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Superbubbles revisited
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Abstract 

Background:  Superbubbles are distinctive subgraphs in direct graphs that play an important role in assembly 
algorithms for high-throughput sequencing (HTS) data. Their practical importance derives from the fact they are 
connected to their host graph by a single entrance and a single exit vertex, thus allowing them to be handled inde-
pendently. Efficient algorithms for the enumeration of superbubbles are therefore of important for the processing 
of HTS data. Superbubbles can be identified within the strongly connected components of the input digraph after 
transforming them into directed acyclic graphs. The algorithm by Sung et al. (IEEE ACM Trans Comput Biol Bioinform 
12:770–777, 2015) achieves this task in O(m log(m))-time. The extraction of superbubbles from the transformed 
components was later improved to by Brankovic et al. (Theor Comput Sci 609:374–383, 2016) resulting in an overall 
O(m+ n)-time algorithm.

Results:  A re-analysis of the mathematical structure of superbubbles showed that the construction of auxiliary DAGs 
from the strongly connected components in the work of Sung et al. missed some details that can lead to the report-
ing of false positive superbubbles. We propose an alternative, even simpler auxiliary graph that solved the problem 
and retains the linear running time for general digraph. Furthermore, we describe a simpler, space-efficient O(m+ n)

-time algorithm for detecting superbubbles in DAGs that uses only simple data structures.

Implementation:  We present a reference implementation of the algorithm that accepts many commonly used for-
mats for the input graph and provides convenient access to the improved algorithm. https​://githu​b.com/Fabia​nexe/
Super​bubbl​e.
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Background
Under idealizing assumption, the genome assembly prob-
lem reduces to finding an Eulerian path in the de Bruijn 
graph [1] that represents the collection of sequenc-
ing reads [2]. In real-life data sets, however, sequencing 
errors and repetitive sequence elements contaminate the 
de Bruijn graph with additional, false, vertices and edges. 
Assembly tools therefore employ filtering steps that are 
based on recognizing local motifs in the de Bruijn graphs 
that correspond to this kind of noise, see e.g. [3]. Super-
bubbles also appear naturally in the multigraphs in the 
context of supergenome coordinatization [4], i.e., the 
problem of finding good common coordinate systems for 
multiple genomes.

The simplest such motif is a bubble, comprising two or 
more isolated paths connecting a source s to a target t, 
see [5] for a formal analysis. While bubbles are easily rec-
ognized, most other motives are much more difficult to 
find. Superbubbles are a complex generalization of bub-
bles that were proposed in [6] as an important class of 
subgraphs in the context of HTS assembly. It will be con-
venient for the presentation in this paper to first consider 
a more general class of structure which are obtained by 
omitting the minimality criterion:

Definition 1  (Superbubbloid) Let G = (V ,E) be a 
directed multi-graph and let (s,  t) be an ordered pair of 
distinct vertices. Denote by Ust the set of vertices reach-
able from s without passing through t and write U+

ts  for 
the set of vertices from which t is reachable without pass-
ing through s. Then the subgraph G[Ust ] induced by Ust is 
a superbubbloid in G if the following three conditions are 
satisfied:
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	(S1)	 t ∈ Ust , i.e., t is reachable from s (reachability 
condition).

	 (S2)	 Ust = U+
ts  (matching condition).

	(S3)	 G[Ust ] is acyclic (acyclicity condition).

We call s, t, and Ust\{s, t} the entrance, exit, and interior 
of the superbubbloid. We denote the induced subgraph 
G[Ust ] by 〈s, t〉 if it is a superbubbloid with entrance s and 
exit t.

A superbubble is a superbubbloid that is minimal in the 
following sense:

Definition 2  A superbubbloid 〈s, t〉 is a superbubble if 
there is no s′ ∈ Ust\{s} such that �s′, t� is a superbubbloid.

We note that Definition 2 is a simple rephrasing of the 
language used in [6], where a simple O(n(m+ n))-time 
algorithm was proposed that, for each candidate entrance 
s, explicitly retrieves all superbubbles 〈s, t〉 . Since the defi-
nition is entirely based on reachability, multiple edges are 
irrelevant and can be omitted altogether. Hence we only 
consider simple digraphs throughout.

The vertex set of every digraph G(V,  E) can be parti-
tioned into its strongly connected components. Denote 
by V̄  the set of singletons, i.e., the strongly connected 
components without edges. One easily checks that the 
induced subgraph G[V̄ ] is acyclic. Furthermore, denote 
by S the partition of V comprising the non-singleton 
connected components of G and the union V̄  of the sin-
gleton. The key observation of [7] can stated as

Proposition 1  Every superbubble 〈s, t〉 in G (V , E ) is an 
induced subgraph of G [C] for someC ∈ S.

It ensures that it is sufficient to search separately for 
superbubbles within G[C] for C ∈ S . However, these 
induced subgraphs may contain additional superbubbles 
that are created by omitting the edges between different 
components. In order to preserve this information the 
individual components C are augmented by artificial ver-
tices [7]. The augmented component C is then converted 
into a directed acyclic graph (DAG). Within each DAG 
the superbubbles can be enumerated efficiently. With 
the approach of [7], this yields an overall O(m logm)

-time algorithm, the complexity of which is determined 
by the extraction of the superbubbles from the compo-
nent DAGs. The partitioning of G(V, E) into the compo-
nents G[C] for C ∈ S and the transformation into DAGs 
can be achieved in O(m+ n)-time. Recently, Brankovic 
et al. [8] showed that superbubbles can be found in lin-
ear time within a DAG. Their improvement uses the fact 
that the DAG can always be topological ordered in such 
a way that superbubbles appears as a contiguous blocks. 

In this ordering, furthermore, the candidates for entrance 
and exit vertices can be narrowed down considerably. 
For each pair of entrance and exit candidates (s, t), it can 
then be decided in constant time whether Ust is indeed a 
superbubble. Using additional properties of superbubbles 
to further prune the candidate list of (s, t) pairs results in 
O(m+ n)-time complexity.

The combination of the work of [7] with the improve-
ment of [8] results in the state of the art algorithm. The 
concept of a superbubble was extended to bi-directed 
and bi-edged graphs, called ultrabubble in [9–11]. The 
enumeration algorithm for ultrabubbles in [9] has a worst 
case complexity of O(mn) , and hence does not provide an 
alternative for directed graphs.

A careful analysis showed that sometimes false-positive 
superbubbles are reported, see Fig. 1. These do not con-
stitute a fatal problem because they can be recognized 
easily in linear total time simply by checking the tail of 
incoming and head of outgoing edges. It is nevertheless 
worth while to analyse the issue and to seek a direct rem-
edy. As we shall see below, the false positive subgraphs 
are a consequence of the way in which a strongly con-
nected component C is transformed into a two DAGs 
that are augmented by either the source or target vertices.

Theory
In the first part of this section we revisit the theory of 
superbubbles in digraphs in some more detail. Although 
some of the statements below have appeared at least in 
similar for in the literature [6–8] we give concise proofs 
and take care to disentangle properties that depend on 
minimality from those that hold more generally. This 
refined mathematical analysis sets the stage in the second 
part for identifying the reason for the problems with the 
auxiliary graph constructed in [7] shows how the prob-
lem can be solved efficiently in these cases using an even 
simpler auxiliary graph. In the third part we elaborate on 
the linear time algorithm on [8] for DAGs. We derive a 
variant that has the same asymptotic running time but 
seems easier to explain.

Weak superbubbloids
Although we do not intend to compute superbubbloids 
in practice, they feature several convenient mathemati-
cal properties that will simplify the analysis of superbub-
bles considerably. The main aim of this section is to prove 
moderate generalizations of the main results of [6, 7]. To 
this end, it will be convenient to rephrase the reachability 
and matching conditions (S1) and (S2) for the vertex set 
U of superbubbloid with entrance s and exit t in the fol-
lowing, a more expanded form.
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Lemma 1  Let  G be a digraph, U ⊂ V (G) and s, t ∈ U . 
Then (S1) and (S2) holds for U = Ust = U+

ts  if and only if 
the following four conditions are satisfied

(S.i)	� Every u ∈ U is reachable from s.
(S.ii)	� t is reachable from every u ∈ U .
(S.iii)	� If u ∈ U and w /∈ U then every w → u path con-

tains s.
(S.iv)	� u ∈ U and w /∈ U then every u → w path con-

tains t.

Proof  Suppose (S1) and (S2) are true. Then u ∈ Ust and 
u ∈ U+

ts  implies, by definition, that u is reachable from s, 
i.e. (S.i) and (S.ii) holds. By (S2) we have U := Ust = U+

ts  . 
If w /∈ U  it is not reachable from s without passing 
through t. Since every u is reachable from s without pass-
ing through t, we would have w ∈ U  if w was reachable 
from any u ∈ U  on a path not containing t, hence (S.iv) 
holds. Similarly, since t is reachable from u without pass-
ing through s, we would have w ∈ U  if v could be reached 

a b

c

e

g h

f

d

Fig. 1  False-positive “superbubble” returned by the algorithm of Sung et al. [7]. The directed 3-cycle a on the l.h.s. correctly yields the three 
subgraphs on two vertices as superbubbles. The graph b on the r.h.s., on the other hand, includes a as the only non-trivial strongly connected 
component. The vertices 1 and 3 have additional neighbors which are replaced by artificial nodes r and r′ , respectively. c, d are the corresponding 
DFS trees using an artificial source as root. Since no artificial source is present in a, a random vertex, here 1, is used as root. The correspond DAGs 
in e, f are constructed from duplicate copies of the DFS trees, augmented by source and sink vertices in e since these were lacking in c. Note that 
the same DAGs (g, h) are obtained for a and the non-trivial copy of a in b. Hence the same superbubbles are returned in both cases. While 〈3, 1〉 is a 
valid result for a, it is a false positive for b since 3 is not a valid entrance and 1 is not a valid exit in b 
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from w along a path that does not contain s, i.e. (S.iii) 
holds.

Now suppose (S.i), (S.ii), (S.iii), and (S.iv) holds. Clear, 
both (S.i) and (S.ii) already imply (S1). Since u ∈ U is reach-
able from s by (S.ii) and every path reaching w /∈ U pases 
through t by (S.iii), we have U = Ust . By (S.i), t is reachable 
from every u ∈ U and by (S.iv) t can by reached from w /∈ U  
only by passing through s, i.e., U = U+

ts  , i.e., Ust = U+
ts  . � �

Corollary 1  Suppose U, s, and t satisfies (S.i), (S.ii), 
(S.iii), and (S.iv). Then every path connecting s to u ∈ U  
and u to t is contained within U.

Proof  Assume, for contradiction, that there u → t path 
containing a vertex w /∈ �s, t�. By definition of the set Ust , 
w /∈ Ust is not reachable from u ∈ Ust without passing 
through t first, i.e., w cannot be part of a u → t path. � �

Corollary 1 shows that subgraphs satisfying (S1) and (S2) 
related to reachability structures explored in some detail in 
[12, 13]. In the following it will be useful to consider

(S.v)	� If (u, v) is an edge in U then every v → u path in 
G contains both t and s.

In the following we shall see that (S.v) acts a slight 
relaxation of the acyclicity axiom ((S3)).

Lemma 2  Let G(V, E) be a digraph, U ⊆ V  and s, t ∈ U .

If U is the vertex set of the superbubbloid 〈s, t〉, it satisfies 
(S.v).

If U satisfies (S.i), (S.ii), (S.iii), (S.iv), and (S.v), then 
G[U ]\{(t, s)}, the subgraph induced by U without the 
potential edge from t to s, is acyclic.

Proof  Suppose U is the vertex set of a superbubbloid with 
entrance s and exit t. If (u, v) is an edge in U, then v �= s by 
(S3). Since v is reachable from s within U, no v → s path 
can exist within U, since otherwise there would be a cycle, 
contradicting (S3), that any v → s path passes through t. 
There are two cases: If there (t, s) ∈ E , any path containing 
this edge trivially contains both s and t. The existence of 
the edge (t, s) contradicts (S3). Otherwise, any t → s path 
contain at least one vertex x /∈ U . By (S.iii) and (S.iv) every 
v → x path contains t and every x → u path contain s and 
t, respectively. Hence the first statement holds.

Conversely, suppose (S.v) holds, i.e., every directed 
cycle Z within U contains s and t. Suppose (t,  s) is not 
contained Z, i.e., there is vertex u ∈ U\{s, t} such that 
(t,u) ∈ E . By (S.ii), t is reachable from u without pass-
ing through s, and every u → t path is contained in U by 
Corollary 1. Thus there is a directed cycle within U that 

contains u and t but not s, contradicting (S.v). Removing 
the edge (t, s) thus cuts every directed cycle within U, and 
hence G[U ]\{(t, s)} is acyclic. � �

Although the definition of [6] (our Definition 2) is 
also used in [7], the notion of a superbubble is tacitly 
relaxed in [7] by allowing an edge (t,  s) from exit to 
entrance, although this contradicts the acyclicity condi-
tion (S3). This suggests

Definition 3  (Weak Superbubbloid) Let G(V,  E) be a 
digraph, U ⊆ V  and s, t ∈ U  . The subgraph G[U] induced 
by U is a weak superbubbloid if U satisfies (S.i), (S.ii), 
(S.iii), (S.iv), and (S.v).

We denote a weak superbubbloids with entrance s and 
exit t by 〈s, t〉 and write Ust for its vertex set. As an imme-
diate consequence of Definition 3 and Lemma 2 we have

Corollary 2  A weak superbubbloid 〈s, t〉 is a superbub-
bloid in G(V, E) if and only if (t, s) /∈ E.

The possibility of an edge connecting t to s will play a 
role below, hence we will focus on weak superbubbloids 
in this contribution.

First we observe that a weak superbubbloids contained 
within another weak superbubbloid must be a super-
bubbloid because the existence of an edge from exit 
to entrance contradicts (S.v) for the surrounding weak 
superbubbloid. We record this fact as

Lemma 3  If 〈s, t〉 and �s′, t ′� are weak superbubb-
loids with s′, t ′ ∈ �s, t� and {s′, t ′} �= {s, t}, then �s′, t ′� is a 
superbubbloid.

The result will be important in the context of minimal 
(weak) superbubbloids below.

Another immediate consequence of Lemma 2 is

Corollary 3  Let 〈s, t〉 be a weak superbubbloid in G. If there 
is an edge (u, v) in 〈s, t〉 that is contained in a cycle, then every 
edges in 〈s, t〉 is contained in cycle containing s and t.

Proof  By (S.v) there is cycle running though s and t. Let 
(u, v) be an edge in 〈s, t〉 . Since u is reachable from s and v 
reaches t within U, there is a cycle containing s, t, and the 
edge (u, v).�  �

Theorem 1  Every weak superbubbloid 〈s, t〉 in G(V, E) is 
an induced subgraph of G[C] for some C ∈ S.

Proof  First assume that 〈s, t〉 contains an edge (u, v) that 
is contained in cycle. Then by (S.v), there is cycle through 



Page 5 of 17Gärtner et al. Algorithms Mol Biol           (2018) 13:16 

s and t and thus in particular a (t, s) path. For every u ∈ U , 
there is a path within U from s to t through u by (S.i), (S.ii), 
and Lemma 1. Thus 〈s, t〉 is contained as an induced sub-
graph in a strongly connected component G[C] of G. If 
there is no edge in 〈s, t〉 that is contained in a cycle, then 
every vertex in 〈s, t〉 is a strongly connected component on 
its own. 〈s, t〉 is therefore an induced subgraph of G[V̄ ] . � �

Theorem  1 establishes Proposition 1, the key result 
of [7], in sufficient generality for our purposes. Next we 
derive a few technical results that set the stage for con-
sidering minimality among weak superbubbloids.

Lemma 4  Assume that 〈s, t〉 is a weak superbubbloid 
and let u be an interior vertex of 〈s, t〉. Then 〈s,u〉 is a 
superbubbloid if and only if 〈u, t〉 is a superbubbloid.

Proof  Suppose 〈s,u〉 is a superbubbloid. Set 
Wut := (Ust\Usu) ∪ {u} and consider w ∈ Wut . The 
subgraph induced by Wut is an induced subgraph 
of �s, t�\{(t, s)}. Hence it is acyclic and in particular 
(t,u) /∈ E, i.e., (S.v) and even (S3) holds. Since t /∈ Usu 
every path from s to t runs through u. Since w is reach-
able from s there is a path from s through u to w, i.e., w is 
reachable from u. Thus (S.i) holds. (S.ii) holds by assump-
tion since t is reachable from w. Now suppose v /∈ Wut 
and w ∈ Wut . If v /∈ Ust , then every v → w path passes 
through s and then through u, the exit of 〈s,u〉 before 
reaching w. If v ∈ Ust , then v ∈ Usu\{u} and thus every 
v → w path passes through u as the exit of 〈s,u〉. Hence 
Wut satisfied (S.iii). If v ∈ Ust , then v ∈ Usu\{u} and thus 
every w → v path passes through s. By (S.v) there is no 
w → s path within �s, t�\{(t, s)}, and thus any w → v 
includes (t,  s) or a vertex y /∈ Ust . By construction, all 
w → y paths contain t, and thus all w → v paths also pass 
through t and Wut also satisfies (S.iv).

Conversely suppose 〈u, t〉 is a superbubbloid. We have 
to show that Wsu := (Ust\Uut) ∪ {u} induces a super-
bubbloid. The proof strategy is very similar. As above we 
observe that (S.v), (S.i), and (S.ii) are satisfied. Now con-
sider v /∈ Wsu and w ∈ Wsu. If v /∈ Ust then every v → w 
path contains s; otherwise v ∈ Uut\{u} and v → w passes 
through t and thus also through s by Corollary  1, thus 
(S.iii) holds. If v ∈ Ust , then v ∈ Uut\{u}, in which case 
every w → v path passes through u. Otherwise v /∈ Ust 
then every w → v runs through t ∈ Ust and thus in par-
ticular also through u. Hence (S.iv) holds. � �

Lemma 5  Let 〈w,u〉 and 〈s, t〉 be two weak super-
bubbloids such that u is an interior vertex of 〈s, t〉, s is 
an interior vertex of 〈w,u〉, w is not contained in 〈s, t〉 
and t is not contained in 〈w,u〉. Then the intersection 
�s,u� = �w,u� ∩ �s, t� is also a superbubbloid.

Proof  First consider the intersection 〈s,u〉. u ∈ �s, t� is 
reachable from s, hence (S1) holds. Furthermore 〈s,u〉 
is an induced subgraph of �s, t�\{(t, s)} and hence again 
acyclic (S3). Set Wsu := Uwu ∩ Ust and consider v ∈ Wsu. 
First we note that v is reachable from s by definition of 
〈s, t〉 and u is reachable from v by definition of 〈w,u〉. Let 
x /∈ Wsu and v ∈ Wsu. If x /∈ Ust then every x → v path 
passes through s; if x ∈ Ust then x /∈ Uwu (and v ∈ Uwu ) 
and thus every x → v path passes through w. Since 
w /∈ Ust , we know that every x → v path contains s.

If x /∈ Uwu, then every v → x path passes through u; 
otherwise x ∈ Uwu but x /∈ Ust , thus every v → x path 
passes through t /∈ Uwu and hence also through u. Thus 
Wsu is a superbubbloid. � �

We include the following result for completeness, 
although it is irrelevant for the algorithmic considera-
tions below.

Lemma 6  Let 〈w,u〉 and 〈s, t〉 be defined as in Lemma 5. 
Then the union �w, t� = �w,u� ∪ �s, t� is superbubbloid if 
and only if the induced subgraph 〈w, t〉 satisfies (S.v).

Proof  Since 〈w, s〉, 〈s,u〉, 〈u, t〉 are superbubbloids, t 
is reachable from w, i.e., (S1) holds. By the same token, 
every v ∈ Wwt := Uwu ∪ Ust is reachable from w or s 
and reaches u or t. Since s is reachable from w and t is 
reachable from u, every v ∈ Wwt is reachable from w and 
reaches t. Now consider x /∈ Wwt and v ∈ Wwt . If v ∈ Uwu 
every x → v path passed through w; if v ∈ Us,t , it passes 
through s ∈ Uwu and thus also through w. If v ∈ Ust , then 
every v → x path passed through t. If v ∈ Uwu it passes 
through u ∈ Ust and thus also through t. Thus Wwt satis-
fies (S2). Thus 〈w, t〉 is a weak superbubbloid if and only if 
(S.v) holds.�  �

Lemma 7  Let 〈s, t〉 be a weak superbubbloid in G with 
vertex set Ust . Then 〈s, t〉 is a weak superbubbloid in the 
induced subgraph G[W] whenever Ust ⊆ W .

Proof  Conditions (S.i), (S.ii), and (S.v) are trivially con-
served when G is restricted to G[W]. Since every w → u 
and u → w path with u ∈ Ust and w /∈ Ust within W is 
also such a path in V, we conclude that (S.iii) and (S.iv) 
are satisfied w.r.t. W whenever they are true w.r.t. the 
larger set V. � �

The converse is not true. The restriction to induced 
subgraphs thus can introduce additional (weak) super-
bubbloids. As the examples in Fig. 1 show, it is also pos-
sible to generate additional superbubbles.

Finally we turn our attention to the minimality condition.
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Definition 4  A weak superbubbloid 〈s, t〉 is a weak 
superbubble if there is no interior vertex t ′ in 〈s, t〉 such 
that �s, t ′� is a weak superbubbloid.

The “non-symmetric” phrasing of the minimal-
ity condition in Definitions 2 and 4 [6–8] is justified by 
Lemma  4: If 〈s, t〉 and �s, t ′� with t ′ ∈ �s, t� are superbub-
bloids, then �t ′, t� is also a superbubbloid, and thus 〈s, t〉 is 
not a superbubble. As a direct consequence of Lemma 3, 
furthermore, we have

Corollary 4  Every superbubble is also a weak 
superbubble.

Lemma 4 also implies that every weak superbubbloid, 
which is not a superbubble itself, can be decomposed 
into consecutive superbubbles:

Corollary 5  If 〈s, t〉 is a weak superbubbloid, then it is 
either a weak superbubble or there is a sequence of vertices 
vk with s = v1, v2, . . . , vk = t, k ≥ 3, such that �vi, vi+1� is a 
superbubble for all i ∈ {1, 2, . . . , k − 1}.

A useful consequence of Lemma 5, furthermore, is that 
superbubbles cannot overlap at interior vertices since 
their intersection is again a superbubbloid and thus nei-
ther of them could have been minimal. Furthermore, 
Lemma 4 immediately implies that 〈w, s〉 and 〈u, t〉 are also 

superbubbloids, i.e., neither 〈w,u〉 nor 〈s, t〉 is a superbub-
ble in the situation of Lemma 5. Figure 2 shows a graph 
in which all (weak) superbubbloids and superbubbles are 
indicated.

Reduction to auperbubble finding in DAGs
Theorem  1 guarantees that every weak superbubbloid 
and thus every superbubble in G(V,  E) is completely 
contained within one of induced subgraphs G[C], 
C ∈ S . It does not guarantee, however, that a superbub-
ble in G[C] is also a superbubble in G. This was already 
noted in [7]. This fact suggests to augment the induced 
subgraph G[C] of G by an artificial source a and an arti-
ficial sink b.

Definition 5  The augmented graph G̃(C) is con-
structed from G[C] by adding the artificial source a 
and the artificial sink b. There is an edge (a, x) in G̃(C) 
whenever x ∈ C has an incoming edge from another 
component in G and there is an edge (x, b) whenever 
x ∈ C has an outgoing edge to another component of 
G.

Since G[V̄ ] is acyclic, a has only outgoing edges and b 
only incoming ones, it follows that the augmented graph 
G̃(V̄ ) is also acyclic.

a

b

Fig. 2  An example graph with in which all (weak) superbubbloids and (weak) superbubbles are marked. In a are all weak superbubbloids (blue) 
and all superbubbloids (green) marked. Note that beside 〈0, 2〉 and 〈7, 10〉 all weak superbubbloids are also superbubbloids. In b are all weak 
superbubbles (blue) and all superbubbles (green) marked. The weak superbubbloids 〈0, 2〉 is the only superbubbloids that creates no (weak) 
superbubble. So that 〈7, 10〉 is the only superbubble that is not a weak superbubble
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Lemma 8  〈s, t〉 is a weak superbubbloid in G if and only 
if it is a weak superbubbloid of G̃(C) or a superbubbloid 
in G̃(V̄ ) that does not contain an axiliary source a or an 
auxiliary sink b.

Proof  First assume that 〈s, t〉 is an induced subgraph of 
the strongly connected component G[C] of G. By con-
struction, G[C] is also a strongly connected component 
of G̃(C) . Thus reachability within C is the same w.r.t. G 
and G̃(C) . Also by construction, a vertex w /∈ C is reach-
able from x ∈ C in G if an only of b is reachable from x in 
G̃(C) . Similarly, a vertex x ∈ C is reachable from w /∈ C if 
and only if x is reachable from a. Hence 〈s, t〉 is a (weak) 
superbubbloid w.r.t. G if and only if it a weak super-
bubbloid w.r.t. G̃(C) . For the special case that 〈s, t〉 is an 
induced subgraph of the acyclic graph G[V̄ ] we can argue 
in exactly the same manner.

For strongly connected components C, the graph G̃(C) 
contains exactly 3 strongly connected components whose 
vertex sets are C and the singletons {a} and {b} . Since 
(a, b) is not an edge in G̃(C) , every weak superbubbloid 
in G̃(C) is contained in G[C] and hence contains neither 
a nor b. Superbubbloids containing a or b cannot be 
excluded for the acyclic component G̃[V̄ ] , however. � �

It is possible, therefore, to find the weak superbub-
bloids of G by computing the weak superbubbloids not 
containing an artificial source or sink vertex in the aug-
mented graphs. In the remainder of this section we show 
how this can be done efficiently.

The presentation below depends strongly on the 
properties of depth first search (DFS) trees and ver-
tex orders associated with them. We thus briefly recall 
their relevant features. A vertex order is a bijection 
ρ : V → {1, . . . , |V |} . We write ρ−1(i) is the vertex at the 
i-th position of the ρ-ordered vertex list. Later we will 
also need vertex sets that form intervals w.r.t. ρ . These 
will be denoted by ρ−1([i, j]) := {ρ−1(k)|i ≤ k ≤ j} for a 
ρ-interval of vertices.

DFS on a strongly connected digraph G (exploring 
only along directed edges) is well known to enumer-
ate all vertices starting from an arbitrary root [14]. The 
corresponding DFS tree consists entirely of edges of G 
pointing away from the root. In the following we will 
reserve the symbol ρ for the reverse postorder of the 
DFS tree T in a strongly connected graph. Edges of G 
can be classified relative to a given DFS tree T with root 
x. By definition, all tree edges (u,  v) are considered to 
be oriented away from the root w; hence ρ(u) < ρ(v) . 
An edge (u, v) ∈ E(G) is a forward edge if v is reachable 
from u along a path consisting of tree edges, hence it 
satisfied ρ(u) < ρ(v) . The edge (u, v) is a backward edge 
if u is reachable from v along a path of consisting of 

tree edges, hence ρ(u) > ρ(v) . For remaining, so-called 
cross edges have no well-defined behavior w.r.t. ρ . We 
refer to [14, 15] for more details on depth first search, 
DFS trees, and the associated vertex orders.

A topological sorting of a directed graph order π of V 
such that π(u) < π(v) holds for every directed (u,  v) 
[16]. Equivalently, π is a topological sorting if there are 
no backward edges. A directed graph admits a topologi-
cal sorting if and only if it is a DAG. In particular, if v is 
reachable from u then π(u) < π(v) must hold. In a DAG, 
a topological sorting can be obtained as the reverse pos-
torder of an arbitrary DFS tree that is constructed with-
out considering the edge directions in G [15].

Lemma 9  Let G be a strongly connected digraph, 〈s, t〉 be 
a weak superbubbloid in G, w /∈ �s, t�, and ρ the inverse 
postorder of a DFS tree T  rooted at w. Then the induced 
subgraph 〈s, t〉 of G contains no backward edge w.r.t. ρ 
except possibly (t, s).

Proof  Let T be a DFS tree rooted in T and let δ denote 
the preordering of T. First we rule out δ(s) > δ(t). Since t 
cannot be reached from anywhere along a path that does 
not contain s, this is only possible if ρ(t) = 1 , i.e., if t is 
the root of DFS tree T. This contradicts the assumption 
that ρ(w) = 1 for some w outside 〈s, t〉 . Hence δ(s) < δ(t) . 
The DFS tree T therefore contains a directed path from 
s to t. Since interior vertices of 〈s, t〉 are only reachable 
through s and reach outside only through t, it follows that 
the subtree T ∗ of T induced by 〈s, t〉 is a tree and only s 
and t are incident to edges of T outside of 〈s, t〉 . In the DFS 
reverse postorder ρ we therefore have ρ(s) < ρ(u) < ρ(t) 
for every vertex u interior to 〈s, t〉 , and either ρ(w) < ρ(s) 
or ρ(w) > ρ(t) for all w outside of 〈s, t〉 . The graph Gst 
obtained from 〈s, t〉 by removing the possible (t, s) edge is 
a DAG, the subtree T ∗ is a DFS tree on Gst , whose reverse 
postorder ρ∗ is collinear with rho, i.e., ρ∗(u) < ρ∗(v) 
holds whenever ρ(u) < ρ(v) . Therefore, there are no 
back-edges in Gst . � �

Lemma  9 is the key prerequisite for constructing an 
acyclic graph that contains all weak superbubbles of 
G̃(C) . Similar to the arguments above, however, we can-
not simply ignore the backward edges. Instead, we will 
again add edges to the artificial source and sink vertices.

Definition 6  Given a DFS tree T with a root w = ρ−1(1) 
that is neither an interior vertex nor the exit of a weak 
superbubbloid of G̃(C) , the auxiliary graph Ĝ(C) is 
obtained from G̃(C) by replacing every backward edge 
(v, u) with respect to ρ in G̃(C) with both an edge (a, u) 
and an edge (v, b).
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Note that Definition  6 implies that all backward edges 
(u, v) of G̃(C) are removed in Ĝ(C) . As a consequence, Ĝ(C) 
is acyclic. The construction of Ĝ is illustrated in Fig. 3.

Lemma 10  Let C be a strongly connected component of 
G and let T be a DFS tree on G̃(C) with a root w = ρ−1(1) 
that is neither an interior vertex nor the exit of a weak 
superbubbloid of G. Then 〈s, t〉 with s, t ∈ C is a weak 
superbubble of G contained in G̃(C) if and only if 〈s, t〉 is 
a superbubble in Ĝ(C) that does not contain the auxiliary 
source a or the auxiliary sink b.

Proof  Assume that 〈s, t〉 is a weak superbubble in G̃(C) that 
does not contain a or b. Lemma 8 ensures that this is equiv-
alent to 〈s, t〉 being a weak superbubble of G. By Lemma 9, 
〈s, t〉 contains no backward edges in G̃(C) , with the possible 
exception of the edge (t,  s). Since G̃(C) and Ĝ(C) by con-
struction differ only in the backward edges, the only differ-
ence affecting 〈s, t〉 is the possible insertion of edges from a 
to s or from t to b. Neither affects a weak superbubble, how-
ever, and hence 〈s, t〉 is a superbubble in Ĝ(C).

Now assume that 〈s, t〉 is a superbubble in Ĝ(C) with 
vertex set Ust and a, b /∈ Ust . Since the restriction of Ĝ(C) 
to C is by construction a subgraph of G̃(C) , we know that 
reachability within C w.r.t. to Ĝ(C) implies reachability 
w.r.t. G̃(C) . Therefore Ust satisfies (S.i) and (S.ii) also w.r.t. 
G̃(C) . Therefore, if 〈s, t〉 is not a weak superbubble in G̃(C) 
then there must be a backwards edge (x, v) or a backward 
edge (v,  x) with v in the interior of 〈s, t〉 . The construc-
tion of Ĝ(C) , however, ensures that Ĝ(C) then contains 
an edge (a, v) or (v, b), respectively, which would contra-
dict (S.iii), (S.iv), or acyclicity (in case x ∈ Ust ) and hence 
(S.v). Therefore 〈s, t〉 is a superbubble in Ĝ(C) . � �

The remaining difficulty is to find a vertex w that can 
safely be used a root for the DFS tree T. In most cases, 
one can simply set ρ(a) = 1 since Lemma 8 ensures that a 
is not part of a weak superbubbloid of G. However, there 
is no guarantee that an edge of the form (a, w) exists, in 
which case G̃(C) is not connected. Thus another root for 
the DFS tree must be chosen. A closer inspection shows 
that three cases have to be distinguished:

A.	a has an out-edge. In this case we can choose a as the 
root of the DFS tree, i.e., ρ(a) = 1.

B.	 a has no edge, but there b has an in-edge. In this 
case we have to identify vertices that can only be 
entrances of a superbubble. These can then be con-
nected with the artificial source vertex without 
destroying a superbubble.

C.	Neither a nor b have edges. The case requires special 
treatment.

In order to handle case (B), we use the following

Lemma 11  Let a and b be the artificial source and sink 
of G̃(C). Let a′ and b′ be a successor of a and a predecessor 
of b, respectively. Then

i)	 a′ is neither an interior vertex nor the exit of a super-
bubble.

ii)	 A predecessor a′′ of a′ is neither an interior vertex nor 
an entrance of a superbubble.

iii)	b′ is neither an interior vertex nor the entrance of a 
superbubble.

iv)	 A successor b′′ of b′ is neither an interior vertex nor an 
exit of a superbubble.

Proof  If a′ is contained in a superbubble, it must be the 
entrance, since otherwise its predecessor, the artificial 
vertex a would belong to the same superbubble. If a′′ is 
in the interior of an entrance, the a′ would be an interior 
vertex of a superbubble, which is impossible by (i). The 
statements for b follow analogously. � �

Corollary 6  If b has an inedge in G̃(C), then every suc-
cessor b′′ �= b of every predecessor b′ of b can be used a 
root of the DFS search tree. At least one such vertex exists.

Proof  By assumption, b has at least one predecessor b′ . 
Since G[C] is strongly connected, b′ has at least one suc-
cessor b′′ �= b , which by Lemma 11(iv) is either not con-
tained in a superbubble or is the entrance of a superbub-
ble. � �

The approach sketched above fails in case (C) because 
there does not seem to be an efficient way to find a root 
for DFS tree that is guaranteed not to be an interior 
vertex or the exit of a (weak) superbubbloid. Sung et al. 
[7] proposed the construction of a more complex aux-
iliary DAG H that not only retains the superbubbles of 
G[C] but also introduces additional ones. Then all weak 
superbubbles in H(G) are identified and tested whether 
they also appeared in G[C].

Definition 7  (Sung graphs) Let G be a strongly con-
nected graph with a DFS tree T with root x. The vertex 
set V (H) = V ′∪̇V ′′∪̇{a, b} consists of two copies v′ ∈ V ′ 
and v′′ ∈ V ′′ of each vertex v ∈ V (G) , a source a, and a 
sink b. The edge set of H comprises four classes of edges: 
(i) edges (u′, v′) and (u′′, v′′) whenever (u, v) is a forward 
edge in G w.r.t. T. (ii) edges (u′, v′′) whenever (u, v) is a 
backward edge in G. (iii) edges (a, v′) whenever (a, v) is a 
edge in G and (iv) edges (v′′, b) whenever (v, b) is a edge 
in G.
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Fig. 3  Example for the construction of Ĝ(C) from G (top). The graph G has two non-trivial SCCs (indicated by the white and orange vertices, resp.). 
In addition, there and two singleton SCCs (purple vertices) from which G̃(V̄) is constructed. The middle panel shows the graphs G̃(C) . Each is 
obtained by adding the artificial source and sink vertices a and b. The artificial source of the second SCC has no incident edge and in the DAG G̃(V̄) 
the artificial sink b has no incoming edge. These vertices are not shown since only the connected components containing C or V̄  are of interest. The 
edges (10, 1), (5, 9) and (6, 9) in G form connections between the SCCs and the DAG, resp. Hence they are replaced by corresponding edges to an 
artificial source or artificial sink vertex according to Definition 5. The bottom panel shows the graphs Ĝ(C) obtained with the help of DFS searches. 
The reverse post ordering is shown. In the case of the second SCC, the artificial source a is connected to 11 as described in Corollary 6. The back 
edges (5, 2), (7, 1), (7, 6) and (10, 11) are then replaced with the corresponding edge to a and from b as prescribed by Definition 6. The tree graphs 
have the same superbubbles as G 
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The graph H is a connected DAG since a topological 
sorting on H is obtained by using the reverse postorder 
of T within each copy of V(G) and placing the first copy 
entirely before the second. We refer to [7] for further 
details.

The graph H contains two types of weak superbub-
bloids: those that contain no backward edges w.r.t. T, 
and those that contain backward edges. Members of the 
first class do not contain the root of T by Lemma 9 and 
hence are also superbubbles in G. Every weak super-
bubble of this type is present (and will be detected) in 
both V ′ and V ′′ . A weak superbubble with backward 
edge has a “front part” in V ′ and a “back part” in V ′′ 
and appears exactly once in H. The vertex sets V ′ and 
V ′′ are disjoint. It is possible that H contains superbub-
bles that have duplicated vertices, i.e., vertices v′ and v′′ 
deriving from the same vertex in V. These candidates 
are removed together with one of the copies of super-
bubbles appearing in both V ′ and V ′′ . We refer to this 
filtering step as Sung filtering as it was proposed in [7].

This construction is correct in case (C) if there are no 
other edges connecting G[C] within G. The additional 
connections to a and b introduced to account for edges 
that connect G[C] to other vertices in G, may fail. To 
see this, consider an interior vertex v′ in a superbub-
ble 〈s, t〉 with a backward edge. It is possible that its 
original has an external out edge and thus b should be 
connected to v′ . This is not accounted for in the con-
struction of H, which required that V ′ is connected to 
a only, and V ′′ is connected to b only. These ”missing” 
edges may introduce false positive superbubbles as 
shown in Fig. 1.

This is not a dramatic problem because it is easy to 
identify the false positives: it suffices to check whether 
there is an edge (x, w) or (w, y) with w /∈ Ust , x ∈ Ust\{t} 
and y ∈ Ust\{s} . Clearly, this can be achieved in linear 
total time for all superbubble candidates Ust , providing 
a easy completion for the algorithm of Sung et  al. [7]. 
Our alternative construction eliminates the need for 
this additional filtering step. 

Algorithm 1 Top level organization of the computation of superbubbles in a digraph

G. It reduced the problem to the problem of identifying all superbubbles in a collection

of DAGs.
Require: digraph G

compute all strongly connected components C and the acyclic residue V̂ of G.
for all C do

if G[C] is a connected component of G then
choose arbitrary root x in G[C]
construct DFS tree T with root x
construct Sung graph H(C)
construct reverse DFS postorder π for H(C)
DAGsuperbubble(H(C), π)
filter superbubbles with Sung filter

else
construct auxiliary graph G̃(C)
choose a or b as root x
construct DFS tree T with root x
construct Ĝ(C)
construct reverse DFS postorder π for Ĝ(C)
DAGsuperbubble(Ĝ(C), π)

construct auxiliary graph G̃(V̂ )
for all connected components G̃(V̂ ) of G̃(V̂ ) do

construct reverse DFS postorder π for G̃(V̂ )
DAGsuperbubble(G̃(V̂ ), π)
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Lemma 12  The (weak) superbubbles in a digraph 
G(V, E) can be identified in O(|V | + |E|) time using Algo-
rithm 1 provided the (weak) superbubbles in a DAG can 
be found in linear time.

Proof  The correctness of Algorithm 1 is an immediate 
consequence of the discussion above. Let us briefly con-
sider its running time. The strongly connected compo-
nents of G can be computed in linear, i.e., O(|V | + |E|) 
time [14, 17, 18]. The cycle-free part G[V̂ ] as well as its 
connected components [19] are also obtained in linear 
time. The construction of directed (to construct T) or 
undirected DFS search (to construct π in a DAG) also 
require only linear time [14, 15], as does the classifica-
tion of forward and backward edges. The construction 
of the auxiliary DAGs Ĝ(C) and H(C) and the deter-
mination of the root for the DFS searches is then also 
linear in time. Since the vertex sets considered in the 
auxiliary DAGs are disjoint in G, we conclude that the 
superbubbles can be identified in linear time in arbi-
trary digraph if the problem can be solved in linear time 
in a DAG. � �

The algorithm of Brankovic et al. [8] shows that this is 
indeed the case.

Corollary 7  The (weak) superbubbles in a digraph G(V, E) 
can be identified in O(|V | + |E|) time using Algorithm 1.

In the following section we give a somewhat differ-
ent account of a linear time algorithm for superbub-
ble finding that may be more straightforward than the 
approach in [8], which heavily relies on range queries. 
An example graph as the different auxiliary graphs are 
shown in Fig. 4.

Detecting superbubbles in a DAG
The identification of (weak) superbubbles is drastically 
simplified in DAGs since acyclicity, i.e., (S3), and thus 
(S.v), can be taken for granted. In particular, therefore, 
every weak superbubbloid is a superbubbloid. A key 
result of [8] is the fact that there are vertex orders for 
DAGs in which all superbubbles appear as intervals. The 
proof of Proposition 2 does not make use the minimality 
condition hence we can state the result here more gener-
ally for superbubbloids and arbitrary DFS trees on G:

Proposition 2  ([8]) Let G(V, E) be a DAG and let π be 
the reverse postorder of a DFS tree of G. Suppose 〈s, t〉 is a 
superbubbloid in G. Then

a

b c d

e f g

Fig. 4  An example graph that is transformed in three DAGs after Algorithm 1. In every graph are the weak superbubbles (blue) and all 
superbubbles (green) marked. In a is the original graph shown. Here are the non singleton SCC are marked with a red square. In b, d are G̃(C) for 
the SCC are shown and in c is G̃(V̂) shown. In e and g are Ĝ(C) are shown and in f again G̃(V̂) because no Ĝ(V̂) is needed. In the three DAGs are 
no differentiation between superbubbles and weak superbubbles are possible because they are equivalent in DAGs. So here are only the weak 
superbubbles are marked. Note that in g the weak superbubble 〈7, 10〉 of D is now also a superbubble. However, this can be simple detected later 
by checking if an edge (10, 7) exists
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i)	 Every interior vertex u of 〈s, t〉 satisfied 
π(s) < π(u) < π(t).

ii)	 If w �∈ �s, t� then either π(w) < π(s) or π(t) < π(w).

The following two functions were also introduced in 
[8]:

We slightly modify the definition here to assign values 
also to the sink and source vertices of the DAG G. The 
functions return the predecessor and successor of v that 
is furthest away from v in terms of the DFS order π . It is 
convenient to extend this definition to intervals by setting

A main result of this contribution is that superbubbles 
are characterized completely by these two functions, 
resulting in an alternative linear-time algorithm for rec-
ognizing superbubbles in DAGs that also admits a simple 
proof of correctness. To this end we will need a few sim-
ple properties of the OutParent and OutChild functions 
for intervals. First we observe that [k , l] ⊆ [i, j] implies 
the inequalities

A key observation for our purposes is the following

Lemma 13  If OutChild([i, j − 1]) ≤ j < ∞ then

i)	 π−1(j) is the only successor of π−1(j − 1);

ii)	 π−1(j) is reachable from every vertex 
v ∈ π−1([i, j − 1]);

iii)	every path from some v ∈ π−1([i, j − 1]) to a vertex 
w /∈ π−1([i, j − 1]) contains π−1(j).

Proof 

	(i)	 By definition π−1(j − 1) has at least one successor. 
On the other hand, all successor of π−1 after j − 1 

(1)
OutParent(v) :=

{

−1 if no (u, v) ∈ E exists
min({π(u)|(u, v) ∈ E}) otherwise

OutChild(v) :=

{

∞ if no (v,u) ∈ E exists
max({π(u)|(v,u) ∈ E}) otherwise

(2)

OutParent([i, j]) := min{OutParent(v) | v ∈ π−1([i, j])}

OutChild([i, j]) := max{OutChild(v) | v ∈ π−1([i, j])}

(3)
OutParent([k , l]) ≥ OutParent([i, j])

OutChild([k , l]) ≤ OutChild([i, j])

are by definition not later than j. Hence π−1(j) is 
uniquely defined.

	(ii)	 We proceed by induction w.r.t. the length of the 
interval [i, j − 1] . If i = j − 1 , i.e., a single vertex, 
the assertion (ii) is obviously true. Now assume 
that the assertion is true for [i + 1, j] . By definition 

of OutChild , i has a successor in [i + 1, j] , from 
which π−1(j) is reachable.

	(iii)	 Again, we proceed by induction. The assertion 
holds trivially for single vertices. Assume that 
the assertion is true for [i + 1, j] . By definition of 
OutChild , every successor u of π−1(i) is contained 
in π−1([i + 1, j]) . By induction hypothesis, every 
path from u to a vertex w /∈ π−1([i − 1, j − 1]) 
contains π−1(j) , and also all path from π−1(i) to 
w /∈ π−1([i, j − 1]) run through π−1(j).� �

It is important to notice that Lemma 13 depends cru-
cially on the fact that π , by construction, is a reverse 
postorder of a DFS tree. It does not generalize to arbi-
trary topological sortings.

Replacing successor by predecessor in the proof of 
Lemma 13 we obtain

Lemma 14  If OutParent([i + 1, j]) ≥ i > −1 then

i)	 π−1(i) is the only predecessor of π−1(i + 1);

ii)	 Every vertex v ∈ π−1([i + 1, j]) is reachable from 
π−1(i);

iii)	 Every path from w /∈ π−1([i + 1, j]) to a vertex 
v ∈ π−1([i + 1, j]) contains π−1(i).

Let us now return to the superbubbloids. We first 
need two simple properties of the OutParent and 
OutChild function for individual vertices:

Lemma 15  Let 〈s, t〉  is a superbubbloid in a DAG G. 
Then
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i)	 v is an interior vertex of  〈s, t〉 implies 
π(s) ≤ OutParent(v) and OutChild(v) ≤ π(t).

ii)	 π(s) ≤ OutParent(t) and OutChild(s) ≤ π(t).
iii)	 If w /∈ �s, t� then OutParent(w) < π(s) or 

OutParent(w) ≥ π(t), and OutChild(w) ≤ π(s) 
or OutChild(w) > π(t).

Proof 

	(i)	 The matching property (S2) implies that for every 
successor x and predecessor y of an interior vertex 
v there is a path within the superbubble from s to 
x and from y to t, respectively. The statement now 
follows directly from the definition.

	(ii)	 The argument of (i) applies to the successors of s 
and the predecessors of t.

	(iii)	 Assume, for contradiction, that π(s) ≤ 
OutParent(w) < π(t) or 
π(s) < OutChild(w) ≤ π(t) . Then Proposition 2 
implies that w has a predecessor v′ or successor v′′ 
in the interior of the superbubble. But then v′ has 
a successor (namely w) outside the superbubble, or 
v′′ has a predecessor (namely w) inside the super-
bubble. This contradicts the matching condition 
(S2).� �

Theorem 2  Let G be a DAG and let π be the reverse pos-
torder of a DFS tree on G. Then 〈s, t〉 is a superbubbloid if 
and only if the following conditions are satisfied:

	(F1)	 OutParent([π(s)+ 1,π(t)]) = π(s) (predecessor 
property)

	(F2)	 OutChild([π(s),π(t)− 1]) = π(t) (successor 
property)

Proof  Suppose OutParent and OutChild sat-
isfy (F1) and (F2). By (F1) and Lemma  13(ii) we 
known that t is reachable from every vertex in v with 
π(s) ≤ π(v) < π(t) . Thus the reachability condition (S1) 
is satisfied. Lemma 13(iii) implies that any vertex w with 
π(w) < π(s) or π(w) > π(t) is reachable from v only 
through a path that runs through t. The topological sort-
ing then implies that w with π(w) < π(s) is not reach-
able from at all since w is not reachable from t. Hence 
Ust = π−1([π(s),π(t)] . By (F2) and Lemma  14(ii) every 
vertex v with π(s) < π(v) ≤ π(t) , i.e., is reachable from 
s. Lemma 14(ii) implies that v is reachable from a vertex 
w with π(w) < π(s) or π(w) > π(t) only through paths 
that contain s. The latter are not reachable at all since s is 
not reachable from w with π(w) > π(t) in a DAG. Thus 
U+
ts = π−1([π(s),π(t)] = Ust , i.e., the matching condi-

tion (S2) is satisfied.

Now suppose (S1) and (S2) holds. Lemma  15 
implies that OutParent([π(s)+ 1,π(t)]) ≥ π(s) . 
Since some vertex v′ ∈ �s, t� must have s as its prede-
cessor we have OutParent([π(s)+ 1,π(t)]) = π(s) , 
i.e., (F1) holds. Analogously, Lemma  15 implies 
OutChild([π(s),π(t)− 1]) ≤ π(t) . Since there must be 
some v′ ∈ �s, t� that has t as its successor, we must have 
OutChild([π(s),π(t)− 1]) = π(t) , i.e. (F2) holds. � �

We now proceed to showing that the possible superbubb-
loids and superbubbles can be found efficiently, i.e., in linear 
time using only the reserve postorder of the DFS tree and 
the corresponding functions OutChild and OutParent . As 
an immediate consequence of (F2) and Lemma 13, we have 
the following necessary condition for exits:

Corollary 8  The exit t of superbubbloid 〈s, t〉 satisfies 
OutChild(π−1(π(t)− 1)) = π(t).

We now use the minimality condition of Definition 2 
to identify the superbubbles among the superbubbloids.

Lemma 16  If t is the exit of a superbubbloid, then there 
is also the exit of a superbubble 〈s, t〉 whose entrance s is 
vertex with the largest value of π(s) < π(t) such that (F1) 
and (F2) is satisfied.

Proof  Let 〈s, t〉 be a superbubbloid. According to Defini-
tion 2, 〈s, t〉 is a superbubble if there is no superbubbloid 
�s′, t� with π(s) < π(s′) < π(t) , i.e., there is no vertex s′ 
with π(s′) > π(s) such that (F1) and (F2) is satisfied. � �

Lemma 17  Suppose π(s) ≤ π(v) < π(t) and 
OutChild(v) > π(t). Then there is no superbubbloid with 
entrance s and exit t.

Proof  Suppose 〈s, t〉 is a superbubbloid. By construction, 
OutChild([π(s),π(t)− 1]) ≥ OutChild(v) > π(t) , con-
tradicting (F2). � �

Corollary 9  If 〈s, t〉 is a superbubble, then 
there is no superbubbloid �s′, t ′� with exit 
t ′ ∈ π−1([π(s)+ 1,π(t)− 1]) and entrance s′ with 
π(s′) < π(s).

Proof  This is an immediate consequence of Lemma  5, 
which shows that the intersection �s, t� ∩ �s′, t ′� would be 
a superbubbloid, contradicting minimality of 〈s, t〉 . � �

Corollary 10  If 〈s, t〉 and �s′, t ′� are two superbubbles 
with π(t ′) < π(t) then either π(s′) < π(t ′) < π(s) < π(t), 
or π(s) < π(s′) < π(t ′) < π(t).
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Thus superbubbles are either nested or placed next to 
each other, as already noted in [6]. Finally, we show that 
it is not too difficult to identify false exit candidates, i.e., 
vertices that satisfy the condition of Corollary 8 but have 
no matching entrance s.

Lemma 18  Let 〈s, t〉 be a superbubble and suppose t ′ is 
an interior vertex of 〈s, t〉. Then there is a vertex v with 
π(s) ≤ π(v) < π(t ′) such that OutChild(v) > π(t ′).

Proof  Suppose, for contradiction, that no such vertex 
v exists. Since 〈s, t〉 is superbubble by assumption, it fol-
lows that OutParent([π(s)+ 1,π(t ′)]) = π(s) is correct 
and so (F1) satisfied for �s, t ′� . After no such v exists also 
OutChild([π(s),π(t ′)− 1]) ≤ π(t) is correct and so (F2) 
is satisfied. Thus �s, t ′� is superbubbloid. By Lemma 4 �t ′, t� 
is also a superbubbloid, contradicting the assumption. � �

Taken together, these observations suggest to organize the 
search by scanning the vertex set for candidate exit vertices 
t in reverse order. For every such t, one would then search 
for the corresponding entrance s such that the pair s, t ful-
fills (F1) and (F2). Using eq.(3) one can test (F2) indepen-
dently for each v by checking whether OutChild(v) ≤ π(t) . 
Checking for (F1) requires that the interval [π(s)+ 1,π(t)] 
is considered. The value of its OutParent function can be 
obtained incrementally as the minimum of OutParent(v) 
and the OutParent interval of the previous step:

By Lemma 16, the nearest entrance s to the exit t com-
pletes the superbubble. The tricky part is to identify all 
superbubbles in a single scan. Lemma 17 ensures that no 
valid entrance can be found for exit t ′ if a vertex v with 
OutChild(v) > π(t ′) is encountered. In this case t ′ can be 
discarded. Lemma 18 ensures that a false exit candidate 
t ′ within a superbubble 〈s, t〉 candidate cannot “mask” the 
entrance s belonging to t, i.e., there is necessarily a vertex 
v satisfying OutChild(v) > π(t ′) with π(s) < π(v).

It is natural therefore to use a stack S to hold the exit 
candidates. Since the OutParent interval explicitly refers 
to an exit candidate t, it must be re-initialized when-
ever a superbubble is completed or the candidate exit 
is rejected. More precisely, the OutParent interval of 
the previous exit candidate t must be updated. This is 
achieved by computing

(4)
OutParent([π(v),π(t)])

= min (OutParent(v),OutParent([π(v)+ 1,π(t)]))

(5)
OutParent[π(v),π(t)]

= min
(

OutParent[π(v),π(t ′)],OutParent[π(t ′)+ 1,π(t)]
)

To this end, the value OutParent[π(t ′)+ 1,π(t)] is 
associated with t when t ′ is pushed onto the stack. 
The values of OutParent intervals are not required 
for arbitrary intervals. Instead, we only need 
OutParent([π(t ′)+ 1,π(t)]) with consecutive exit can-
didates t ′ and t. Hence a single integer associated with 
each candidate t suffices. This integer initialized with 
OutParent(t) and is then advanced as described above to 
OutParent([π(v),π(t)]) . 

Algorithm 2 DAGsuperbubble (G, π ).
Require: DAG G(V, E) with reverse DFS postorder π

empty stack S
empty map outParentMap
empty exit t
for k = n...1 do

v = π−1(k)
child ← OutChild(v)
if child = k + 1 then

push t onto S
t ← π−1(k + 1)

while child > π(t) do
t ← t
t ← POP (S)
outParentMap[t] ← min (outParentMap[t ], outParentMap[t])

if outParentMap[t] = k then
report v, t
t ← t
t ← POP (S)
outParentMap[t] ← min (outParentMap[t ], outParentMap[t])

outParentMap[v] ← OutParent(v)
outParentMap[t] ← min (outParentMap[t], outParentMap[v])

Algorithm 2 presents this idea in a more formal way.

Lemma 19  Algorithm 2 identifies the superbubbles in a 
DAG G.

Proof  Every reported candidate satisfied (F1) since 
OutParent([π(s)+ 1,π(t)]) = π(s) is used to identify the 
entrance for the current t. Since v ∈ π−1[π(s),π(t)− 1] 
is checked for every OutChild(v) ≤ π(t) , (F2) holds due 
to equ.(3) since by Lemma  13 this is equal to test the 
interval. Hence every reported candidate is a superbub-
bloid. By Lemma 16 〈s, t〉 is minimal and thus a superbub-
ble. Lemma 18 ensures that the corresponding entrance 
is identified for every valid exit t, i.e., that all false candi-
date exits are rejected before the next valid entrance in 
encountered. � �

Lemma 20  The Algorithm  2 has time complexity 
O(|V | + |E|).

Proof  Given the reverse DFS postorder π , the for loop 
processes every vertex exactly once. All computations 
except OutChild(v) , OutParent(v) , and the while loop 
take constant time. This includes explicit the calculation 
of the minimum of two integer values that are needed to 
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update of the intervals. The values of OutChild(v) and 
OutParent(v) are obtained by iterating over the outgo-
ing or incoming edges of v, respectively, hence the total 
effort is O(|V | + |E|) . Every iteration of the while loop 
removes one vertex from the stack S . Since each vertex 
is pushed only S at most once, the total effort for the 
while loop is O(|V|). The total running time therefore is 
O(|V | + |E|) . � �

Recalling the reverse DFS postorder π can also be 
obtained in O(|V | + |E|) we have

Corollary 11  ([8]) The superbubbles in a DAG can be 
identified in a linear time.

Some example DAGs together with the values of 
OutChild and OutParent are shown in Fig. 5.

Implementation
Algorithms 1 and 2 were implemented in Python and 
are available as Linear Superbubble Detector, LSD for 
short. LSD can be installed with pip.1 The source is avail-
able on GitHub.2 It is intended as a reference implemen-
tation emphasizing easy understanding rather than as a 
performance-optimized production tool. The underlying 
graph structures make use of NetworkX [20], which has 
the benefit that many input formats can be parsed easily.

To our knowlege, SUPBUB3 [8] is the only other pub-
licly available implementation of a superbubble detector. 
Unfortunately, it has some bugs e.g., in the handling of 
successors in the DFS tree that leads to problems with 
superbubble with a backward edge. An analysis of the 
code shows, furthermore, that the construction of the 

auxiliary graphs strictly follows [7]. Hence it cannot serve 
as a reference implementation.

In order to compare our approach to the state of the art 
algorithm we re-implemented the workflow on Sung et al. 
[7] and Brankovic et al. [8] using the same python librar-
ies. This allows a direct comparison that focusses on the 
algorithms rather than the differences between program-
ming languages and compilers. The workflow can be sub-
divided into two separate tasks: (1) the construction of 
the DAGs, and (2) the recognition of superbubbles within 
the DAG. For the first task, we compare our approach 
and the algorithm of Sung et al. [7] augmented by a sim-
ple linear-time filter to detect the false positives. For the 
second part, we compare our stack-based approach with 
the range-query method of Brankovic et al. [8].

Table 1 summarized the empirical results for test data 
of different sizes taken from our recent work on superge-
nome coordinatization and the Stanford Large Network 
Dataset Collection [21]. Although the running times are 
comparable, we find that LSD consistently performs bet-
ter than the alternative for both tasks. The combined 
improvement of LSD is a least a factor of 2 in the exam-
ples tested here. All results and methods are available in 
the git repository.4

Conclusion
We have re-investigated the mathematical properties of 
superbubbles and their obvious generalization, the weak 
superbubbloids. We not only re-derive foundational 

a b

e f

c

d

Fig. 5  Some example DAGS and the The corresponding ordering and values for OutParent  and OutChild  are shown. The ordering starts for all 
graphs in a. In a–c the DAGs are shown. Here are the superbubbles are marked with a blue. In d−f are the ordering and values of OutParent and 
OutChild are shown. All intervals that fulfill (F1) or (F2) are marked red. The intervals that fulfill both and also the minimality criterion are marked 
blue. Note that by definition a and b can not be part of any superbubble and so they can not fulfill (F1) or (F2) so intervals that would contain a or b 
are not marked

1  https​://pypi.org/proje​ct/LSD-Bubbl​e/.
2  https​://githu​b.com/Fabia​nexe/Super​bubbl​e.
3  https​://githu​b.com/Ritu-Kundu​/Super​bubbl​es.
4  https​://githu​b.com/Fabia​nexe/Super​bubbl​e.

https://pypi.org/project/LSD-Bubble/
https://github.com/Fabianexe/Superbubble
https://github.com/Ritu-Kundu/Superbubbles
https://github.com/Fabianexe/Superbubble
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results, in particular Propositions 1 and 2 in a more con-
cise way, we also identified a problems with auxiliary 
graphs proposed in [7] that lead to false positive super-
bubbles. Although these are not a fatal problem and can 
be recognized in a post-processing step without affecting 
the overall time-complexity, we have shown here that the 
issue can be avoided by using a different, in fact simpler, 
auxiliary graph that is already acyclic. Capitalizing on the 
fact that the superbubbles in a DAG can be listed in lin-
ear time [8], we show that problem of listing all super-
bubbles in an arbitrary digraph can indeed be solved in 
linear time. For the DAG case we proposed a conceptu-
ally simpler replacement for the algorithm of [8] that also 
has linear running time. With LSD we provide a reference 
implementation in python.

The mathematical analysis of superbubbles suggests 
to consider generalizations that allow possibly restricted 
sets of cycles within the “bubble” but retain the idea of 
an induced subgraph that cannot be transversed without 
passing through the entrance the exit. For instance, one 
might relax (S.v) an require only that an interior vertex 
v cannot be reached from t without passing through s 
and cannot reach s without passing through t. The false 
positives generated by the approach of Sung et al. [7] may 
also be considered a the prototype of a broader class of 
superbubble-like structures. It does not seem obvious, 
however, to characterize them beyond being induced 
acyclic subgraphs with a single source and a single sink 
vertex. An related structure that also generalizes super-
bubbles are maximal connected convex acyclic induced 
subgraphs [22]. Here, the vertex U set has the property 
that no two vertices x, y ∈ U  are connected by path that 
is not entirely contained in U.
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