations π and σ is the same as the distance 
between α = σ−1 · π = (− 4 − 5+ 1− 3− 2) and 
ι5 = (+ 1+ 2+ 3+ 4 + 5).

A reversal ρ(i, j) , 1 ≤ i ≤ j ≤ n , is a rearrange-
ment that reverses the order and signs of the genes 
in the subset of adjacent elements {πi, ...,πj} . More 
precisely, it transforms the permutation π into 
π · ρ(i, j) = (π1 . . .−π j . . .−π i . . . πn) . A cyclic reversal 
ρ∗(i, j) is the extension of a reversal to the case where 

Table 1  List of sorting by SSOs and cyclic SSOs problems

Permutation 
type

Allowed genome rearrangement 
events

Polynomial-
time algorithm

Unsigned (a.1) Super short operations [15]

Unsigned (a.2) Cyclic super short operations [13]

Signed (b.1) Super short reversals [16]

Signed (b.2) Super short operations [16]

Signed (b.3) Cyclic super short reversals [14]

Signed (b.4) Cyclic super short operations Here



Page 3 of 16Oliveira et al. Algorithms Mol Biol  (2018) 13:13 

i > j : ρ∗(i, j) = ρ(i, j) if i ≤ j , whereas if i > j , then the 
subset reversed by ρ∗(i, j) is {πi, ...,πn,π1, ...,πj} . A rever-
sal (resp. cyclic reversal) ρ(i, j) (resp. ρ∗(i, j) ) is called a 
z-reversal, where z = j − i + 1 (mod n) . We say that a 
z-reversal is super short if z ∈ {1, 2}.

A transposition τ (i, j, k) , 1 ≤ i < j < k ≤ n+ 1 , 
is a rearrangement that transforms π into 
π · τ (i, j, k) = (π1 . . . πi−1πj . . . πk−1 πi . . . πj−1πk . . . πn) . 
In other words, τ (i, j, k) exchanges subsets of adja-
cent elements {πi, . . . ,πj−1} and {πj , . . . ,πk−1}. Note 
that, since these subsets are not reversed, transpo-
sitions never change signs. As for reversals, a cyclic 
transposition τ ∗(i, j, k) is the extension of transposi-
tions to the cases (a) 1 ≤ k < i < j ≤ n (in which sub-
sets {πi, . . . ,πj−1} and {πj , . . . ,πn,π1, . . . ,πk−1} are 
exchanged), and (b)  1 ≤ j < k < i ≤ n (in which sub-
sets {πi, . . . ,πn,π1, . . . ,πj−1} and {πj , . . . ,πk−1} are 
exchanged). A transposition (resp. cyclic transposition) 
τ (i, j, k) (resp. τ ∗(i, j, k) ) is called a z-transposition, where 
z = x + y with x = j − i (mod n) and y = k − j (mod n) , 
and we say that a z-transposition is super short if z = 2.

In the remainder of the paper, we will call a super short 
operation (or SSO) any 1-reversal, 2-reversal, or 2-trans-
position; moreover, any SSO that is not a 1-reversal will 
be called a swap, and the swap between elements πi and 
πj is denoted by (πi,πj).

Given a permutation π , the sorting distance of π , 
denoted by d(π) , is the length of a minimum-length 
sequence of SSOs needed to sort π . This paper is devoted 
to finding the smallest number of SSOs that are needed 
to sort a signed circular permutation π of size n using for 
that a polynomial algorithm designed for sorting signed 
linear permutations by cyclic super short reversals and 
transpositions.

VD‑vector, crossing value, and crossing number
Most of the present paper will be concerned with cyclic 
SSOs in linear permutations. This section introduces a 
structure (called valid displacement vector) that allows 
us to compute the minimum number of cyclic swaps 
(i.e., 2-reversals or 2-transpositions) that put every ele-
ment in its correct position (this number is called cross-
ing number). It is important to note that this structure 
does not take into account the signs of the elements 
mainly for two reasons: (i) it does not make a distinc-
tion between 2-reversals and 2-transpositions (both are 
swaps), and (ii) it does not take into account 1-rever-
sals, since they are not swaps by definition.

Given a sequence S = (s1, s2, . . . , sk) of k cyclic SSOs 
that sort a linear permutation π ( S is also called a sort-
ing sequence for π ), and given 1 ≤ i ≤ n , we denote by 
RS(πi) (resp. LS(πi) ) the number of cyclic SSOs in S 
that move πi to the right (resp. to the left).

For any 1 ≤ i ≤ n , the displacement value of πi with 
respect to S is given by vS(πi) = RS(πi)− LS(πi) , 
and the displacement vector of π associated to S is 
VS(π) = (vS(π1), vS(π2), . . . , vS(πn)).

For instance, let us consider the permutation 
π = (+ 4 + 2+ 3− 1− 5) and the sequence S = (ρ(3, 4),

τ (2, 3, 4), τ (1, 2, 3), τ (2, 3, 4), ρ(3, 4), ρ(4, 4), ρ(5, 5)) of  
cyclic SSOs that sorts π . The sequence S 
results in the following sequence of swaps: 
((+ 3,− 1), (+ 2,+ 1), (+ 4,+ 1), (+ 4,+ 2), (+ 4,− 3)). 
Note that RS(−1) = 0 and LS(−1) = 3 , so 
vS(−1) = RS(−1)− LS(−1) = 0− 3 = − 3 . One can 
also see that VS(π) = (3, 0, 0,−3, 0).

Let X = (x1, x2, . . . , xn) ∈ Z
n be a displacement 

vector and let π be a permutation. We say that X is 
a valid displacement vector (or VD-vector) for π if 
∑n

i=1 xi = 0 (i.e., for each element of π that moves one 
position to the right, another must move one position 
to the left and vice versa) and |πi| − xi ≡ i (mod n) 
for i ∈ [1..n] (i.e., every element must be in its correct 
position at the end). For instance, X = (3, 0, 0,−3, 0) 
is a VD-vector for π = (+ 4 + 2+ 3− 1− 5) 
since 

∑n
i=1 xi = 3+ 0+ 0− 3+ 0 = 0 and 

|πi| − xi ≡ i (mod n) for i ∈ [1..5].

Given a VD-vector X = (x1, x2, . . . , xn) ∈ Z
n and 

two distinct integers i, j ∈ [1..n] , let r = i − j and 
s = (i + xi)− (j + xj). Note that r measures how dis-
tant the element πj is from πi in π (if r > 0 (resp. r < 0 ) 
then πj is located in a position to the left (resp. right) of 
πi ), while s measures how distant the element πj will be 
from πi in their final positions, i.e., positions (i + xi) for 
πi and (j + xj) for πj . The crossing value between i and 
j, 1 ≤ i �= j ≤ n , with respect to X is defined as follows:

In other words, cij(X) represents the minimum number 
of times πi and πj are swapped (by a 2-reversal or a 
2-transposition) in SX , a sorting sequence X is associated 
to. The sign of cij(X) is positive (resp. negative) if πi is to 
the left (resp. right) of πj before the swap between these 
two elements takes place. For this reason, cii(X) is unde-
fined, and cij(X) = −cji(X) for any 1 ≤ i �= j ≤ n . Besides, 
xi =

∑n
j=1

j �=i

cij(X) for i ∈ [1..n].

If X is a VD-vector associated to some sorting sequence 
for π , we say that X induces a swap α between two ele-
ments πi and πj if i �= j and cij(x) �= 0 . We also say that α 
is induced by X.

Given any VD-vector X for π , there exists at least one 
sorting sequence S such that VS(π) = X . For instance, 
we can use 2-transpositions to apply the swaps induced 

cij(X) =

{

|{k ∈ [r..s] : k ≡ 0 (mod n)}|, if r ≤ s;

−|{k ∈ [s..r] : k ≡ 0 (mod n)}|, if r > s.
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by X (that will put every element in its correct position) 
followed by a sequence of 1-reversals applied to every 
negative element.

The crossing number of a VD-vector X is defined as 
cn(X) = 1

2

∑

i �=j |cij(X)| . Informally, cn(X) represents the 
minimum number of swaps in the sorting sequence X is 
associated to.

Take again π = (+ 4 + 2+ 3− 1− 5) and the 
VD-vector X = (3, 0, 0,−3, 0) . Given i = 2 and 
j = 4 , we have that r1 = i − j = 2− 4 = −2 and 
s1 = (i + xi)− (j + xj) = 2− 1 = 1 , and we have the  
 crossing value c24 = |{k ∈ [−2..1] : k ≡ 0 (mod 5)}| = 1 . 
Now for i = 3 and j = 1 , we have that r2 = i − j = 3− 1 = 2 
and s2 = (i + xi)− (j + xj) = 3− 4 = −1 , and we have 
c31 = −|{k ∈ [−1..2] : k ≡ 0 (mod 5)}| = −1 . After com-
puting every crossing value, we obtain the crossing number 
cn(X) = 5.

Given a VD-vector X for a permutation π , we denote 
by d(π ,X) the size of a minimum-length sequence of 
SSOs needed to sort π by applying swaps induced by X. 
Formally, d(π ,X) = cn(X)+ y , where y is the minimum 
number of 1-reversals over all sorting sequences having 
associated VD-vector X.

Given two integers 1 ≤ i �= j ≤ n , we define the trans-
formation Ti,j(X) : Z

n → Z
n over a VD-vector X ∈ Z

n as 
the one that creates the VD-vector X ′ with x′k = xk , for 
k �∈ {i, j} , x′i = xi − n , and x′j = xj + n.

After such transformation is applied, each crossing 
value of the form cib(X ′) and caj(X ′) is one unit smaller 
than cib(X) and caj(X) , respectively, and each crossing 
value of the form cai(X ′) and cjb(X ′) is one unit larger 
than cai(X) and cjb(X) , respectively, with 1 ≤ a, b ≤ n , 
a �∈ {i, j} , and b �∈ {i, j} . Besides, cji(X ′) (resp. cij(X ′) ) is 
two units larger (resp. smaller) than cji(X) (resp. cij(X)).

The following property was given by Jer-
rum  [13]. Note that the author mistakenly wrote 
cn(X ′) = cn(X)+ 4(n− xi + xj) , which was later cor-
rected by Galvão et al. [14].

Property 1  Let X ∈ Z
n be a VD-vector for π, and let 

X ′ = Ti,j(X). Then cn(X ′) = cn(X)+ 2(n− xi + xj).

A transformation Ti,j(X) = X ′ is called contract-
ing (resp. strictly contracting) if and only if xi − xj ≥ n 
(resp. xi − xj > n ), which implies by Property  1 that 
cn(X ′) ≤ cn(X) (resp. cn(X ′) < cn(X) ). If a VD-vector X 
admits no strictly contracting transformation, we have 
that xi − xj ≤ n for any 1 ≤ i �= j ≤ n , and thus for any 
VD-vector Y, cn(Y ) ≥ cn(X).

Given the VD-vector X = (3, 0, 0,−3, 0) for 
π = (+ 4 + 2+ 3− 1− 5) , we obtain the vector 
X ′ = T1,4(X) with x′1 = x1 − n = 3− 5 = −2 and 
x′4 = x4 + n = −3+ 5 = 2 , so X ′ = (− 2, 0, 0, 2, 0). 

Note that X ′ is also a VD-vector for π , which 
means there exists a sorting sequence S ′ 
for π such that VS ′(π) = X ′ . By Property  1, 
cn(X ′) = cn(X)+ 2(n− x1 + x4) = 5− 2 = 3.

Cyclic permutation graph
Since a VD-vector does not take into account the signs 
of the elements, we will introduce a new graph structure 
called cyclic permutation graph. This graph is constructed 
based on VD-vectors, and will help us to determine the 
minimum number of SSOs that sorts a permutation (now 
taking into account the signs of the elements and also 
considering 1-reversals).

Given a VD-vector X for a permutation π , we define the 
cyclic permutation graph (or cp-graph) of X and π , as the 
undirected graph GX

π = (V ,E) , with V = {π1,π2, . . . ,πn} 
and E = {{πi,πj} : cij(X) > 0}.

We associate weights to edges of E(GX
π ) as follows: if 

e = {πi,πj} and e ∈ E(GX
π ) , then w(e) = cij(X) . Note that, 

by construction, we have 
∑

e∈E(GX
π )

w(e) = cn(X) . If every 
edge e ∈ E(GX

π ) satisfies w(e) = 1 , then for any i ∈ [1..n] 
vertex πi has at least |xi| edges (since xi =

∑n
j=1 cij(X) ), 

and thus the connected component that contains πi has 
at least |xi| + 1 vertices.

We denote by cc(GX
π ) the number of connected com-

ponents of GX
π  . Moreover, a connected component of GX

π  
is said to be odd if it contains an odd number of vertices 
πi such that πi < 0 , and is said to be even otherwise. The 
number of odd connected components in GX

π  is denoted 
cc−(GX

π ).

Let π be a permutation, X = (x1, x2, . . . , xn) ∈ Z
n be 

a VD-vector for π , and α be a cyclic SSO induced by X 
(i.e., α is a 2-reversal or a 2-transposition) applied to two 
adjacent elements πi and πi (mod n)+1 of π . The result-
ing VD-vector X ′ for π ′ = π · α is such that x′k = xk for 
every k �∈ {i, i (mod n)+ 1} , x′i = xi (mod n)+1 + 1 and 
x′i (mod n)+1

= xi − 1 . Moreover, cn(X ′) = cn(X)− 1 , and 
the cp-graph GX ′

π ′ can be obtained from GX
π  by decreas-

ing the weight of the edge between vertices πi and 
πi (mod n)+1 by 1 (or by removing that edge if its previous 
weight was one).

For instance, take again π = (+ 4 + 2+ 3− 1− 5) , 
X = (3, 0, 0,−3, 0) , and X ′ = T1,4(X) = (− 2, 0, 0, 2, 0) . 
We can apply the 2-reversal ρ(4, 5) that is 
induced by X ′ to obtain the permutation 
π ′ = π · ρ(4, 5) = (+ 4 + 2+ 3+ 5+ 1) and the VD-
vector X ′′ = (−2, 0, 0, 1, 1).

The corresponding cp-graphs GX
π  , GX ′

π  , and GX ′′

π ′  
are given in Fig.  1. In Fig.  1a we have cn(X) = 5 and 
cc(GX

π ) = cc−(GX
π ) = 2 ; in Fig.  1b we have cn(X ′) = 3 , 

cc(GX ′

π ) = 3 , and cc−(GX ′

π ) = 0 ; in Fig.  1c we have 
cn(X ′′) = 2 , cc(GX ′′

π ′ ) = 3 , and cc−(GX ′′

π ′ ) = 0.
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Related results
In this section, we provide related results of solving Sort-
ing Permutations by SSOs and cyclic SSOs problems.

Sorting by SSOs
Given a permutation π , a pair of elements (πi,πj) is 
called an inversion if |πi| > |πj| and i < j , with i �= j 
and {i, j} ∈ [1..n] . Let inv(π) be the number of inver-
sions in π . Knuth  [15, p.  108] showed in 1973 that 
Sorting Unsigned Permutations by SSOs belongs 
to P and that the sorting distance for this ver-
sion is d(π) = inv(π) . For instance, taking the 
unsigned permutation α = (6423157) , we have that 
inv(α) = |{(6, 4), (6, 2), (6, 3), (6, 1), (6, 5), (4, 2), (4, 3), 
(4, 1), (2, 1), (3, 1)}| = 10 so it follows that d(α) = 10.

The number of inversions is a natural lower bound for 
Sorting Signed Permutations by SSOs: for any signed per-
mutation π , d(π) ≥ inv(π) . Galvão et  al.  [16] proved in 
2015 that Sorting Signed Permutations by Super Short 
Operations is in P . Let IG(π) be the inversion graph of 
the signed permutation π . IG(π) is such that V (IG(π)) is 
formed by the elements of π and E(IG(π)) is formed by the 
pairs of inversions in π . A component in IG(π) is odd if it 
contains an odd number of negative elements, and it is even 
otherwise. The authors showed that there exists a minimum 
sorting sequence for this problem that uses inv(π) swaps 
plus k 1-reversals, such that k is the number of odd compo-
nents in IG(π) . For instance, taking the signed permutation 
α′ = (− 6+ 4 + 2− 3+ 1+ 5− 7) , we have that IG(α′) 
has two components: an odd component with the element 
−7 only, and an even component with the remaining ele-
ments, so it follows that d(α′) = 10+ 1 = 11 . Note that 

the sorting distance for α′ is decreased by two compared to 
the version that allows only super short reversals.

Sorting by cyclic SSOs
Jerrum [13] showed in 1985 that Sorting Unsigned Permuta-
tions by cyclic SSOs belongs to P . The author proved that the 
sorting distance for this version is d(π) = min{cn(X) : X is 
a VD-vector for π} . Take the permutation α = (6423157) 
again. We have that X = (− 2, 2,−1,−1, 3,−1, 0) , with 
cn(X) = 6 , is a VD-vector for α . Besides, for any VD-vector 
X ′ for α , cn(X ′) ≥ cn(X) , so it follows that d(α) = 6 . Note 
that the sorting distance for α decreases from 10 to 6 by 
allowing cyclic SSOs.

In 2016, Galvão et al.  [14] proved that Sorting Signed 
Permutations by cyclic super short reversals is also in 
P . Given a signed permutation π and a VD-vector X, let 
neven(X ,π) be the set of elements from π such that |xi| is 
even and πi < 0 , and let podd(X ,π) be the set of elements 
from π such that |xi| is odd and πi > 0 . In a similar way 
as in Sorting Signed Permutations by SSOs, the authors 
proved that, given any VD-vector X for π such that X has 
the minimum crossing number over all VD-vectors for π , 
the sorting distance of π is precisely cn(X)+ k , where k 
is the number of elements in {neven(X ,π) ∪ podd(X ,π)} . 
Taking α′ = (− 6+ 4 + 2− 3+ 1+ 5− 7) and 
X = (− 2, 2,−1,−1, 3,−1, 0) (recall that any VD-
vector X ′ for α′ is such that cn(X ′) ≥ cn(X) ), we 
have cn(X) = 6 , neven(X ,α′) = {−6,−7} , and 
podd(X ,α′) = {+1,+2,+5} , so it follows that 
d(α′) = 6+ 5 = 11 . Compared to the version that does 
not allow cyclic super short reversals, the sorting dis-
tance for α′ decreases from 13 to 11.

+4 +2 +3 −1 −5

+4 +2 +3 −1 −5 +4 +2 +3 +5 +1

a

b c

1

1

1

1

1

1

1

1

1

1

Fig. 1  In a we have the cp-graph GX
π for π = (+ 4+ 2+ 3− 1− 5) and X = (3, 0, 0,−3, 0) , with cn(X) = 5 , cc(GX

π ) = 2 , and cc−(GX
π ) = 2 . In b we 

have the cp-graph GX ′

π  for X ′ = T1,4(X) = (− 2, 0, 0, 2, 0) . By Property 1 cn(X ′) = cn(X)+ 2(n− x1 + x4) = 5− 2 = 3 (recall that cn(X ′) is also the 
sum of weights in the graph GX ′

π  ), cc(GX ′

π ) = 3 , and cc−(GX ′

π ) = 0 . We can see in GX
π and GX ′

π  that the 2-reversal ρ(4, 5) is induced by X ′ but not by X; 
c the cp-graph GX ′′

π ′  for π ′ = π · ρ(4, 5) = (+ 4+ 2+ 3+ 5+ 1) and its VD-vector X ′′ = (−2, 0, 0, 1, 1) with cn(X ′′) = cn(X ′)− 1 = 2 , cc(GX ′′

π ′ ) = 3 , 
and cc−(GX ′′

π ′ ) = 0
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For Sorting Signed Permutations by cyclic SSOs, a triv-
ial lower bound comes from the unsigned version with 
cyclic SSOs: d(π) ≥ min{cn(X) : X is a VD-vector for π} . 
Inspired by IG(π) , we defined in “Cyclic permutation graph” 
section the cp-graph, creating edges according to the cross-
ing values of a VD-vector X instead of inversions. Although 
these graphs are different, the classification of odd and even 
components is the same and will be useful later.

Note that in all previous problems showed in this sec-
tion the sorting distance is always associated with the 
minimum number of inversions or the minimum cross-
ing number. What makes Sorting Signed Permutations by 
cyclic SSOs not trivial is that, as we will see later, unlike 
all previous problems a minimum sorting sequence is 
not necessarily associated to a VD-vector with minimum 
crossing number (see Fig. 5 for an example).

Sorting linear permutations by cyclic SSOs vs. sorting 
circular permutations by SSOs
Note that, although sorting linear permutations by cyclic 
SSOs and sorting circular permutations by SSOs are differ-
ent problems, we can use the first to solve the latter. Just 
as an example, the permutation π = (+ 5+ 4 − 2− 1+ 3) 
has a sorting distance of 8, considering the model that only 
allows SSOs, and it has a sorting distance of 4 considering 
the model that allows cyclic SSOs. But if π is circular, then 
π ′ = (− 2− 1+ 3+ 5+ 4) is also a linear representation 
for π , since it respects all adjacencies between elements. 
This linear representation π ′ has a sorting distance of 2 for 
the model that only allows SSOs and also in the model that 
allows cyclic SSOs. Besides, π ′ is, in fact, the linear repre-
sentation for the circular permutation π with the lowest 
sorting distance by cyclic SSOs, so it follows that the sort-
ing distance of the circular permutation π is 2. A more 
detailed explanation of how to use a linear model to solve 
circular permutations will be given at the end of “Sorting 
Signed Permutations by cyclic SSOs” section.

Sorting Signed Permutations by cyclic SSOs
This section is devoted to proving our two main results, 
namely the fact that sorting signed linear permutations 
by cyclic SSOs is in P  (Theorem  1), and, consequently, 
that sorting signed circular permutations by SSOs is also 
in P  (Theorem 2). For this, we study in depth (and pro-
vide properties of ) sorting signed linear permutations by 
cyclic SSOs, which heavily rely on the cp-graph we intro-
duced in “Preliminaries and notations” section.

Properties of VD‑vectors
Before we provide a series of lemmas that will lead to our 
final algorithm, we begin with the three following prop-
erties, which will prove useful in this section.

In Property  2 we will show that if a VD-vector X has 
a displacement value xi whose absolute value is greater 
than or equal to n, then there is a crossing value cij(X) 
(in absolute value) greater than one. In Property  3 we 
will show that if a VD-vector X has a crossing value cij(X) 
greater than zero, then elements πk , k ∈ [i..j] , must be 
in the same component in its corresponding cp-graph. 
Property 4 is an extension of Property 3, where we show 
that if a VD-vector X has a crossing value cij(X) (in abso-
lute value) greater than one, then all elements are in the 
same component in its corresponding cp-graph.

Property 2  Let X = (x1, x2, ..., xn) ∈ Z
n be a VD-vector 

for π. If there exists 1 ≤ i ≤ n such that |xi| ≥ n, then there 
exists 1 ≤ j �= i ≤ n such that |cij(X)| > 1.

Proof  Let X ∈ Z
n be a VD-vector for π , and let us sup-

pose that there exists 1 ≤ i ≤ n such that |xi| ≥ n . We 
know, by definition, that xi =

∑n
j=1,j �=i cij(X) . Since there 

are n− 1 crossing values of the form cij(X) (one for each 
j �= i ), this necessarily implies that |cij(X)| > 1 for some 
1 ≤ j �= i ≤ n . � �

Property 3  Let X = (x1, x2, ..., xn) ∈ Z
n be a VD-

vector for π. If cij(X) > 0 (resp. cij(X) < 0) for some 
1 ≤ i �= j ≤ n, then, for any k ∈ [i + 1..j − 1] (resp. 
k ∈ [j + 1..i − 1]), we have |cik(X)| + |cjk(X)| �= 0 and 
{{πi,πk}, {πj ,πk}} ∩ E(GX

π ) �= ∅.

Proof  Let X be a VD-vector such that for two ele-
ments πi and πj , 1 ≤ i �= j ≤ n , cij(X) �= 0 . Since 
cij(X) = −cji(X) , let us suppose, without loss of gen-
erality, that cij(X) = γ with γ ≥ 1 . Let r1 = i − j and 
s1 = (i + xi)− (j + xj) . Since cij(X) is positive we have, 
by definition of crossing value, that r1 ≤ s1.

Suppose first that i < j . Since r1 = i − j < 0 and 
r1 ≤ s1 , then s1 > γ − 1 , otherwise cij(X) < γ . 
We have that xi > xj + j − i + γ − 1 . Suppose 
that we have an element πk with i < k < j such 
that cik(X) = cjk(X) = 0 . For cik(X) , we have that 
r2 = i − k < 0 , so s2 = (i + xi)− (k + xk) < 0 , oth-
erwise cik(X) �= 0 . It follows that xk > xi + i − k , 
and, since xi > xj + j − i + γ − 1 , we have that 
xk > xj + j − k + γ − 1 . For cjk(X) , we have that 
r3 = j − k > 0 , so s3 = (j + xj)− (k + xk) > 0 , other-
wise cjk(X) �= 0 . It follows that xk < xj + j − k , which is a 
contradiction to the fact that xk > xj + j − k + γ − 1 and 
γ > 0 , so we conclude that |cik(X)| + |cjk(X)| �= 0.

Now let us suppose i > j . In this case, we can split the 
interval that goes from i to j into [i + 1..n] ∪ [1..j − 1] . 
Since r1 = i − j > 0 and r1 ≤ s1 , then s1 ≥ γn , other-
wise cij(X) < γ . It follows that xi ≥ xj + j − i + γn . 
Suppose that we have an element πk such that 
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k ∈ [i + 1..n] ∪ [1..j − 1] and cik(X) = cjk(X) = 0 . We 
have to consider two cases: when k ∈ [1..j − 1] (i.e., 
k < min(i, j) ) and when k ∈ [i + 1..n] (i.e., k > max(i, j)):

1.	 k < min(i, j) : in this case, for both cik(X) and  
cjk(X) , we have that r2 = i − k > 0 and r3 = j − k > 0 ,  
so 0 < s2 < n and 0 < s3 < n , otherwise  
|cik(X)| + |cjk(X)| �= 0 . For cik(X) and 
s2 = (i + xi)− (k + xk) < n , we have 
xi + i − xk − k < n , resulting in xk > xi + i − k − n . 
Since xi ≥ xj + j − i + γn , we have that 
xk > xj + j − k + (γ − 1)n . For cjk(X) 
and s3 = (j + xj)− (k + xk) > 0 , we have 
xj + j − xk − k > 0 , resulting in xk < xj + j − k , 
which is a contradiction to the fact that 
xk > xj + j − k + (γ − 1)n and (γ − 1) ≥ 0.

2.	 k > max(i, j) : in this case, for both cik(X) 
and cjk(X) , we have that r2 = i − k < 0 
and r3 = j − k < 0 , so −n < s2 < 0 and 
−n < s3 < 0 , otherwise |cik(X)| + |cjk(X)| �= 0 . 
For cik(X) and s2 = (i + xi)− (k + xk) < 0 , 
we have xi + i − xk − k < 0 , resulting in 
xk > xi + i − k . Since xi ≥ xj + j − i + γn , 
we have that xk > xj + j − k + γn . For 
cjk(X) and s3 = (j + xj)− (k + xk) > −n , 
we have xj + j − xk − k > −n , resulting in 
xk < xj + j − k + n , which is a contradiction to the 
fact that xk > xj + j − k + γn and γ ≥ 1.

In all cases, it follows that |cik(X)| + |cjk(X)| �= 0 , thus 
{{πi,πk}, {πj ,πk}} ∩ E(GX

π ) �= ∅ .�  �

Property 4  Let X = (x1, x2, ..., xn) ∈ Z
n be a VD-vector 

for π. If there exists a cij(X) such that |cij(X)| > 1 then 
cc(GX

π ) = 1.

Proof  Let X be a VD-vector for some permutation π 
such that |cij(X)| > 1 for some 1 ≤ i �= j ≤ n . Let us sup-
pose, without loss of generality, that cij(X) > 1 (recall 
that cij(X) = −cji(X) by definition), and for readability, 
let cij(X) = γ . Let r1 = i − j and s1 = (i + xi)− (j + xj) . 
Since cij(X) is positive we have, by definition of crossing 
value, that r1 ≤ s1 . Let us now consider two cases: either 
i < j , or i > j.

Suppose first i < j . In this case, r1 = i − j is 
such that −n < r1 < 0 . Since r1 ≤ s1 , we have that 
s1 = (i + xi)− (j + xj) ≥ (γ − 1)n (we use ( γ − 1 ) because 
γ = |{k ∈ [r1..s1] : k ≡ 0 (mod n)}| = |{k ∈ [r1..0] : k ≡ 0

(mod n)}| + |{k ∈ [1..s1] : k ≡ 0 (mod n)}| = 1+ |{k ∈

[1..s1] : k ≡ 0 (mod n)}| , so (γ − 1) = |{k ∈ [1..s1] :

k ≡ 0 (mod n)}| and s1 ≥ (γ − 1)n ), otherwise 
cij(X) < γ . It follows that xi ≥ (γ − 1)n+ xj + j − i . 

Now suppose that we have an element πk such that 
cik(X) = cjk(X) = 0 . We have three cases:

1.	 k < i < j : in this case, r2 = i − k > 0 and 
r3 = j − k > 0 , so we must have that 0 < s2 < n 
and 0 < s3 < n , with s2 = (i + xi)− (k + xk) 
and s3 = (j + xj)− (k + xk) . For s2 < n , 
we have xk > xi + i − k − n , and since 
xi ≥ (γ − 1)n+ xj + j − i we have that 
xk > (γ − 2)n+ xj + j − k . For s3 > 0 , we have 
xk < xj + j − k , but this is not possible since 
(γ − 2)n ≥ 0.

2.	 i < k < j : in this case, r2 = i − k < 0 and 
r3 = j − k > 0 , so −n < s2 < 0 and 0 < s3 < n , with 
s2 = (i + xi)− (k + xk) and s3 = (j + xj)− (k + xk) . 
For s2 < 0 , we have xk > xi + i − k , and 
since xi ≥ (γ − 1)n+ xj + j − i we have that 
xk > (γ − 1)n+ xj + j − k . For s3 > 0 , we have 
xk < xj + j − k , but this is not possible since 
(γ − 1)n > 0.

3.	 i < j < k : in this case, r2 = i − k < 0 
and r3 = j − k < 0 , so −n < s2 < 0 and 
−n < s3 < 0 , with s2 = (i + xi)− (k + xk) and 
s3 = (j + xj)− (k + xk) . For s2 < 0 , we have 
xk > xi + i − k , and since xi ≥ (γ − 1)n+ xj + j − i 
we have that xk > (γ − 1)n+ xj + j − k . For 
s3 > −n , we have xk < xj + j − k + n , but this is not 
possible since (γ − 1)n ≥ n.

Now let us consider i > j . In this case, r1 = i − j 
is such that 0 < r1 < n . Since r1 ≤ s1 , we have that 
s1 = (i + xi)− (j + xj) ≥ γn , otherwise cij(X) < γ . It fol-
lows that xi ≥ γn+ xj + j − i . Now suppose that we have 
an element πk such that cik(X) = cjk(X) = 0 . We also have 
three cases:

1.	 k < j < i : in this case, r2 = i − k > 0 and 
r3 = j − k > 0 , so we must have that 0 < s2 < n 
and 0 < s3 < n , with s2 = (i + xi)− (k + xk) 
and s3 = (j + xj)− (k + xk) . For s2 < n , we have 
xk > xi + i − k − n , and, since xi ≥ γn+ xj + j − i , 
we have that xk > (γ − 1)n+ xj + j − k . For s3 > 0 , 
we have xk < xj + j − k , but this is not possible since 
(γ − 1)n > 0.

2.	 j < k < i : in this case, r2 = i − k > 0 and 
r3 = j − k < 0 , so 0 < s2 < n and −n < s3 < 0 , with 
s2 = (i + xi)− (k + xk) and s3 = (j + xj)− (k + xk) . 
For s2 < n , we have xk > xi + i − k − n , 
and, since xi ≥ γn+ xj + j − i , we have that 
xk > (γ − 1)n+ xj + j − k . For s3 > −n , we have 
xk < xj + j − k + n , but this is not possible since 
(γ − 1)n ≥ n.
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3.	 j < i < k : in this case, r2 = i − k < 0 
and r3 = j − k < 0 , so −n < s2 < 0 and 
−n < s3 < 0 , with s2 = (i + xi)− (k + xk) and 
s3 = (j + xj)− (k + xk) . For s2 < 0 , we have 
xk > xi + i − k , and, since xi ≥ γn+ xj + j − i , we 
have that xk > γn+ xj + j − k . For s3 > −n , we 
have xk < xj + j − k + n , but this is not possible 
since γn > n.

It follows that if cij(X) > 1 , then, for any element πk 
with k �∈ {i, j} , we have that |cik(X)| + |cjk(X)| �= 0 , so 
{{πi,πk}, {πj ,πk}} ∩ E(GX

π ) �= ∅ . Since cij(X) > 1 , we also 
have that {πi,πj} ∈ GX

π  , so cc(GX
π ) = 1 .�  �

SSOs and the cp‑graphs
In this section we provide five lemmas relating SSOs 
with cp-graphs. In Lemma  1 (resp. Lemma  2) we will 
analyze the difference in the number of odd compo-
nents in the cp-graph when we apply a 1-reversal (resp. 
a swap, i.e., a 2-reversal or a 2-transposition) to the 
permutation π . In Lemma  3 we will show that we can 
always apply a swap induced by X without increasing 
the number of odd components in the resulting cp-
graph. Let |S| denote the length of a sorting sequence S . 
In Lemma 4 (resp. Lemma 5) we will show that if a sort-
ing sequence S has an SSO that increases the number 
of odd components (resp. the weight of an edge), then 
there is another sorting sequence S ′ with |S ′| ≤ |S| such 
that S ′ does not contain such SSOs.

Lemma 1  Let X and X ′ be two VD-vectors of Zn 
such that X is a VD-vector for π and X ′ is a VD-
vector for π ′ = π · α, where α is a cyclic SSO. If α 
is a 1-reversal, then X ′ = X , cn(X ′) = cn(X), and 
�cc− = cc−(GX ′

π ′ )− cc−(GX
π ) ∈ {−1, 1}.

Proof  If α is a 1-reversal, we have that |π ′
i | = |πi| 

for every 1 ≤ i ≤ n , which implies that X ′ = X , 
cn(X ′) = cn(X) , and cc(GX ′

π ′ ) = cc(GX
π ) . Now if the con-

nected component impacted by α in GX
π  is even (resp. 

odd), then it will become odd (resp. even) in GX ′

π ′ , thus 
�cc− ∈ {−1, 1} . � �

Lemma 2  Let X and X ′ be two VD-vectors of Zn 
such that X is a VD-vector for π and X ′ is a VD-vector 
for π ′ = π · α, where α is a cyclic SSO. If α is a 2-rever-
sal or a 2-transposition induced by X in π, then 
cn(X ′) = cn(X)− 1 and either cc(GX ′

π ′ ) = cc(GX
π ) and 

�cc− = cc−(GX ′

π ′ )− cc−(GX
π ) = 0 or cc(GX ′

π ′ ) > cc(GX
π ) 

and �cc− ∈ {0, 2}.

Proof  Since α is a cyclic SSO induced by X, the cross-
ing values between elements πi and πi (mod n)+1 
impacted by α are different from zero, which implies that 
e = {πi,πi (mod n)+1} ∈ E(GX

π ) . By definition, in GX ′

π ′ this 
edge either decreases its weight by one or is removed, so 
cc(GX ′

π ′ ) ≥ cc(GX
π ).

Suppose first cc(GX ′

π ′ ) = cc(GX
π ) . This means that the 

SSO applied to π leaves the connected component Cα to 
which it is applied in GX

π  unchanged. If the SSO is a 2-rever-
sal (resp. a 2-transposition), two (resp. zero) elements 
inside Cα have changed sign. In both cases, we have that 
�cc− = cc−(GX ′

π ′ )− cc−(GX
π ) = 0.

Now let us suppose cc(GX ′

π ′ ) > cc(GX
π ) . This means that 

Cα has been split into two connected components C1 and 
C2 , thus cc(GX ′

π ′ ) = cc(GX
π )+ 1 . If the SSO is a 2-transpo-

sition, zero elements of π have changed sign. If the SSO is 
a 2-reversal, two elements changed sign such that one ele-
ment is in C1 and the other is in C2 . In both cases, if Cα is 
odd then C1 and C2 have distinct parities, and �cc− = 0 ; 
if Cα is even then C1 and C2 have the same parity, and 
�cc− ∈ {0, 2} . � �

At this point, we know by Lemma 1 that a 1-reversal 
always increases or decreases the number of odd com-
ponents by one, and by Lemma 2 that a 2-reversal or a 
2-transposition induced by X can only increase by two 
or leave the number of odd components unchanged in 
the cp-graph.

Lemma 3  Let X ∈ Z
n be a VD-vector for π. If cn(X) > 0,  

it is always possible to find a cyclic SSO α induced 
by X such that X ′ is a VD-vector for π ′ = π · α and 
�cc− = cc−(GX ′

π ′ )− cc−(GX
π ) = 0.

Proof  Let α be a swap induced by X (recall that by defi-
nition, α is either a 2-reversal or a 2-transposition), and 
let π ′ = π · α . Note that, since α is induced by X, apply-
ing it to π necessarily decreases by one unit the weight 
of an edge from GX

π  in GX ′

π ′ , thus cn(X ′) = cn(X)− 1 and 
X ′ �= X.

If cc(GX ′

π ′ ) = cc(GX
π ) , then, by Lemma  2, we know that 

�cc− = 0 and we are done.
Otherwise, we necessarily have cc(GX ′

π ′ ) > cc(GX
π ) . 

As shown in the proof of Lemma 2, if the component Cα 
impacted by α in GX

π  is odd, we know that �cc− = 0 and we 
are done. Now suppose that the component Cα impacted 
by α in GX

π  is even. Let us consider the two components 
obtained from Cα after α is applied. If both components 
are even, then trivially �cc− = 0 and we are done again. 
Finally, if both components are odd, then we can replace α 
by α′ , where α′ (i) acts on the same elements of π as α , and 
(ii) is a 2-transposition (resp. a 2-reversal) if α is a 2-reversal 
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(resp. a 2-transposition). Note that α′ is induced by X, and 
that applying α′ also yields two connected components 
on V (Cα) . Moreover, since 2-reversals change signs while 
2-transpositions do not, the two components obtained in 
the new cp-graph after α′ is applied on π are both even. 
Thus �cc− = 0 and α′ is the sought SSO. � �

Lemma 4  Let S be a sequence of cyclic SSOs that sorts 
a permutation π, and let X ∈ Z

n be its associated VD-
vector. If S is a minimum-length sequence of all sorting 
sequences induced by X, then S does not contain SSOs 
that increase the number of odd components.

Proof  We will prove the following: if a sorting sequence 
S for π , of VD-vector X, contains a cyclic SSO that 
increases the number of odd components at some point 
in GX

π  , then we can always find an alternate sorting 
sequence S ′ for π , also with associated VD-vector X, that 
contains no cyclic SSO that increases the number of odd 
components, and such that |S ′| < |S|.

Note that, in order to sort a permutation, we need to end 
up with a cp-graph with n even components. From Lem-
mas  1  and  2, we have that only 1-reversals can decrease 
the number of odd components. Then, S contains at 
least cc−(GX

π )1-reversals. Suppose that S is a minimum-
length sequence that sorts π , and that S has an SSO α that 
increases the number of odd components.

If α is a 1-reversal, then it is necessarily applied to an 
even component. Thus, the total number of 1-reversals of 
S must be greater than or equal to cc−(GX

π )+ 2 . In that 
case, let S ′ = S − {α,α′} , where α′ is a 1-reversal applied 
to the odd component created by α . Note that we apply the 
same sequence of swaps in S ′ and S , so both sequences are 
induced by X.

If α is a 2-reversal (resp. a 2-transposition), then, as 
shown in the proof of Lemma  2, it is necessarily applied 
to an even component Cα , transforming it into two odd 
components. Thus, the total number of 1-reversals in 
S is greater than or equal to cc−(GX

π )+ 2 . Let S ′ be the 
sequence obtained from S by changing α into the 2-trans-
position (resp. 2-reversal) acting on the same elements as 
α , and by removing the two 1-reversals applied to the odd 
components created by α . Because α has been transformed 
into a 2-transposition (resp. a 2-reversal), it now creates 
two even components from Cα . Note that we apply the 
same sequence of swaps in S ′ and S (in this case they dif-
fer only at the type of swap but it uses the same pair of ele-
ments), so both sequences are induced by X.

In the above cases, the new sequence S ′ is also a sorting 
sequence for π , and of length |S ′| = |S| − 2 , a contradic-
tion to the fact that S is of minimum length. Thus S does 

not contain SSOs that increase the number of odd compo-
nents. � �

Lemma 5  Given a permutation π, let S be a sequence of 
cyclic SSOs that sorts π, and let X ∈ Z

n be its associated 
VD-vector. If S is a minimum-length sequence of all sort-
ing sequences induced by X, then S only uses cyclic SSOs 
that do not increase the edge weights in GX

π .

Proof  We will prove the following: if a sorting sequence 
S for π , of VD-vector X, contains a cyclic SSO that 
increases the weight of an edge e at some point in GX

π  , 
then we can always find an alternate sorting sequence S ′ 
for π , also with associated VD-vector X, that contains no 
cyclic SSO that increases the weight of an edge, and such 
that |S ′| ≤ |S|.

Suppose, without loss of generality, that a cyclic SSO in S 
increases the weight of an edge e in the cp-graph, and con-
sider the first such SSO, say α . Note that, since 1-reversals 
do not change the cp-graph, α is necessarily a 2-reversal or 
a 2-transposition. Note also that since this swap increases 
the weight of an edge, it is not induced by X.

If α is applied to two elements in the same component, 
then cc(GX ′

π ′ ) = cc(GX
π ) and cc−(GX ′

π ′ ) = cc−(GX
π ) , with 

π ′ = π · ρ.
Otherwise, α is merging two components, say 

A and B, and cc(GX ′

π ′ ) = cc(GX
π )− 1 . If both com-

ponents are odd, then the resultant component 
will be even, so cc−(GX ′

π ′ ) = cc−(GX
π )− 2 , and 

cc−(GX ′

π ′ ) = cc−(GX
π ) otherwise. Since we increase the 

weight of e, then cn(X ′) = cn(X)+ 1 . It follows that 
cn(X ′)+ cc−(GX ′

π ′ ) ≥ cn(X)+ cc−(GX
π )− 1.

Let α′ be the operation that decreases the weight of e at 
some point during the sorting such that π ′′′ = π ′′ · α′ , 
where π ′′ is the permutation with all operations before 
α′ in the sorting sequence applied. By Lemma  3 we 
have that α′ decreases the crossing number by one unit 
and keeps the same number of odd components so 
cn(X ′′′)+ cc−(GX ′′′

π ′′′ ) = cn(X ′′)+ cc−(GX ′′

π ′′ )− 1 . It follows 
that both α and α′ are decreasing the sum of crossing num-
ber and odd components by one unit at most.

Let S ′ = S − {α,α′} . If α merged two odd components A 
and B, we add at the beginning of S ′ two 1-reversals: one 
applied to any element πi ∈ A , the other to any πj ∈ B . 
As shown in the proof of Lemma  1, each 1-reversal here 
decreases the number of odd components by exactly one 
unit and keeps the same crossing number. It follows that 
the newly built sequence is not longer than S , sorts π , and 
uses cyclic SSOs which never increase the weight of edges 
in the cp-graph, so the only swaps it contains are induced 
by X. � �
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A polynomial‑time algorithm for Sorting Signed 
Permutations by SSOs
In this section, we first provide a closed formula for com-
puting the length of a sorting sequence of cyclic SSOs for 
signed linear permutations based on its associated VD-
vector X. Then, we provide a polynomial-time algorithm for 
sorting signed circular permutations by SSOs.

Lemma 6  Let S be a minimum-length sequence of cyclic 
SSOs that sorts a signed linear permutation π, and let X be 
its associated VD-vector. Then d(π) = cn(X)+ cc−(GX

π ).

Proof  Let us partition S into two sequences S1 and S2 in 
which S1 (resp. S2 ) contains all 1-reversals (resp. swaps) 
of S . In addition, since 1-reversals do not modify the 
order of elements in the permutation, we can assume, 
without loss of generality, that the swaps of S2 are applied 
first. We will show that |S1| = cc−(GX

π ) . To see this, sup-
pose that we apply a swap (i.e., a 2-reversal or a 2-trans-
position) α of S2 in π , obtaining a permutation π ′ , and let 
S ′ = S − {α} , and X ′ its associated VD-vector. Then, by 
Lemma  3, we know that cc−(GX ′

π ′ ) = cc−(GX
π ) . In addi-

tion, by Lemma 4, the number of odd components is not 
increased by S and, by Lemma 1, cc−(GX

π ) can be reduced 
only by 1-reversals.

Note that the sum of weights of edges in GX
π  is cn(X) , 

and, by Lemma  2, applying any cyclic SSO α ∈ S2 
either increases or decreases this sum by one unit, thus 
|S2| ≥ cn(X) . By Lemma 5, we can assume that S2 contains 
no cyclic SSO that increases the weight of an edge, so it fol-
lows that |S2| = cn(X) . �

Lemma  6 shows us that the problem of sorting a 
signed permutation π by cyclic SSOs is equivalent to 
the following optimization problem: find a VD-vector 
X ∈ Z

n for π which minimizes cn(X)+ cc−(GX
π ).

We will now prove that finding such a VD-vector can 
be achieved in polynomial time. First, we will intro-
duce Lemma  7, where we show that if a VD-vector X 
has a cp-graph with only one component, then any VD-
vector X ′ with cn(X ′) ≥ cn(X) has d(π ,X ′) ≥ d(π ,X) . 
Then, in Lemma 8, we will prove that any VD-vector X∗ 
such that d(π ,X∗) = d(π) necessarily belongs to one 
of two sets that we will define. Finally, we will show in 
Theorem 1 that we can find a VD-vector X∗ such that 
d(π ,X∗) = d(π) in polynomial time.

Lemma 7  Consider two VD-vectors X and X ′ of Zn for a 
signed linear permutation π, such that cn(X ′) ≥ cn(X). If 
cc(GX

π ) = 1, then d(π ,X ′) ≥ d(π ,X).

Proof  We know, by Lemma  3, that we can apply 
cn(X) induced swaps in π while keeping cc−(GX

π ) odd 

components. Using Lemmas  4  and  5, we have that 
d(π ,X) = cn(X)+ cc−(GX

π ) . Using the same argument, 
we have that d(π ,X ′) = cn(X ′)+ cc−(GX ′

π ).
Since cc(GX

π ) = 1 , then all elements from π are in the 
same component, and cc−(GX

π ) = 1 (resp. cc−(GX
π ) = 0 ) if 

there is an odd (resp. even) number of negative elements 
in π , and any X ′ is such that cc−(GX ′

π ) ≥ cc−(GX
π ) (if π has 

an odd number of negative elements then for any VD-vec-
tor X ′ there is at least one odd component in GX ′

π ).
Since we also have that cn(X ′) ≥ cn(X) , it follows that 

d(π ,X ′) = cn(X ′)+ cc−(GX ′

π ) ≥ cn(X)+ cc−(GX
π ) , and 

the lemma follows.�  �
Let cn(π) = min(cn(X) : X is a VD-vector for π) , 

i.e., cn(π) is the minimum crossing number over all 
VD-vectors for π.

Lemma 8  Let S be the set of all VD-vectors X ∈ Z
n such 

that cn(X) = cn(π), and let S′ be the set of all VD-vectors 
X ′ �∈ S such that X ′ = Ti,j(X), for some i, j ∈ [1..n] with 
i �= j. Then there exists a VD-vector X∗ ∈ S ∪ S′ such that 
d(π ,X) = d(π).

Proof  Recall that for any VD-vector X ′′ �∈ S there is a 
strictly contracting transformation that we can apply. 
Consider a sequence of strictly contracting transforma-
tions applied to X ′′ until we reach a VD-vector X ∈ S . 
Here we will prove by contradiction that there is always 
a VD-vector X ′ in this sequence such that X ′ ∈ S ∪ S′ 
and d(X ′,π) < d(X ′′,π) , i.e., every VD-vector X ′′ outside 
S ∪ S′ has d(π ,X ′′) > d(π).

If there is a VD-vector X ∈ S such that cc(GX
π ) = 1 , then, 

by Lemma 7, for any X ′ �∈ S such that cn(X ′) ≥ cn(X)+ 1 , 
we have d(π ,X ′) ≥ d(π ,X)+ 1 , and it follows that the 
VD-vector X∗ with d(π ,X∗) = d(π) is such that X∗ ∈ S.

Now suppose that a VD-vector X ∈ S is such that 
cc(GX

π ) ≥ 2 . Since X ∈ S , X does not admit a strictly con-
tracting transformation, so, for any two distinct xa, xb ∈ X , 
we have that xa − xb ≤ n.

Let X ′ ∈ S′ be a VD-vector such that X ′ = Ti,j(X) for 
some 1 ≤ i �= j ≤ n , and let X ′′ be a VD-vector such that 
X ′′ = Tk ,l(X

′) for some 1 ≤ k �= l ≤ n . As we can see in 
Fig. 2, if k = j and l = i then X ′′ = X and X ′′ ∈ S . If k = j 
(resp. l = i ), then X ′′ = Ti,l(X) (resp. X ′′ = Tk ,j(X) ) and 
X ′′ ∈ S′.

Suppose now that X ∈ S , X ′ ∈ S′ , and X ′′ = Tk ,l(X
′) is 

such that X ′′ �∈ S ∪ S′ . Since X ′′ �∈ S ∪ S′ , then i �∈ {k , l} 
and j �∈ {k , l} , and we have that x′k = xk and x′l = xl . This 
means that, as shown in Fig. 2, X ′′ can be obtained by four 
different transformations of VD-vectors from S′ : Tk ,l(X

′) , 
Tk ,j(Y

′) , Ti,j(Z
′) , and Ti,l(W

′) , such that X ′ = Ti,j(X) , 
Y ′ = Ti,l(X) , Z′ = Tk ,l(X) , and W ′ = Tk ,j(X) . The 
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VD-vectors X ′,Y ′,Z′ , and W ′ are in S′ , and we say they are 
adjacent to X ′′.

Recall that, since X ∈ S and X ′′ �∈ S ∪ S′ , we have that 
xi − xj < n , xi − xl < n , xk − xj < n , and xk − xl < n , 
otherwise at least one VD-vector between W ′ , X ′ , Y ′ , and 
Z′ would be generated by a contracting transformation 
and is in S, and as a consequence X ′′ ∈ S′ . It follows that 
cn(X ′′) > cn(X ′) > cn(X).

Let us suppose that for any VD-vector V ∈ S′ adjacent to 
X ′′ we have d(π ,X ′′) < d(π ,V ) . Using Lemma 7 we have 
that values cc(GX ′

π ) , cc(GY ′

π ) , cc(GZ′

π ) , and cc(GW ′

π ) must be 
strictly greater than 1, otherwise d(π ,X ′′) ≥ d(π ,V ) . This 
observation implies that values cij(X) , cil(X) , ckj(X) , and 
ckl(X) are all equal to 1 (recall that, by definition of trans-
formation, if X ′ = Ti,j(X) , then cij(X ′) = cij(X)− 2 ), oth-
erwise, in at least one of the four VD-vectors in S′ adjacent 

Fig. 2  Transformation flow starting with a VD-vector X. Note that applying a second transformation at the same positions from the first 
transformation but reversed results again in X (see the transformations where both indices are in red). Note also that every VD-vector obtained 
from X (in gray) can be transformed into two different VD-vectors (that are also obtained from X) when we use one of the two indices from the first 
transformation from X (see the transformations from gray VD-vectors where one of the indices is in red). The VD-vector X ′′ can be obtained from the 
four VD-vectors in gray but not from X. Supposing X ∈ S , if all VD-vectors in gray are in S′ , then X ′′ �∈ S ∪ S′ . If one (or more) VD-vector in gray is also 
in S, then it follows that X ′′ ∈ S′



Page 12 of 16Oliveira et al. Algorithms Mol Biol  (2018) 13:13 

to X ′′ there is a crossing value (in absolute value) greater 
than one, and, by Property 4, the corresponding cp-graph 
would have only one connected component.

Hence, we conclude that the four elements πi,πj ,πk , 
and πl are in the same component in GX

π  . For the same rea-
son, we have that xi, xk > 0 and xj , xl < 0 , otherwise at 
least one of the four VD-vectors in S′ contains a displace-
ment value involved in the transformation whose absolute 
value is greater than or equal to n (recall that, by definition 
of transformation, if X ′ = Ti,j(X) , then x′i = xi − n and 
x′j = xj + n ), which implies, by Property  2, that this VD-
vector has a crossing value with absolute value greater than 
1 and, by Property 4, that the cp-graph of this VD-vector 
has only one component.

Now we argue that X ′′ cannot be a vec-
tor such that d(π ,X ′′) = d(π) . Note that since 
cij(X) = cil(X) = ckj(X) = ckl(X) = 1 we 
know, by Property  3, that all elements πa with 
a ∈ [i..j] ∪ [i..l] ∪ [k ..j] ∪ [k ..l] must be in the same com-
ponent. Suppose, without loss of generality, that i < k and 
j < l . We show in Fig. 3 all the possible configurations for 
these intervals, depending on their relative positions. We 
can see that we always have either (i) a VD-vector X with 
only one component, so by Lemma  7 d(π ,X) ≤ cn(X ′′) 
(Fig. 3a–f), or (ii) a VD-vector X ′ obtained from X with 
only one component, so by Lemma 7 d(π ,X ′) ≤ cn(X ′′) 
(Fig. 3g–j), and it follows that d(π ,X ′′) > d(π) . Thus the 
VD-vector X∗ with d(π ,X∗) = d(π) necessarily satisfies 
X∗ ∈ S ∪ S′ . �

Theorem 1  Finding a VD-vector X for π that minimizes 
cn(X)+ cc−(GX

π ) can be achieved in polynomial time, 
and thus sorting signed linear permutations by cyclic 
SSOs is in P.

Proof  Given a permutation π , we first compute a VD-
vector X (lines 1–3 of Algorithm 1), then iteratively apply 
strictly contracting transformations Ti,j(x) (lines 4–7) 
until none exists.

Now let S be the set with all VD-vectors X such that 
cn(X) = cn(π) . Jerrum [13] proved that (i) when no further 
strictly contracting transformations can be performed on a 
VD-vector X, we have that cn(X) = cn(π) ; (ii) for any two 
VD-vectors X and X ′ such that cn(X) = cn(X ′) = cn(π) , 
we can go from X to X ′ by a sequence of contracting trans-
formations, i.e., we do not need to go through a VD-vector 
that is not in S. The above properties are in the context of 
VD-vectors for unsigned permutations, but since VD-vec-
tors for signed permutations do not take into account the 
signs of the elements we have that (i) and (ii) also apply in 
our context.

By (i), we have that X ∈ S (line 9), and, by (ii), we know 
that we can use X to generate the remaining VD-vectors 
that are also in S (lines 10–16). If there is a VD-vector X ∈ S 
such that cc(GX

π ) = 1 then, by Lemma 7, we have that for 
any VD-vector X ′d(π ,X ′) ≥ d(π ,X) , so d(π) = d(π ,X) 
and we can just return this value as the sorting distance 
(line 15). Otherwise, by Lemma 8 the VD-vector X∗ with 
d(π ,X∗) = d(π) satisfies X∗ ∈ S ∪ S′ , where S′ is the set of 
all VD-vectors obtained by some Ti,j(X) , with 1 ≤ i �= j ≤ n 
and X ∈ S (instructions in lines 17–21 generate all the VD-
vectors of S′).

Now we argue that the set of instructions in lines 10–16 
of Algorithm  1 either provides all VD-vectors of S or at 
least a VD-vector X ′ ∈ S such that cc(GX ′

π ) = 1 . Note that 

1 i j k l n

a

1 i k j l n

b

1 i j l k n

c

1 j l i k n

d

1 j i k l n

e

1 j i l k n

f

1 i k j l n

g

1 i j l k n

h

1 j l i k n

i

1 j i k l n

j
Fig. 3  a–f The six possible configurations for VD-vector X ∈ S , 
which we call Xa , Xb , Xc , Xd , Xe , X f  . For VD-vectors Xa and X f  , the 
union of intervals, highlighted in gray, contains all the elements, thus 
cc(GXa

π ) = cc(GXf

π ) = 1 . For VD-vectors Xb to Xe , the union of intervals 
does not necessarily contain all elements (cf. white regions), but for 
each of these configurations there exists a VD-vector X ′ ∈ S′ obtained 
by transforming X, shown in g–j, in which the union of intervals, 
highlighted in gray, also contains all elements, i.e., cc(GX ′

π ) = 1 . Note 
that in g X ′ = Tk ,j(X

b) , in h X ′ = Ti,j(X
c) , in i X ′ = Tk ,j(X

d) , and in 
j X ′ = Tk,l(X

e)
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if it provides all VD-vectors of S, we just need to generate S′ 
and find the VD-vector X∗ with d(π ,X∗) = d(π) . Other-
wise, if we have a VD-vector X ′ ∈ S such that cc(GX ′

π ) = 1 
then, by Lemma  7, we have that, for any VD-vector X∗ , 
d(π ,X∗) ≥ d(π ,X ′) , so d(π) = d(π ,X ′) . Arguing by con-
tradiction we show that this set of instructions always leads 
to one of these two situations.

Suppose that the instructions in lines 10–16 do not pro-
vide all VD-vectors in S and that, for all VD-vectors X pro-
vided, we have cc(GX

π ) > 1 . We have the following facts:

• • Since, for any X ∈ S , cc(GX
π ) > 1 , we must have, 

by Property  4, that cij(X) ∈ {−1, 0,+1} , with 
1 ≤ i �= j ≤ n.

• • For a VD-vector X ′ such that X ′ = Ti,j(X) with 
X ∈ S , if X ′ ∈ S , then cn(X ′) = cn(X) , which implies, 
by Property 1, that xi − xj = n.

• • Since, for any X ∈ S , max(X)−min(X) ≤ n , if we 
have xi − xj = n and xk − xl = n with i �= k and 
j �= l , then xi = xk = max(X) and xj = xl = min(X) 
(otherwise we have that xi − xl > n or xk − xj > n).

• • Note that, by definition of displacement value, 
xk =

∑n
l=1 ckl(X) . Since, for any X ∈ S , we have 

ckl(X) ∈ {−1, 0,+1} , it follows, by definition of 
cp-graph, that xi (resp. xj ) is located in a compo-
nent with at least |xi| + 1 (resp. |xj| + 1 ) elements 
on GX

π  . If xi − xj = n then xi and xj must be in the 
same component, otherwise GX

π  would have at least 
|xi| + |xj| + 2 > n vertices. Besides, this component 
has at least max(|xi|, |xj|)+ 1 ≥ n

2
+ 1 vertices. For 

the same reason, if we have more than one distinct 
pair of elements xi, xj such that xi − xj = n , then all 
these pairs must be in the same component.

Suppose now that we have a VD-vector X ′′ such that 
cn(X ′′) = cn(π) (which implies that X ′′ ∈ S ), and suppose 
that X ′′ cannot be obtained by one contracting transforma-
tion on X (i.e., Algorithm 1 cannot generate X ′′ ). We will 
show that if X ′′ requires at least two contracting transfor-
mations then X admits a contracting transformation using 
only indices from the first and the second transformation 
such that the resulting VD-vector X∗ has only one compo-
nent, and, by Lemma 7, X∗ already has d(π ,X ′′) = d(π).

Let us assume then, without loss of generality, that 
X ′′ = Tk ,l(Ti,j(X)) , where Ti,j and Tk ,l are two distinct con-
tracting transformations (i.e., xi − xj = xk − xl = n with 
i �= l and j �= k ). In a similar way as explained in the proof 
of Lemma  8, this means that the VD-vector X ′′ can be 
reached by four distinct pairs of transformations (namely 
Tk ,l(Ti,j(X)) , Tk ,j(Ti,l(X)) , Ti,l(Tk ,j(X)) , and Ti,j(Tk ,l(X)) ). 
However, by Property  1, and using the above mentioned 
facts, we can conclude that xi = xk = max(X) and 
xj = xl = min(X) , so these four intermediate VD-vectors 
between X and X ′′ are also in S, since these transformations 
are contracting transformations.

Since these four vectors are generated by Algo-
rithm 1 and are in the set S, and since, for any X ∈ S , we 
assumed that cc(GX

π ) > 1 , we have, by Property  4, that 
cij(X) = cil(X) = ckj(X) = ckl(X) = 1 . Now we can use 
Fig.  3 again to show that, with the above properties and 
whatever the order in which elements xi , xj , xk , and xl 
appear, we always have at least one vector X ′ ∈ S reach-
able from X by one contracting transformation such that 
cc(GX ′

π ) = 1 , a contradiction to the fact that S has no VD-
vector X ′ such that cc(GX ′

π ) = 1.
It follows that Algorithm 1 provides either all VD-vectors 

X ∈ S or at least a VD-vector X ′ ∈ S such that cc(GX ′

π ) = 1.
Algorithm  1 presents the above mentioned procedure, 

which consists in finding a VD-vector X that minimizes 
cn(X)+ cc−(GX

π ) , the latter value being the sought dis-
tance. We now turn to evaluating the computational com-
plexity of Algorithm 1. Our primary goal is to ensure poly-
nomiality of the algorithm, and our analysis can certainly 
be improved.

The loop in lines 1–2, line 3, and the loop in lines 4–7 
run in linear time each. Line 8 takes O(n2) time to com-
pute cn(X) plus O(|V | + |E|) = O(n2) time to compute 
cc−(GX ′

π ) , resulting in O(n2) time. Line 9 runs in linear 
time. The loop in lines 10–16 runs in O(n4) time: it iterates 
in O(n2) and line 12 runs in O(n2) time. The loop in lines 
17–21 runs in O(n6) time: it iterates in O(n4) and line 20 
runs in O(n2) time. The overall running time complexity of 
our algorithm is then O(n6).

An example where Algorithm  1 does not generate all 
VD-vectors in S is given in Fig. 4, and an example where 
Algorithm  1 generates all VD-vectors in S ∪ S′ is given  
in Fig. 5. � �
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Algorithm 1: Determining the distance for sorting
signed linear permutations by cyclic SSOs
Data: A signed linear permutation π.
Result: Size of the minimum-length sequence for sorting π by

cyclic SSOs.
1 for i = 1 to n do � Compute a VD-vector X for π
2 xi ← |πi| − i

3 X ← (x1, x2, ..., xn)
4 while maxp∈[1..n](xp)−minp∈[1..n](xp) > n do
5 Let i, j be s.t. xi = maxp∈[1..n](xp) and

xj = minp∈[1..n](xp)
6 xi ← xi − n
7 xj ← xj + n

8 d ← cn(X) + cc−(GX
π )

9 S ← {X}
10 for each pair i, j do � Generating vectors X ∈ S
11 X∗ ← Ti,j(X)
12 d′ ← cn(X∗) + cc−(GX∗

π )
13 if cn(X∗) = cn(X) then
14 if d′ < d then d ← d′;
15 if cc(GX∗

π ) = 1 then return d;
16 S ← S ∪ {X∗}
17 for each X ∈ S do � Generating vectors X′ ∈ S′

18 for each pair i, j do
19 X′ ← Ti,j(X)
20 d′ ← cn(X′) + cc−(GX′

π )
21 if d′ < d then d ← d′;
22 return d

Theorem 1 shows that computing the sorting distance 
for signed permutations, using cyclic SSOs, is in P . From 
this, one can easily derive a polynomial-time algorithm 
for sorting signed circular permutations by SSOs: it suf-
fices to cut the circular permutation (n different cuts are 
possible), and to decide which extremity is left and which 
is right (2 possible cases). Once this is done, we are left 
with a linear permutation, which can be sorted using 
cyclic SSOs using Algorithm  1. The sorting distance is 
the minimum value obtained by Algorithm 1 over the 2n 
possible linear permutations obtained from the circular 
one. Thus we have the following result.

Theorem  2  Sorting signed circular permutations by 
SSOs is in P.

Computing a sorting sequence
Algorithm 1 only returns the length of a minimum-length 
sorting sequence, not the sequence itself. However, we 
can easily provide a minimum-length sequence using the 
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Fig. 4  Given π = (+ 4+ 5+ 3+ 1− 2− 6) , we have in a the cp-graph GX1

π  for X1 = (3, 3, 0,−3,−3, 0) , in b the cp-graph GX2

π  for 
X2 = (3,−3, 0, 3,−3, 0) , in c the cp-graph GX3

π  for X3 = (3,−3, 0,−3, 3, 0) , in d the cp-graph GX4

π  for X4 = (− 3, 3, 0, 3,−3, 0) , in e the cp-graph 
GX5

π  for X5 = (− 3, 3, 0,−3, 3, 0) , and in f the cp-graph GX6

π  for X6 = (− 3,−3, 0, 3, 3, 0) . X1 to X6 are the six possible VD-vectors for π with minimum 
crossing number (i.e., cn(X i) = cn(π) = 8) with i ∈ [1..6] ). Note that, by definition, they are in S, but Algorithm 1 will not generate all of them. For 
instance, if the algorithm starts S (at line 9) with X1 , it will not generate (in loop at lines 10–16) X6 since this VD-vector is reachable from X1 using two 
transformations but not using only one (note that they differ in exactly four displacement values). As proved in Theorem 1, since Algorithm 1 is not 
capable of generating all VD-vectors in S, then there is at least one VD-vector generated in the path between X1 and X6 with only one component 
(in this example, the four intermediate VD-vectors X2 , X3 , X4 , and X5 that are generated by Algorithm 1 satisfy this condition)
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cp-graph GX
π  , where π is the input signed permutation 

and X is a VD-vector such that d(π ,X) = d(π) . For this, 
we iteratively remove each edge from GX

π  by applying a 
swap over two adjacent elements connected by an edge, 
and choosing between a 2-reversal or a 2-transposition 
so that the number of odd components does not increase, 
as shown in Lemma 3. When GX

π  has no more edges, we 
just need to apply cc−(GX

π )1-reversals over the remaining 
negative elements.

Conclusion
In this work, we presented a polynomial-time algorithm 
for sorting signed circular permutations by SSOs. This 
solution closes a gap in the literature concerning the use 
of SSOs to sort linear and circular permutations, consid-
ering both signed and unsigned versions. Some theoreti-
cal questions concerning SSOs and signed permutations 
remain open, such as diameter issues: what is the maxi-
mum distance over all permutations of size n? Another 
interesting question consists in refining the model by 

taking into account the sizes of the intergenic regions 
between genes, as was recently done for the classical DCJ 
distance  [17–19]. In particular, sorting by DCJ becomes 
NP-hard when intergenic regions are considered, while it 
is in P otherwise, and SSOs seem to be very well-suited 
for a similar study.
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Fig. 5  Given π = (− 1− 2+ 12− 4− 5− 6− 7+ 3+ 9+ 10+ 11+ 8− 13− 14) , a and b show the two cp-graphs GX1

π  and GX2

π  for 
VD-vectors X1 = (0, 0, 9, 0, 0, 0, 0,− 5, 0, 0, 0,− 4, 0, 0) and X2 = (0, 0,− 5, 0, 0, 0, 0, 9, 0, 0, 0,− 4, 0, 0) . X1 and X2 are the two VD-vectors with 
minimum crossing number (i.e., cn(X1) = cn(X2) = cn(π) = 16 ), so {X1, X2} ∈ S . Note that X2 (resp. X1 ) can be obtained from X1 (resp. X2 ) 
by T3,8(X1) (resp. T8,3(X2) ), so Algorithm 1 will generate both VD-vectors, starting either with X1 or X2 . Note that cc−(GX1

π ) = cc−(GX2

π ) = 4 , 
so d(π , X1) = d(π , X2) = 16+ 4 = 20 . In c we have the cp-graph GX3

π  for VD-vector X3 = (0, 0,− 5, 0, 0, 0, 0,− 5, 0, 0, 0, 10, 0, 0) with 
cn(X3) = 18 > cn(π) , so X3 �∈ S , but X3 ∈ S′ since X3 = T3,12(X

1) = T8,12(X
2) . Note that cc−(GX3

π ) = 0 , so d(π , X3) = 18 . Among all VD-vectors in 
S ∪ S′ , X3 is in fact the VD-vector that minimizes the sum and it follows that d(π) = d(π , X3) = 18
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