
Gärtner et al. Algorithms Mol Biol (2018) 13:16
https://doi.org/10.1186/s13015-018-0134-3

RESEARCH

Superbubbles revisited
Fabian Gärtner1,2*  , Lydia Müller1,3,4 and Peter F. Stadler1,2,3,5,6,7,8,9

Abstract 

Background:  Superbubbles are distinctive subgraphs in direct graphs that play an important role in assembly
algorithms for high-throughput sequencing (HTS) data. Their practical importance derives from the fact they are
connected to their host graph by a single entrance and a single exit vertex, thus allowing them to be handled inde-
pendently. Efficient algorithms for the enumeration of superbubbles are therefore of important for the processing
of HTS data. Superbubbles can be identified within the strongly connected components of the input digraph after
transforming them into directed acyclic graphs. The algorithm by Sung et al. (IEEE ACM Trans Comput Biol Bioinform
12:770–777, 2015) achieves this task in O(m log(m))-time. The extraction of superbubbles from the transformed
components was later improved to by Brankovic et al. (Theor Comput Sci 609:374–383, 2016) resulting in an overall
O(m+ n)-time algorithm.

Results:  A re-analysis of the mathematical structure of superbubbles showed that the construction of auxiliary DAGs
from the strongly connected components in the work of Sung et al. missed some details that can lead to the report-
ing of false positive superbubbles. We propose an alternative, even simpler auxiliary graph that solved the problem
and retains the linear running time for general digraph. Furthermore, we describe a simpler, space-efficient O(m+ n)

-time algorithm for detecting superbubbles in DAGs that uses only simple data structures.

Implementation:  We present a reference implementation of the algorithm that accepts many commonly used for-
mats for the input graph and provides convenient access to the improved algorithm. https​://githu​b.com/Fabia​nexe/
Super​bubbl​e.

Keywords:  Superbubble, de Bruijn graph, Genome assembly, Linear time algorithm

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Under idealizing assumption, the genome assembly prob-
lem reduces to finding an Eulerian path in the de Bruijn
graph [1] that represents the collection of sequenc-
ing reads [2]. In real-life data sets, however, sequencing
errors and repetitive sequence elements contaminate the
de Bruijn graph with additional, false, vertices and edges.
Assembly tools therefore employ filtering steps that are
based on recognizing local motifs in the de Bruijn graphs
that correspond to this kind of noise, see e.g. [3]. Super-
bubbles also appear naturally in the multigraphs in the
context of supergenome coordinatization [4], i.e., the
problem of finding good common coordinate systems for
multiple genomes.

The simplest such motif is a bubble, comprising two or
more isolated paths connecting a source s to a target t,
see [5] for a formal analysis. While bubbles are easily rec-
ognized, most other motives are much more difficult to
find. Superbubbles are a complex generalization of bub-
bles that were proposed in [6] as an important class of
subgraphs in the context of HTS assembly. It will be con-
venient for the presentation in this paper to first consider
a more general class of structure which are obtained by
omitting the minimality criterion:

Definition 1  (Superbubbloid) Let G = (V ,E) be a
directed multi-graph and let (s, t) be an ordered pair of
distinct vertices. Denote by Ust the set of vertices reach-
able from s without passing through t and write U+

ts for
the set of vertices from which t is reachable without pass-
ing through s. Then the subgraph G[Ust] induced by Ust is
a superbubbloid in G if the following three conditions are
satisfied:

Open Access

Algorithms for
Molecular Biology

*Correspondence: fabian@bioinf.uni‑leipzig.de
1 Competence Center for Scalable Data Services and Solutions Dresden/
Leipzig, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1128-3408
https://github.com/Fabianexe/Superbubble
https://github.com/Fabianexe/Superbubble
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-018-0134-3&domain=pdf

Page 2 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

	(S1)	 t ∈ Ust , i.e., t is reachable from s (reachability
condition).

	 (S2)	 Ust = U+
ts (matching condition).

	(S3)	 G[Ust] is acyclic (acyclicity condition).

We call s, t, and Ust\{s, t} the entrance, exit, and interior
of the superbubbloid. We denote the induced subgraph
G[Ust] by 〈s, t〉 if it is a superbubbloid with entrance s and
exit t.

A superbubble is a superbubbloid that is minimal in the
following sense:

Definition 2  A superbubbloid 〈s, t〉 is a superbubble if
there is no s′ ∈ Ust\{s} such that �s′, t� is a superbubbloid.

We note that Definition 2 is a simple rephrasing of the
language used in [6], where a simple O(n(m+ n))-time
algorithm was proposed that, for each candidate entrance
s, explicitly retrieves all superbubbles 〈s, t〉 . Since the defi-
nition is entirely based on reachability, multiple edges are
irrelevant and can be omitted altogether. Hence we only
consider simple digraphs throughout.

The vertex set of every digraph G(V, E) can be parti-
tioned into its strongly connected components. Denote
by V̄ the set of singletons, i.e., the strongly connected
components without edges. One easily checks that the
induced subgraph G[V̄] is acyclic. Furthermore, denote
by S the partition of V comprising the non-singleton
connected components of G and the union V̄ of the sin-
gleton. The key observation of [7] can stated as

Proposition 1  Every superbubble 〈s, t〉 in G (V , E) is an
induced subgraph of G [C] for someC ∈ S.

It ensures that it is sufficient to search separately for
superbubbles within G[C] for C ∈ S . However, these
induced subgraphs may contain additional superbubbles
that are created by omitting the edges between different
components. In order to preserve this information the
individual components C are augmented by artificial ver-
tices [7]. The augmented component C is then converted
into a directed acyclic graph (DAG). Within each DAG
the superbubbles can be enumerated efficiently. With
the approach of [7], this yields an overall O(m logm)

-time algorithm, the complexity of which is determined
by the extraction of the superbubbles from the compo-
nent DAGs. The partitioning of G(V, E) into the compo-
nents G[C] for C ∈ S and the transformation into DAGs
can be achieved in O(m+ n)-time. Recently, Brankovic
et al. [8] showed that superbubbles can be found in lin-
ear time within a DAG. Their improvement uses the fact
that the DAG can always be topological ordered in such
a way that superbubbles appears as a contiguous blocks.

In this ordering, furthermore, the candidates for entrance
and exit vertices can be narrowed down considerably.
For each pair of entrance and exit candidates (s, t), it can
then be decided in constant time whether Ust is indeed a
superbubble. Using additional properties of superbubbles
to further prune the candidate list of (s, t) pairs results in
O(m+ n)-time complexity.

The combination of the work of [7] with the improve-
ment of [8] results in the state of the art algorithm. The
concept of a superbubble was extended to bi-directed
and bi-edged graphs, called ultrabubble in [9–11]. The
enumeration algorithm for ultrabubbles in [9] has a worst
case complexity of O(mn) , and hence does not provide an
alternative for directed graphs.

A careful analysis showed that sometimes false-positive
superbubbles are reported, see Fig. 1. These do not con-
stitute a fatal problem because they can be recognized
easily in linear total time simply by checking the tail of
incoming and head of outgoing edges. It is nevertheless
worth while to analyse the issue and to seek a direct rem-
edy. As we shall see below, the false positive subgraphs
are a consequence of the way in which a strongly con-
nected component C is transformed into a two DAGs
that are augmented by either the source or target vertices.

Theory
In the first part of this section we revisit the theory of
superbubbles in digraphs in some more detail. Although
some of the statements below have appeared at least in
similar for in the literature [6–8] we give concise proofs
and take care to disentangle properties that depend on
minimality from those that hold more generally. This
refined mathematical analysis sets the stage in the second
part for identifying the reason for the problems with the
auxiliary graph constructed in [7] shows how the prob-
lem can be solved efficiently in these cases using an even
simpler auxiliary graph. In the third part we elaborate on
the linear time algorithm on [8] for DAGs. We derive a
variant that has the same asymptotic running time but
seems easier to explain.

Weak superbubbloids
Although we do not intend to compute superbubbloids
in practice, they feature several convenient mathemati-
cal properties that will simplify the analysis of superbub-
bles considerably. The main aim of this section is to prove
moderate generalizations of the main results of [6, 7]. To
this end, it will be convenient to rephrase the reachability
and matching conditions (S1) and (S2) for the vertex set
U of superbubbloid with entrance s and exit t in the fol-
lowing, a more expanded form.

Page 3 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

Lemma 1  Let G be a digraph, U ⊂ V (G) and s, t ∈ U .
Then (S1) and (S2) holds for U = Ust = U+

ts if and only if
the following four conditions are satisfied

(S.i)	� Every u ∈ U is reachable from s.
(S.ii)	� t is reachable from every u ∈ U .
(S.iii)	� If u ∈ U and w /∈ U then every w → u path con-

tains s.
(S.iv)	� u ∈ U and w /∈ U then every u → w path con-

tains t.

Proof  Suppose (S1) and (S2) are true. Then u ∈ Ust and
u ∈ U+

ts implies, by definition, that u is reachable from s,
i.e. (S.i) and (S.ii) holds. By (S2) we have U := Ust = U+

ts  .
If w /∈ U it is not reachable from s without passing
through t. Since every u is reachable from s without pass-
ing through t, we would have w ∈ U if w was reachable
from any u ∈ U on a path not containing t, hence (S.iv)
holds. Similarly, since t is reachable from u without pass-
ing through s, we would have w ∈ U if v could be reached

a b

c

e

g h

f

d

Fig. 1  False-positive “superbubble” returned by the algorithm of Sung et al. [7]. The directed 3-cycle a on the l.h.s. correctly yields the three
subgraphs on two vertices as superbubbles. The graph b on the r.h.s., on the other hand, includes a as the only non-trivial strongly connected
component. The vertices 1 and 3 have additional neighbors which are replaced by artificial nodes r and r′ , respectively. c, d are the corresponding
DFS trees using an artificial source as root. Since no artificial source is present in a, a random vertex, here 1, is used as root. The correspond DAGs
in e, f are constructed from duplicate copies of the DFS trees, augmented by source and sink vertices in e since these were lacking in c. Note that
the same DAGs (g, h) are obtained for a and the non-trivial copy of a in b. Hence the same superbubbles are returned in both cases. While 〈3, 1〉 is a
valid result for a, it is a false positive for b since 3 is not a valid entrance and 1 is not a valid exit in b 

Page 4 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

from w along a path that does not contain s, i.e. (S.iii)
holds.

Now suppose (S.i), (S.ii), (S.iii), and (S.iv) holds. Clear,
both (S.i) and (S.ii) already imply (S1). Since u ∈ U is reach-
able from s by (S.ii) and every path reaching w /∈ U pases
through t by (S.iii), we have U = Ust . By (S.i), t is reachable
from every u ∈ U and by (S.iv) t can by reached from w /∈ U
only by passing through s, i.e., U = U+

ts  , i.e., Ust = U+
ts  . � �

Corollary 1  Suppose U, s, and t satisfies (S.i), (S.ii),
(S.iii), and (S.iv). Then every path connecting s to u ∈ U
and u to t is contained within U.

Proof  Assume, for contradiction, that there u → t path
containing a vertex w /∈ �s, t�. By definition of the set Ust ,
w /∈ Ust is not reachable from u ∈ Ust without passing
through t first, i.e., w cannot be part of a u → t path. � �

Corollary 1 shows that subgraphs satisfying (S1) and (S2)
related to reachability structures explored in some detail in
[12, 13]. In the following it will be useful to consider

(S.v)	� If (u, v) is an edge in U then every v → u path in
G contains both t and s.

In the following we shall see that (S.v) acts a slight
relaxation of the acyclicity axiom ((S3)).

Lemma 2  Let G(V, E) be a digraph, U ⊆ V and s, t ∈ U .

If U is the vertex set of the superbubbloid 〈s, t〉, it satisfies
(S.v).

If U satisfies (S.i), (S.ii), (S.iii), (S.iv), and (S.v), then
G[U]\{(t, s)}, the subgraph induced by U without the
potential edge from t to s, is acyclic.

Proof  Suppose U is the vertex set of a superbubbloid with
entrance s and exit t. If (u, v) is an edge in U, then v �= s by
(S3). Since v is reachable from s within U, no v → s path
can exist within U, since otherwise there would be a cycle,
contradicting (S3), that any v → s path passes through t.
There are two cases: If there (t, s) ∈ E , any path containing
this edge trivially contains both s and t. The existence of
the edge (t, s) contradicts (S3). Otherwise, any t → s path
contain at least one vertex x /∈ U . By (S.iii) and (S.iv) every
v → x path contains t and every x → u path contain s and
t, respectively. Hence the first statement holds.

Conversely, suppose (S.v) holds, i.e., every directed
cycle Z within U contains s and t. Suppose (t, s) is not
contained Z, i.e., there is vertex u ∈ U\{s, t} such that
(t,u) ∈ E . By (S.ii), t is reachable from u without pass-
ing through s, and every u → t path is contained in U by
Corollary 1. Thus there is a directed cycle within U that

contains u and t but not s, contradicting (S.v). Removing
the edge (t, s) thus cuts every directed cycle within U, and
hence G[U]\{(t, s)} is acyclic. � �

Although the definition of [6] (our Definition 2) is
also used in [7], the notion of a superbubble is tacitly
relaxed in [7] by allowing an edge (t, s) from exit to
entrance, although this contradicts the acyclicity condi-
tion (S3). This suggests

Definition 3  (Weak Superbubbloid) Let G(V, E) be a
digraph, U ⊆ V and s, t ∈ U  . The subgraph G[U] induced
by U is a weak superbubbloid if U satisfies (S.i), (S.ii),
(S.iii), (S.iv), and (S.v).

We denote a weak superbubbloids with entrance s and
exit t by 〈s, t〉 and write Ust for its vertex set. As an imme-
diate consequence of Definition 3 and Lemma 2 we have

Corollary 2  A weak superbubbloid 〈s, t〉 is a superbub-
bloid in G(V, E) if and only if (t, s) /∈ E.

The possibility of an edge connecting t to s will play a
role below, hence we will focus on weak superbubbloids
in this contribution.

First we observe that a weak superbubbloids contained
within another weak superbubbloid must be a super-
bubbloid because the existence of an edge from exit
to entrance contradicts (S.v) for the surrounding weak
superbubbloid. We record this fact as

Lemma 3  If 〈s, t〉 and �s′, t ′� are weak superbubb-
loids with s′, t ′ ∈ �s, t� and {s′, t ′} �= {s, t}, then �s′, t ′� is a
superbubbloid.

The result will be important in the context of minimal
(weak) superbubbloids below.

Another immediate consequence of Lemma 2 is

Corollary 3  Let 〈s, t〉 be a weak superbubbloid in G. If there
is an edge (u, v) in 〈s, t〉 that is contained in a cycle, then every
edges in 〈s, t〉 is contained in cycle containing s and t.

Proof  By (S.v) there is cycle running though s and t. Let
(u, v) be an edge in 〈s, t〉 . Since u is reachable from s and v
reaches t within U, there is a cycle containing s, t, and the
edge (u, v).� �

Theorem 1  Every weak superbubbloid 〈s, t〉 in G(V, E) is
an induced subgraph of G[C] for some C ∈ S.

Proof  First assume that 〈s, t〉 contains an edge (u, v) that
is contained in cycle. Then by (S.v), there is cycle through

Page 5 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

s and t and thus in particular a (t, s) path. For every u ∈ U ,
there is a path within U from s to t through u by (S.i), (S.ii),
and Lemma 1. Thus 〈s, t〉 is contained as an induced sub-
graph in a strongly connected component G[C] of G. If
there is no edge in 〈s, t〉 that is contained in a cycle, then
every vertex in 〈s, t〉 is a strongly connected component on
its own. 〈s, t〉 is therefore an induced subgraph of G[V̄] . � �

Theorem 1 establishes Proposition 1, the key result
of [7], in sufficient generality for our purposes. Next we
derive a few technical results that set the stage for con-
sidering minimality among weak superbubbloids.

Lemma 4  Assume that 〈s, t〉 is a weak superbubbloid
and let u be an interior vertex of 〈s, t〉. Then 〈s,u〉 is a
superbubbloid if and only if 〈u, t〉 is a superbubbloid.

Proof  Suppose 〈s,u〉 is a superbubbloid. Set
Wut := (Ust\Usu) ∪ {u} and consider w ∈ Wut . The
subgraph induced by Wut is an induced subgraph
of �s, t�\{(t, s)}. Hence it is acyclic and in particular
(t,u) /∈ E, i.e., (S.v) and even (S3) holds. Since t /∈ Usu
every path from s to t runs through u. Since w is reach-
able from s there is a path from s through u to w, i.e., w is
reachable from u. Thus (S.i) holds. (S.ii) holds by assump-
tion since t is reachable from w. Now suppose v /∈ Wut
and w ∈ Wut . If v /∈ Ust , then every v → w path passes
through s and then through u, the exit of 〈s,u〉 before
reaching w. If v ∈ Ust , then v ∈ Usu\{u} and thus every
v → w path passes through u as the exit of 〈s,u〉. Hence
Wut satisfied (S.iii). If v ∈ Ust , then v ∈ Usu\{u} and thus
every w → v path passes through s. By (S.v) there is no
w → s path within �s, t�\{(t, s)}, and thus any w → v
includes (t, s) or a vertex y /∈ Ust . By construction, all
w → y paths contain t, and thus all w → v paths also pass
through t and Wut also satisfies (S.iv).

Conversely suppose 〈u, t〉 is a superbubbloid. We have
to show that Wsu := (Ust\Uut) ∪ {u} induces a super-
bubbloid. The proof strategy is very similar. As above we
observe that (S.v), (S.i), and (S.ii) are satisfied. Now con-
sider v /∈ Wsu and w ∈ Wsu. If v /∈ Ust then every v → w
path contains s; otherwise v ∈ Uut\{u} and v → w passes
through t and thus also through s by Corollary 1, thus
(S.iii) holds. If v ∈ Ust , then v ∈ Uut\{u}, in which case
every w → v path passes through u. Otherwise v /∈ Ust
then every w → v runs through t ∈ Ust and thus in par-
ticular also through u. Hence (S.iv) holds. � �

Lemma 5  Let 〈w,u〉 and 〈s, t〉 be two weak super-
bubbloids such that u is an interior vertex of 〈s, t〉, s is
an interior vertex of 〈w,u〉, w is not contained in 〈s, t〉
and t is not contained in 〈w,u〉. Then the intersection
�s,u� = �w,u� ∩ �s, t� is also a superbubbloid.

Proof  First consider the intersection 〈s,u〉. u ∈ �s, t� is
reachable from s, hence (S1) holds. Furthermore 〈s,u〉
is an induced subgraph of �s, t�\{(t, s)} and hence again
acyclic (S3). Set Wsu := Uwu ∩ Ust and consider v ∈ Wsu.
First we note that v is reachable from s by definition of
〈s, t〉 and u is reachable from v by definition of 〈w,u〉. Let
x /∈ Wsu and v ∈ Wsu. If x /∈ Ust then every x → v path
passes through s; if x ∈ Ust then x /∈ Uwu (and v ∈ Uwu )
and thus every x → v path passes through w. Since
w /∈ Ust , we know that every x → v path contains s.

If x /∈ Uwu, then every v → x path passes through u;
otherwise x ∈ Uwu but x /∈ Ust , thus every v → x path
passes through t /∈ Uwu and hence also through u. Thus
Wsu is a superbubbloid. � �

We include the following result for completeness,
although it is irrelevant for the algorithmic considera-
tions below.

Lemma 6  Let 〈w,u〉 and 〈s, t〉 be defined as in Lemma 5.
Then the union �w, t� = �w,u� ∪ �s, t� is superbubbloid if
and only if the induced subgraph 〈w, t〉 satisfies (S.v).

Proof  Since 〈w, s〉, 〈s,u〉, 〈u, t〉 are superbubbloids, t
is reachable from w, i.e., (S1) holds. By the same token,
every v ∈ Wwt := Uwu ∪ Ust is reachable from w or s
and reaches u or t. Since s is reachable from w and t is
reachable from u, every v ∈ Wwt is reachable from w and
reaches t. Now consider x /∈ Wwt and v ∈ Wwt . If v ∈ Uwu
every x → v path passed through w; if v ∈ Us,t , it passes
through s ∈ Uwu and thus also through w. If v ∈ Ust , then
every v → x path passed through t. If v ∈ Uwu it passes
through u ∈ Ust and thus also through t. Thus Wwt satis-
fies (S2). Thus 〈w, t〉 is a weak superbubbloid if and only if
(S.v) holds.� �

Lemma 7  Let 〈s, t〉 be a weak superbubbloid in G with
vertex set Ust . Then 〈s, t〉 is a weak superbubbloid in the
induced subgraph G[W] whenever Ust ⊆ W .

Proof  Conditions (S.i), (S.ii), and (S.v) are trivially con-
served when G is restricted to G[W]. Since every w → u
and u → w path with u ∈ Ust and w /∈ Ust within W is
also such a path in V, we conclude that (S.iii) and (S.iv)
are satisfied w.r.t. W whenever they are true w.r.t. the
larger set V. � �

The converse is not true. The restriction to induced
subgraphs thus can introduce additional (weak) super-
bubbloids. As the examples in Fig. 1 show, it is also pos-
sible to generate additional superbubbles.

Finally we turn our attention to the minimality condition.

Page 6 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

Definition 4  A weak superbubbloid 〈s, t〉 is a weak
superbubble if there is no interior vertex t ′ in 〈s, t〉 such
that �s, t ′� is a weak superbubbloid.

The “non-symmetric” phrasing of the minimal-
ity condition in Definitions 2 and 4 [6–8] is justified by
Lemma 4: If 〈s, t〉 and �s, t ′� with t ′ ∈ �s, t� are superbub-
bloids, then �t ′, t� is also a superbubbloid, and thus 〈s, t〉 is
not a superbubble. As a direct consequence of Lemma 3,
furthermore, we have

Corollary 4  Every superbubble is also a weak
superbubble.

Lemma 4 also implies that every weak superbubbloid,
which is not a superbubble itself, can be decomposed
into consecutive superbubbles:

Corollary 5  If 〈s, t〉 is a weak superbubbloid, then it is
either a weak superbubble or there is a sequence of vertices
vk with s = v1, v2, . . . , vk = t, k ≥ 3, such that �vi, vi+1� is a
superbubble for all i ∈ {1, 2, . . . , k − 1}.

A useful consequence of Lemma 5, furthermore, is that
superbubbles cannot overlap at interior vertices since
their intersection is again a superbubbloid and thus nei-
ther of them could have been minimal. Furthermore,
Lemma 4 immediately implies that 〈w, s〉 and 〈u, t〉 are also

superbubbloids, i.e., neither 〈w,u〉 nor 〈s, t〉 is a superbub-
ble in the situation of Lemma 5. Figure 2 shows a graph
in which all (weak) superbubbloids and superbubbles are
indicated.

Reduction to auperbubble finding in DAGs
Theorem 1 guarantees that every weak superbubbloid
and thus every superbubble in G(V, E) is completely
contained within one of induced subgraphs G[C],
C ∈ S . It does not guarantee, however, that a superbub-
ble in G[C] is also a superbubble in G. This was already
noted in [7]. This fact suggests to augment the induced
subgraph G[C] of G by an artificial source a and an arti-
ficial sink b.

Definition 5  The augmented graph G̃(C) is con-
structed from G[C] by adding the artificial source a
and the artificial sink b. There is an edge (a, x) in G̃(C)
whenever x ∈ C has an incoming edge from another
component in G and there is an edge (x, b) whenever
x ∈ C has an outgoing edge to another component of
G.

Since G[V̄] is acyclic, a has only outgoing edges and b
only incoming ones, it follows that the augmented graph
G̃(V̄) is also acyclic.

a

b

Fig. 2  An example graph with in which all (weak) superbubbloids and (weak) superbubbles are marked. In a are all weak superbubbloids (blue)
and all superbubbloids (green) marked. Note that beside 〈0, 2〉 and 〈7, 10〉 all weak superbubbloids are also superbubbloids. In b are all weak
superbubbles (blue) and all superbubbles (green) marked. The weak superbubbloids 〈0, 2〉 is the only superbubbloids that creates no (weak)
superbubble. So that 〈7, 10〉 is the only superbubble that is not a weak superbubble

Page 7 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

Lemma 8  〈s, t〉 is a weak superbubbloid in G if and only
if it is a weak superbubbloid of G̃(C) or a superbubbloid
in G̃(V̄) that does not contain an axiliary source a or an
auxiliary sink b.

Proof  First assume that 〈s, t〉 is an induced subgraph of
the strongly connected component G[C] of G. By con-
struction, G[C] is also a strongly connected component
of G̃(C) . Thus reachability within C is the same w.r.t. G
and G̃(C) . Also by construction, a vertex w /∈ C is reach-
able from x ∈ C in G if an only of b is reachable from x in
G̃(C) . Similarly, a vertex x ∈ C is reachable from w /∈ C if
and only if x is reachable from a. Hence 〈s, t〉 is a (weak)
superbubbloid w.r.t. G if and only if it a weak super-
bubbloid w.r.t. G̃(C) . For the special case that 〈s, t〉 is an
induced subgraph of the acyclic graph G[V̄] we can argue
in exactly the same manner.

For strongly connected components C, the graph G̃(C)
contains exactly 3 strongly connected components whose
vertex sets are C and the singletons {a} and {b} . Since
(a, b) is not an edge in G̃(C) , every weak superbubbloid
in G̃(C) is contained in G[C] and hence contains neither
a nor b. Superbubbloids containing a or b cannot be
excluded for the acyclic component G̃[V̄] , however. � �

It is possible, therefore, to find the weak superbub-
bloids of G by computing the weak superbubbloids not
containing an artificial source or sink vertex in the aug-
mented graphs. In the remainder of this section we show
how this can be done efficiently.

The presentation below depends strongly on the
properties of depth first search (DFS) trees and ver-
tex orders associated with them. We thus briefly recall
their relevant features. A vertex order is a bijection
ρ : V → {1, . . . , |V |} . We write ρ−1(i) is the vertex at the
i-th position of the ρ-ordered vertex list. Later we will
also need vertex sets that form intervals w.r.t. ρ . These
will be denoted by ρ−1([i, j]) := {ρ−1(k)|i ≤ k ≤ j} for a
ρ-interval of vertices.

DFS on a strongly connected digraph G (exploring
only along directed edges) is well known to enumer-
ate all vertices starting from an arbitrary root [14]. The
corresponding DFS tree consists entirely of edges of G
pointing away from the root. In the following we will
reserve the symbol ρ for the reverse postorder of the
DFS tree T in a strongly connected graph. Edges of G
can be classified relative to a given DFS tree T with root
x. By definition, all tree edges (u, v) are considered to
be oriented away from the root w; hence ρ(u) < ρ(v) .
An edge (u, v) ∈ E(G) is a forward edge if v is reachable
from u along a path consisting of tree edges, hence it
satisfied ρ(u) < ρ(v) . The edge (u, v) is a backward edge
if u is reachable from v along a path of consisting of

tree edges, hence ρ(u) > ρ(v) . For remaining, so-called
cross edges have no well-defined behavior w.r.t. ρ . We
refer to [14, 15] for more details on depth first search,
DFS trees, and the associated vertex orders.

A topological sorting of a directed graph order π of V
such that π(u) < π(v) holds for every directed (u, v)
[16]. Equivalently, π is a topological sorting if there are
no backward edges. A directed graph admits a topologi-
cal sorting if and only if it is a DAG. In particular, if v is
reachable from u then π(u) < π(v) must hold. In a DAG,
a topological sorting can be obtained as the reverse pos-
torder of an arbitrary DFS tree that is constructed with-
out considering the edge directions in G [15].

Lemma 9  Let G be a strongly connected digraph, 〈s, t〉 be
a weak superbubbloid in G, w /∈ �s, t�, and ρ the inverse
postorder of a DFS tree T rooted at w. Then the induced
subgraph 〈s, t〉 of G contains no backward edge w.r.t. ρ
except possibly (t, s).

Proof  Let T be a DFS tree rooted in T and let δ denote
the preordering of T. First we rule out δ(s) > δ(t). Since t
cannot be reached from anywhere along a path that does
not contain s, this is only possible if ρ(t) = 1 , i.e., if t is
the root of DFS tree T. This contradicts the assumption
that ρ(w) = 1 for some w outside 〈s, t〉 . Hence δ(s) < δ(t) .
The DFS tree T therefore contains a directed path from
s to t. Since interior vertices of 〈s, t〉 are only reachable
through s and reach outside only through t, it follows that
the subtree T ∗ of T induced by 〈s, t〉 is a tree and only s
and t are incident to edges of T outside of 〈s, t〉 . In the DFS
reverse postorder ρ we therefore have ρ(s) < ρ(u) < ρ(t)
for every vertex u interior to 〈s, t〉 , and either ρ(w) < ρ(s)
or ρ(w) > ρ(t) for all w outside of 〈s, t〉 . The graph Gst
obtained from 〈s, t〉 by removing the possible (t, s) edge is
a DAG, the subtree T ∗ is a DFS tree on Gst , whose reverse
postorder ρ∗ is collinear with rho, i.e., ρ∗(u) < ρ∗(v)
holds whenever ρ(u) < ρ(v) . Therefore, there are no
back-edges in Gst . � �

Lemma 9 is the key prerequisite for constructing an
acyclic graph that contains all weak superbubbles of
G̃(C) . Similar to the arguments above, however, we can-
not simply ignore the backward edges. Instead, we will
again add edges to the artificial source and sink vertices.

Definition 6  Given a DFS tree T with a root w = ρ−1(1)
that is neither an interior vertex nor the exit of a weak
superbubbloid of G̃(C) , the auxiliary graph Ĝ(C) is
obtained from G̃(C) by replacing every backward edge
(v, u) with respect to ρ in G̃(C) with both an edge (a, u)
and an edge (v, b).

Page 8 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

Note that Definition 6 implies that all backward edges
(u, v) of G̃(C) are removed in Ĝ(C) . As a consequence, Ĝ(C)
is acyclic. The construction of Ĝ is illustrated in Fig. 3.

Lemma 10  Let C be a strongly connected component of
G and let T be a DFS tree on G̃(C) with a root w = ρ−1(1)
that is neither an interior vertex nor the exit of a weak
superbubbloid of G. Then 〈s, t〉 with s, t ∈ C is a weak
superbubble of G contained in G̃(C) if and only if 〈s, t〉 is
a superbubble in Ĝ(C) that does not contain the auxiliary
source a or the auxiliary sink b.

Proof  Assume that 〈s, t〉 is a weak superbubble in G̃(C) that
does not contain a or b. Lemma 8 ensures that this is equiv-
alent to 〈s, t〉 being a weak superbubble of G. By Lemma 9,
〈s, t〉 contains no backward edges in G̃(C) , with the possible
exception of the edge (t, s). Since G̃(C) and Ĝ(C) by con-
struction differ only in the backward edges, the only differ-
ence affecting 〈s, t〉 is the possible insertion of edges from a
to s or from t to b. Neither affects a weak superbubble, how-
ever, and hence 〈s, t〉 is a superbubble in Ĝ(C).

Now assume that 〈s, t〉 is a superbubble in Ĝ(C) with
vertex set Ust and a, b /∈ Ust . Since the restriction of Ĝ(C)
to C is by construction a subgraph of G̃(C) , we know that
reachability within C w.r.t. to Ĝ(C) implies reachability
w.r.t. G̃(C) . Therefore Ust satisfies (S.i) and (S.ii) also w.r.t.
G̃(C) . Therefore, if 〈s, t〉 is not a weak superbubble in G̃(C)
then there must be a backwards edge (x, v) or a backward
edge (v, x) with v in the interior of 〈s, t〉 . The construc-
tion of Ĝ(C) , however, ensures that Ĝ(C) then contains
an edge (a, v) or (v, b), respectively, which would contra-
dict (S.iii), (S.iv), or acyclicity (in case x ∈ Ust ) and hence
(S.v). Therefore 〈s, t〉 is a superbubble in Ĝ(C) . � �

The remaining difficulty is to find a vertex w that can
safely be used a root for the DFS tree T. In most cases,
one can simply set ρ(a) = 1 since Lemma 8 ensures that a
is not part of a weak superbubbloid of G. However, there
is no guarantee that an edge of the form (a, w) exists, in
which case G̃(C) is not connected. Thus another root for
the DFS tree must be chosen. A closer inspection shows
that three cases have to be distinguished:

A.	a has an out-edge. In this case we can choose a as the
root of the DFS tree, i.e., ρ(a) = 1.

B.	 a has no edge, but there b has an in-edge. In this
case we have to identify vertices that can only be
entrances of a superbubble. These can then be con-
nected with the artificial source vertex without
destroying a superbubble.

C.	Neither a nor b have edges. The case requires special
treatment.

In order to handle case (B), we use the following

Lemma 11  Let a and b be the artificial source and sink
of G̃(C). Let a′ and b′ be a successor of a and a predecessor
of b, respectively. Then

i)	 a′ is neither an interior vertex nor the exit of a super-
bubble.

ii)	 A predecessor a′′ of a′ is neither an interior vertex nor
an entrance of a superbubble.

iii)	b′ is neither an interior vertex nor the entrance of a
superbubble.

iv)	 A successor b′′ of b′ is neither an interior vertex nor an
exit of a superbubble.

Proof  If a′ is contained in a superbubble, it must be the
entrance, since otherwise its predecessor, the artificial
vertex a would belong to the same superbubble. If a′′ is
in the interior of an entrance, the a′ would be an interior
vertex of a superbubble, which is impossible by (i). The
statements for b follow analogously. � �

Corollary 6  If b has an inedge in G̃(C), then every suc-
cessor b′′ �= b of every predecessor b′ of b can be used a
root of the DFS search tree. At least one such vertex exists.

Proof  By assumption, b has at least one predecessor b′ .
Since G[C] is strongly connected, b′ has at least one suc-
cessor b′′ �= b , which by Lemma 11(iv) is either not con-
tained in a superbubble or is the entrance of a superbub-
ble. � �

The approach sketched above fails in case (C) because
there does not seem to be an efficient way to find a root
for DFS tree that is guaranteed not to be an interior
vertex or the exit of a (weak) superbubbloid. Sung et al.
[7] proposed the construction of a more complex aux-
iliary DAG H that not only retains the superbubbles of
G[C] but also introduces additional ones. Then all weak
superbubbles in H(G) are identified and tested whether
they also appeared in G[C].

Definition 7  (Sung graphs) Let G be a strongly con-
nected graph with a DFS tree T with root x. The vertex
set V (H) = V ′∪̇V ′′∪̇{a, b} consists of two copies v′ ∈ V ′
and v′′ ∈ V ′′ of each vertex v ∈ V (G) , a source a, and a
sink b. The edge set of H comprises four classes of edges:
(i) edges (u′, v′) and (u′′, v′′) whenever (u, v) is a forward
edge in G w.r.t. T. (ii) edges (u′, v′′) whenever (u, v) is a
backward edge in G. (iii) edges (a, v′) whenever (a, v) is a
edge in G and (iv) edges (v′′, b) whenever (v, b) is a edge
in G.

Page 9 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

Fig. 3  Example for the construction of Ĝ(C) from G (top). The graph G has two non-trivial SCCs (indicated by the white and orange vertices, resp.).
In addition, there and two singleton SCCs (purple vertices) from which G̃(V̄) is constructed. The middle panel shows the graphs G̃(C) . Each is
obtained by adding the artificial source and sink vertices a and b. The artificial source of the second SCC has no incident edge and in the DAG G̃(V̄)
the artificial sink b has no incoming edge. These vertices are not shown since only the connected components containing C or V̄ are of interest. The
edges (10, 1), (5, 9) and (6, 9) in G form connections between the SCCs and the DAG, resp. Hence they are replaced by corresponding edges to an
artificial source or artificial sink vertex according to Definition 5. The bottom panel shows the graphs Ĝ(C) obtained with the help of DFS searches.
The reverse post ordering is shown. In the case of the second SCC, the artificial source a is connected to 11 as described in Corollary 6. The back
edges (5, 2), (7, 1), (7, 6) and (10, 11) are then replaced with the corresponding edge to a and from b as prescribed by Definition 6. The tree graphs
have the same superbubbles as G 

Page 10 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

The graph H is a connected DAG since a topological
sorting on H is obtained by using the reverse postorder
of T within each copy of V(G) and placing the first copy
entirely before the second. We refer to [7] for further
details.

The graph H contains two types of weak superbub-
bloids: those that contain no backward edges w.r.t. T,
and those that contain backward edges. Members of the
first class do not contain the root of T by Lemma 9 and
hence are also superbubbles in G. Every weak super-
bubble of this type is present (and will be detected) in
both V ′ and V ′′ . A weak superbubble with backward
edge has a “front part” in V ′ and a “back part” in V ′′
and appears exactly once in H. The vertex sets V ′ and
V ′′ are disjoint. It is possible that H contains superbub-
bles that have duplicated vertices, i.e., vertices v′ and v′′
deriving from the same vertex in V. These candidates
are removed together with one of the copies of super-
bubbles appearing in both V ′ and V ′′ . We refer to this
filtering step as Sung filtering as it was proposed in [7].

This construction is correct in case (C) if there are no
other edges connecting G[C] within G. The additional
connections to a and b introduced to account for edges
that connect G[C] to other vertices in G, may fail. To
see this, consider an interior vertex v′ in a superbub-
ble 〈s, t〉 with a backward edge. It is possible that its
original has an external out edge and thus b should be
connected to v′ . This is not accounted for in the con-
struction of H, which required that V ′ is connected to
a only, and V ′′ is connected to b only. These ”missing”
edges may introduce false positive superbubbles as
shown in Fig. 1.

This is not a dramatic problem because it is easy to
identify the false positives: it suffices to check whether
there is an edge (x, w) or (w, y) with w /∈ Ust , x ∈ Ust\{t}
and y ∈ Ust\{s} . Clearly, this can be achieved in linear
total time for all superbubble candidates Ust , providing
a easy completion for the algorithm of Sung et al. [7].
Our alternative construction eliminates the need for
this additional filtering step.

Algorithm 1 Top level organization of the computation of superbubbles in a digraph

G. It reduced the problem to the problem of identifying all superbubbles in a collection

of DAGs.
Require: digraph G

compute all strongly connected components C and the acyclic residue V̂ of G.
for all C do

if G[C] is a connected component of G then
choose arbitrary root x in G[C]
construct DFS tree T with root x
construct Sung graph H(C)
construct reverse DFS postorder π for H(C)
DAGsuperbubble(H(C), π)
filter superbubbles with Sung filter

else
construct auxiliary graph G̃(C)
choose a or b as root x
construct DFS tree T with root x
construct Ĝ(C)
construct reverse DFS postorder π for Ĝ(C)
DAGsuperbubble(Ĝ(C), π)

construct auxiliary graph G̃(V̂)
for all connected components G̃(V̂) of G̃(V̂) do

construct reverse DFS postorder π for G̃(V̂)
DAGsuperbubble(G̃(V̂), π)

Page 11 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

Lemma 12  The (weak) superbubbles in a digraph
G(V, E) can be identified in O(|V | + |E|) time using Algo-
rithm 1 provided the (weak) superbubbles in a DAG can
be found in linear time.

Proof  The correctness of Algorithm 1 is an immediate
consequence of the discussion above. Let us briefly con-
sider its running time. The strongly connected compo-
nents of G can be computed in linear, i.e., O(|V | + |E|)
time [14, 17, 18]. The cycle-free part G[V̂] as well as its
connected components [19] are also obtained in linear
time. The construction of directed (to construct T) or
undirected DFS search (to construct π in a DAG) also
require only linear time [14, 15], as does the classifica-
tion of forward and backward edges. The construction
of the auxiliary DAGs Ĝ(C) and H(C) and the deter-
mination of the root for the DFS searches is then also
linear in time. Since the vertex sets considered in the
auxiliary DAGs are disjoint in G, we conclude that the
superbubbles can be identified in linear time in arbi-
trary digraph if the problem can be solved in linear time
in a DAG. � �

The algorithm of Brankovic et al. [8] shows that this is
indeed the case.

Corollary 7  The (weak) superbubbles in a digraph G(V, E)
can be identified in O(|V | + |E|) time using Algorithm 1.

In the following section we give a somewhat differ-
ent account of a linear time algorithm for superbub-
ble finding that may be more straightforward than the
approach in [8], which heavily relies on range queries.
An example graph as the different auxiliary graphs are
shown in Fig. 4.

Detecting superbubbles in a DAG
The identification of (weak) superbubbles is drastically
simplified in DAGs since acyclicity, i.e., (S3), and thus
(S.v), can be taken for granted. In particular, therefore,
every weak superbubbloid is a superbubbloid. A key
result of [8] is the fact that there are vertex orders for
DAGs in which all superbubbles appear as intervals. The
proof of Proposition 2 does not make use the minimality
condition hence we can state the result here more gener-
ally for superbubbloids and arbitrary DFS trees on G:

Proposition 2  ([8]) Let G(V, E) be a DAG and let π be
the reverse postorder of a DFS tree of G. Suppose 〈s, t〉 is a
superbubbloid in G. Then

a

b c d

e f g

Fig. 4  An example graph that is transformed in three DAGs after Algorithm 1. In every graph are the weak superbubbles (blue) and all
superbubbles (green) marked. In a is the original graph shown. Here are the non singleton SCC are marked with a red square. In b, d are G̃(C) for
the SCC are shown and in c is G̃(V̂) shown. In e and g are Ĝ(C) are shown and in f again G̃(V̂) because no Ĝ(V̂) is needed. In the three DAGs are
no differentiation between superbubbles and weak superbubbles are possible because they are equivalent in DAGs. So here are only the weak
superbubbles are marked. Note that in g the weak superbubble 〈7, 10〉 of D is now also a superbubble. However, this can be simple detected later
by checking if an edge (10, 7) exists

Page 12 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

i)	 Every interior vertex u of 〈s, t〉 satisfied
π(s) < π(u) < π(t).

ii)	 If w �∈ �s, t� then either π(w) < π(s) or π(t) < π(w).

The following two functions were also introduced in
[8]:

We slightly modify the definition here to assign values
also to the sink and source vertices of the DAG G. The
functions return the predecessor and successor of v that
is furthest away from v in terms of the DFS order π . It is
convenient to extend this definition to intervals by setting

A main result of this contribution is that superbubbles
are characterized completely by these two functions,
resulting in an alternative linear-time algorithm for rec-
ognizing superbubbles in DAGs that also admits a simple
proof of correctness. To this end we will need a few sim-
ple properties of the OutParent and OutChild functions
for intervals. First we observe that [k , l] ⊆ [i, j] implies
the inequalities

A key observation for our purposes is the following

Lemma 13  If OutChild([i, j − 1]) ≤ j < ∞ then

i)	 π−1(j) is the only successor of π−1(j − 1);

ii)	 π−1(j) is reachable from every vertex
v ∈ π−1([i, j − 1]);

iii)	every path from some v ∈ π−1([i, j − 1]) to a vertex
w /∈ π−1([i, j − 1]) contains π−1(j).

Proof 

	(i)	 By definition π−1(j − 1) has at least one successor.
On the other hand, all successor of π−1 after j − 1

(1)
OutParent(v) :=

{

−1 if no (u, v) ∈ E exists
min({π(u)|(u, v) ∈ E}) otherwise

OutChild(v) :=

{

∞ if no (v,u) ∈ E exists
max({π(u)|(v,u) ∈ E}) otherwise

(2)

OutParent([i, j]) := min{OutParent(v) | v ∈ π−1([i, j])}

OutChild([i, j]) := max{OutChild(v) | v ∈ π−1([i, j])}

(3)
OutParent([k , l]) ≥ OutParent([i, j])

OutChild([k , l]) ≤ OutChild([i, j])

are by definition not later than j. Hence π−1(j) is
uniquely defined.

	(ii)	 We proceed by induction w.r.t. the length of the
interval [i, j − 1] . If i = j − 1 , i.e., a single vertex,
the assertion (ii) is obviously true. Now assume
that the assertion is true for [i + 1, j] . By definition

of OutChild , i has a successor in [i + 1, j] , from
which π−1(j) is reachable.

	(iii)	 Again, we proceed by induction. The assertion
holds trivially for single vertices. Assume that
the assertion is true for [i + 1, j] . By definition of
OutChild , every successor u of π−1(i) is contained
in π−1([i + 1, j]) . By induction hypothesis, every
path from u to a vertex w /∈ π−1([i − 1, j − 1])
contains π−1(j) , and also all path from π−1(i) to
w /∈ π−1([i, j − 1]) run through π−1(j).� �

It is important to notice that Lemma 13 depends cru-
cially on the fact that π , by construction, is a reverse
postorder of a DFS tree. It does not generalize to arbi-
trary topological sortings.

Replacing successor by predecessor in the proof of
Lemma 13 we obtain

Lemma 14  If OutParent([i + 1, j]) ≥ i > −1 then

i)	 π−1(i) is the only predecessor of π−1(i + 1);

ii)	 Every vertex v ∈ π−1([i + 1, j]) is reachable from
π−1(i);

iii)	 Every path from w /∈ π−1([i + 1, j]) to a vertex
v ∈ π−1([i + 1, j]) contains π−1(i).

Let us now return to the superbubbloids. We first
need two simple properties of the OutParent and
OutChild function for individual vertices:

Lemma 15  Let 〈s, t〉 is a superbubbloid in a DAG G.
Then

Page 13 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

i)	 v is an interior vertex of 〈s, t〉 implies
π(s) ≤ OutParent(v) and OutChild(v) ≤ π(t).

ii)	 π(s) ≤ OutParent(t) and OutChild(s) ≤ π(t).
iii)	 If w /∈ �s, t� then OutParent(w) < π(s) or

OutParent(w) ≥ π(t), and OutChild(w) ≤ π(s)
or OutChild(w) > π(t).

Proof 

	(i)	 The matching property (S2) implies that for every
successor x and predecessor y of an interior vertex
v there is a path within the superbubble from s to
x and from y to t, respectively. The statement now
follows directly from the definition.

	(ii)	 The argument of (i) applies to the successors of s
and the predecessors of t.

	(iii)	 Assume, for contradiction, that π(s) ≤
OutParent(w) < π(t) or
π(s) < OutChild(w) ≤ π(t) . Then Proposition 2
implies that w has a predecessor v′ or successor v′′
in the interior of the superbubble. But then v′ has
a successor (namely w) outside the superbubble, or
v′′ has a predecessor (namely w) inside the super-
bubble. This contradicts the matching condition
(S2).� �

Theorem 2  Let G be a DAG and let π be the reverse pos-
torder of a DFS tree on G. Then 〈s, t〉 is a superbubbloid if
and only if the following conditions are satisfied:

	(F1)	 OutParent([π(s)+ 1,π(t)]) = π(s) (predecessor
property)

	(F2)	 OutChild([π(s),π(t)− 1]) = π(t) (successor
property)

Proof  Suppose OutParent and OutChild sat-
isfy (F1) and (F2). By (F1) and Lemma 13(ii) we
known that t is reachable from every vertex in v with
π(s) ≤ π(v) < π(t) . Thus the reachability condition (S1)
is satisfied. Lemma 13(iii) implies that any vertex w with
π(w) < π(s) or π(w) > π(t) is reachable from v only
through a path that runs through t. The topological sort-
ing then implies that w with π(w) < π(s) is not reach-
able from at all since w is not reachable from t. Hence
Ust = π−1([π(s),π(t)] . By (F2) and Lemma 14(ii) every
vertex v with π(s) < π(v) ≤ π(t) , i.e., is reachable from
s. Lemma 14(ii) implies that v is reachable from a vertex
w with π(w) < π(s) or π(w) > π(t) only through paths
that contain s. The latter are not reachable at all since s is
not reachable from w with π(w) > π(t) in a DAG. Thus
U+
ts = π−1([π(s),π(t)] = Ust , i.e., the matching condi-

tion (S2) is satisfied.

Now suppose (S1) and (S2) holds. Lemma 15
implies that OutParent([π(s)+ 1,π(t)]) ≥ π(s) .
Since some vertex v′ ∈ �s, t� must have s as its prede-
cessor we have OutParent([π(s)+ 1,π(t)]) = π(s) ,
i.e., (F1) holds. Analogously, Lemma 15 implies
OutChild([π(s),π(t)− 1]) ≤ π(t) . Since there must be
some v′ ∈ �s, t� that has t as its successor, we must have
OutChild([π(s),π(t)− 1]) = π(t) , i.e. (F2) holds. � �

We now proceed to showing that the possible superbubb-
loids and superbubbles can be found efficiently, i.e., in linear
time using only the reserve postorder of the DFS tree and
the corresponding functions OutChild and OutParent . As
an immediate consequence of (F2) and Lemma 13, we have
the following necessary condition for exits:

Corollary 8  The exit t of superbubbloid 〈s, t〉 satisfies
OutChild(π−1(π(t)− 1)) = π(t).

We now use the minimality condition of Definition 2
to identify the superbubbles among the superbubbloids.

Lemma 16  If t is the exit of a superbubbloid, then there
is also the exit of a superbubble 〈s, t〉 whose entrance s is
vertex with the largest value of π(s) < π(t) such that (F1)
and (F2) is satisfied.

Proof  Let 〈s, t〉 be a superbubbloid. According to Defini-
tion 2, 〈s, t〉 is a superbubble if there is no superbubbloid
�s′, t� with π(s) < π(s′) < π(t) , i.e., there is no vertex s′
with π(s′) > π(s) such that (F1) and (F2) is satisfied. � �

Lemma 17  Suppose π(s) ≤ π(v) < π(t) and
OutChild(v) > π(t). Then there is no superbubbloid with
entrance s and exit t.

Proof  Suppose 〈s, t〉 is a superbubbloid. By construction,
OutChild([π(s),π(t)− 1]) ≥ OutChild(v) > π(t) , con-
tradicting (F2). � �

Corollary 9  If 〈s, t〉 is a superbubble, then
there is no superbubbloid �s′, t ′� with exit
t ′ ∈ π−1([π(s)+ 1,π(t)− 1]) and entrance s′ with
π(s′) < π(s).

Proof  This is an immediate consequence of Lemma 5,
which shows that the intersection �s, t� ∩ �s′, t ′� would be
a superbubbloid, contradicting minimality of 〈s, t〉 . � �

Corollary 10  If 〈s, t〉 and �s′, t ′� are two superbubbles
with π(t ′) < π(t) then either π(s′) < π(t ′) < π(s) < π(t),
or π(s) < π(s′) < π(t ′) < π(t).

Page 14 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

Thus superbubbles are either nested or placed next to
each other, as already noted in [6]. Finally, we show that
it is not too difficult to identify false exit candidates, i.e.,
vertices that satisfy the condition of Corollary 8 but have
no matching entrance s.

Lemma 18  Let 〈s, t〉 be a superbubble and suppose t ′ is
an interior vertex of 〈s, t〉. Then there is a vertex v with
π(s) ≤ π(v) < π(t ′) such that OutChild(v) > π(t ′).

Proof  Suppose, for contradiction, that no such vertex
v exists. Since 〈s, t〉 is superbubble by assumption, it fol-
lows that OutParent([π(s)+ 1,π(t ′)]) = π(s) is correct
and so (F1) satisfied for �s, t ′� . After no such v exists also
OutChild([π(s),π(t ′)− 1]) ≤ π(t) is correct and so (F2)
is satisfied. Thus �s, t ′� is superbubbloid. By Lemma 4 �t ′, t�
is also a superbubbloid, contradicting the assumption. � �

Taken together, these observations suggest to organize the
search by scanning the vertex set for candidate exit vertices
t in reverse order. For every such t, one would then search
for the corresponding entrance s such that the pair s, t ful-
fills (F1) and (F2). Using eq.(3) one can test (F2) indepen-
dently for each v by checking whether OutChild(v) ≤ π(t) .
Checking for (F1) requires that the interval [π(s)+ 1,π(t)]
is considered. The value of its OutParent function can be
obtained incrementally as the minimum of OutParent(v)
and the OutParent interval of the previous step:

By Lemma 16, the nearest entrance s to the exit t com-
pletes the superbubble. The tricky part is to identify all
superbubbles in a single scan. Lemma 17 ensures that no
valid entrance can be found for exit t ′ if a vertex v with
OutChild(v) > π(t ′) is encountered. In this case t ′ can be
discarded. Lemma 18 ensures that a false exit candidate
t ′ within a superbubble 〈s, t〉 candidate cannot “mask” the
entrance s belonging to t, i.e., there is necessarily a vertex
v satisfying OutChild(v) > π(t ′) with π(s) < π(v).

It is natural therefore to use a stack S to hold the exit
candidates. Since the OutParent interval explicitly refers
to an exit candidate t, it must be re-initialized when-
ever a superbubble is completed or the candidate exit
is rejected. More precisely, the OutParent interval of
the previous exit candidate t must be updated. This is
achieved by computing

(4)
OutParent([π(v),π(t)])

= min (OutParent(v),OutParent([π(v)+ 1,π(t)]))

(5)
OutParent[π(v),π(t)]

= min
(

OutParent[π(v),π(t ′)],OutParent[π(t ′)+ 1,π(t)]
)

To this end, the value OutParent[π(t ′)+ 1,π(t)] is
associated with t when t ′ is pushed onto the stack.
The values of OutParent intervals are not required
for arbitrary intervals. Instead, we only need
OutParent([π(t ′)+ 1,π(t)]) with consecutive exit can-
didates t ′ and t. Hence a single integer associated with
each candidate t suffices. This integer initialized with
OutParent(t) and is then advanced as described above to
OutParent([π(v),π(t)]) .

Algorithm 2 DAGsuperbubble (G, π).
Require: DAG G(V, E) with reverse DFS postorder π

empty stack S
empty map outParentMap
empty exit t
for k = n...1 do

v = π−1(k)
child ← OutChild(v)
if child = k + 1 then

push t onto S
t ← π−1(k + 1)

while child > π(t) do
t ← t
t ← POP (S)
outParentMap[t] ← min (outParentMap[t], outParentMap[t])

if outParentMap[t] = k then
report v, t
t ← t
t ← POP (S)
outParentMap[t] ← min (outParentMap[t], outParentMap[t])

outParentMap[v] ← OutParent(v)
outParentMap[t] ← min (outParentMap[t], outParentMap[v])

Algorithm 2 presents this idea in a more formal way.

Lemma 19  Algorithm 2 identifies the superbubbles in a
DAG G.

Proof  Every reported candidate satisfied (F1) since
OutParent([π(s)+ 1,π(t)]) = π(s) is used to identify the
entrance for the current t. Since v ∈ π−1[π(s),π(t)− 1]
is checked for every OutChild(v) ≤ π(t) , (F2) holds due
to equ.(3) since by Lemma 13 this is equal to test the
interval. Hence every reported candidate is a superbub-
bloid. By Lemma 16 〈s, t〉 is minimal and thus a superbub-
ble. Lemma 18 ensures that the corresponding entrance
is identified for every valid exit t, i.e., that all false candi-
date exits are rejected before the next valid entrance in
encountered. � �

Lemma 20  The Algorithm 2 has time complexity
O(|V | + |E|).

Proof  Given the reverse DFS postorder π , the for loop
processes every vertex exactly once. All computations
except OutChild(v) , OutParent(v) , and the while loop
take constant time. This includes explicit the calculation
of the minimum of two integer values that are needed to

Page 15 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

update of the intervals. The values of OutChild(v) and
OutParent(v) are obtained by iterating over the outgo-
ing or incoming edges of v, respectively, hence the total
effort is O(|V | + |E|) . Every iteration of the while loop
removes one vertex from the stack S . Since each vertex
is pushed only S at most once, the total effort for the
while loop is O(|V|). The total running time therefore is
O(|V | + |E|) . � �

Recalling the reverse DFS postorder π can also be
obtained in O(|V | + |E|) we have

Corollary 11  ([8]) The superbubbles in a DAG can be
identified in a linear time.

Some example DAGs together with the values of
OutChild and OutParent are shown in Fig. 5.

Implementation
Algorithms 1 and 2 were implemented in Python and
are available as Linear Superbubble Detector, LSD for
short. LSD can be installed with pip.1 The source is avail-
able on GitHub.2 It is intended as a reference implemen-
tation emphasizing easy understanding rather than as a
performance-optimized production tool. The underlying
graph structures make use of NetworkX [20], which has
the benefit that many input formats can be parsed easily.

To our knowlege, SUPBUB3 [8] is the only other pub-
licly available implementation of a superbubble detector.
Unfortunately, it has some bugs e.g., in the handling of
successors in the DFS tree that leads to problems with
superbubble with a backward edge. An analysis of the
code shows, furthermore, that the construction of the

auxiliary graphs strictly follows [7]. Hence it cannot serve
as a reference implementation.

In order to compare our approach to the state of the art
algorithm we re-implemented the workflow on Sung et al.
[7] and Brankovic et al. [8] using the same python librar-
ies. This allows a direct comparison that focusses on the
algorithms rather than the differences between program-
ming languages and compilers. The workflow can be sub-
divided into two separate tasks: (1) the construction of
the DAGs, and (2) the recognition of superbubbles within
the DAG. For the first task, we compare our approach
and the algorithm of Sung et al. [7] augmented by a sim-
ple linear-time filter to detect the false positives. For the
second part, we compare our stack-based approach with
the range-query method of Brankovic et al. [8].

Table 1 summarized the empirical results for test data
of different sizes taken from our recent work on superge-
nome coordinatization and the Stanford Large Network
Dataset Collection [21]. Although the running times are
comparable, we find that LSD consistently performs bet-
ter than the alternative for both tasks. The combined
improvement of LSD is a least a factor of 2 in the exam-
ples tested here. All results and methods are available in
the git repository.4

Conclusion
We have re-investigated the mathematical properties of
superbubbles and their obvious generalization, the weak
superbubbloids. We not only re-derive foundational

a b

e f

c

d

Fig. 5  Some example DAGS and the The corresponding ordering and values for OutParent and OutChild are shown. The ordering starts for all
graphs in a. In a–c the DAGs are shown. Here are the superbubbles are marked with a blue. In d−f are the ordering and values of OutParent and
OutChild are shown. All intervals that fulfill (F1) or (F2) are marked red. The intervals that fulfill both and also the minimality criterion are marked
blue. Note that by definition a and b can not be part of any superbubble and so they can not fulfill (F1) or (F2) so intervals that would contain a or b
are not marked

1  https​://pypi.org/proje​ct/LSD-Bubbl​e/.
2  https​://githu​b.com/Fabia​nexe/Super​bubbl​e.
3  https​://githu​b.com/Ritu-Kundu​/Super​bubbl​es.
4  https​://githu​b.com/Fabia​nexe/Super​bubbl​e.

https://pypi.org/project/LSD-Bubble/
https://github.com/Fabianexe/Superbubble
https://github.com/Ritu-Kundu/Superbubbles
https://github.com/Fabianexe/Superbubble

Page 16 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

results, in particular Propositions 1 and 2 in a more con-
cise way, we also identified a problems with auxiliary
graphs proposed in [7] that lead to false positive super-
bubbles. Although these are not a fatal problem and can
be recognized in a post-processing step without affecting
the overall time-complexity, we have shown here that the
issue can be avoided by using a different, in fact simpler,
auxiliary graph that is already acyclic. Capitalizing on the
fact that the superbubbles in a DAG can be listed in lin-
ear time [8], we show that problem of listing all super-
bubbles in an arbitrary digraph can indeed be solved in
linear time. For the DAG case we proposed a conceptu-
ally simpler replacement for the algorithm of [8] that also
has linear running time. With LSD we provide a reference
implementation in python.

The mathematical analysis of superbubbles suggests
to consider generalizations that allow possibly restricted
sets of cycles within the “bubble” but retain the idea of
an induced subgraph that cannot be transversed without
passing through the entrance the exit. For instance, one
might relax (S.v) an require only that an interior vertex
v cannot be reached from t without passing through s
and cannot reach s without passing through t. The false
positives generated by the approach of Sung et al. [7] may
also be considered a the prototype of a broader class of
superbubble-like structures. It does not seem obvious,
however, to characterize them beyond being induced
acyclic subgraphs with a single source and a single sink
vertex. An related structure that also generalizes super-
bubbles are maximal connected convex acyclic induced
subgraphs [22]. Here, the vertex U set has the property
that no two vertices x, y ∈ U are connected by path that
is not entirely contained in U.

Authors’ contributions
All authors contributed to the design of the study and the writing of the man-
uscript. FG and PFS derived the mathematical results, FG produced the refer-
ences implementation. All authors read and approved the final manuscript.

Author details
1 Competence Center for Scalable Data Services and Solutions Dresden/
Leipzig, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany.
2 Bioinformatics Group, Department of Computer Science, Universität Leipzig,
Härtelstraße 16–18, 04107 Leipzig, Germany. 3 Interdisciplinary Center for Bio-
informatics, Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany.
4 Natural Language Processing Group, Department of Computer Science,
Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany. 5 Max Planck
Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Ger-
many. 6 Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße
1, 04103 Leipzig, Germany. 7 Department of Theoretical Chemistry, University
of Vienna, Währinger Straße 17, 1090 Vienna, Austria. 8 Center for Non-coding
RNA in Technology and Health, Grønegårdsvej 3, 1870 Frederiksberg C, Den-
mark. 9 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA.

Acknowledgements
PFS gratefully acknowledges the hospitality of the Instituto de Matemáticas,
UNAM Juriquilla, Santiago de Querétaro, in June/July 2018. This work was
funded by the German Federal Ministry of Education and Research within the
project Competence Center for Scalable Data Services and Solutions (ScaDS)
Dresden/Leipzig (BMBF 01IS14014B).

The authors acknowledge support from the German Research Foundation
(DFG) and Universität Leipzig within the program of Open Access Publishing.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 5 July 2018 Accepted: 21 November 2018

References
	1.	 De Bruijn NG. A combinatorial problem. Koninklijke Nederlandse Akad-

emie v. Wetenschappen. 1946;49:758–64.
	2.	 Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA

fragment assembly. Proc Natl Acad Sci USA. 2001;98(17):9748–53. https​://
doi.org/10.1073/pnas.17128​5098.

Table 1  Comparison of running times

The for combinations of algorithms compared here are: LSD (using the auxiliary graphs ĜC and the stack-based superbubble detector), S+LSD using Sung graphs
with our stack-based detector plus a post-filter for the false positives, LSD+B using our graph construction with the range-query-based detector of [8], and S+B
using the re-implementation of the state of the art method with the post-filter. All computations were performed on a 2.5GHz quad-core Intel Core i7 processor
(Turbo Boost up to 3.7GHz) with 6MB shared L3 cache and 16GB of 1600MHz DDR3L onboard memory. Test data sets are taken from [4] and from the Stanford Large
Network Dataset Collection [21]. The table lists their number N of vertices, M of edges and S of superbubbles

Data N M S Running times [s]

LSD S + LSD+ f LSD + B S + B + f

Yeast 49,795 130,993 325 3 4 6 9

EU mail 265,214 420,045 13285 15 16 31 34

Slashdot 82,168 948,464 0 17 27 22 37

Amazon 403,394 3,387,388 3 60 86 87 158

Google 875,713 5,105,039 6477 94 127 144 254

Wikipedia 2,394,385 5,021,410 4737 147 171 385 418

https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098

Page 17 of 17Gärtner et al. Algorithms Mol Biol (2018) 13:16

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	3.	 Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821–9. https​://doi.
org/10.1101/gr.07449​2.107.

	4.	 Gärtner F, Höner zu Siederdissen C, Müller L, Stadler PF. Coordinate
systems for supergenomes. Algorithms Mol Biol. 2018;13:15. https​://doi.
org/10.1186/s1301​5-018-0133-4.

	5.	 Acuña V, Grossi R, Italiano GF, Lima L, Rizzi R, Sacomoto G, Sagot MF,
Sinaimeri B. On bubble generators in directed graphs. In: Bodlaender HL,
Woeginer GJ, editors. Graph-theoretic concepts in computer science,
43rd WG. Lecture notes in computer science. Heidelberg: Springer.
2017;10520:18–31. https​://doi.org/10.1007/978-3-319-68705​-6_2.

	6.	 Onodera T, Sadakane K, Shibuya T. Detecting superbubbles in assembly
graphs. In: Darling A, Stoye J, editors. International workshop on algo-
rithms in bioinformatics. Berlin: Springer. 2013;8126:338–48. https​://doi.
org/10.1007/978-3-642-40453​-5_26.

	7.	 Sung W-K, Sadakane K, Shibuya T, Belorkar A, Pyrogova I. An o(mlogm)

-time algorithm for detecting superbubbles. IEEE ACM Trans Comput Biol
Bioinform. 2015;12:770–7. https​://doi.org/10.1109/TCBB.2014.23856​96.

	8.	 Brankovic L, Iliopoulos CS, Kundu R, Mohamed M, Pissis SP, Vayani F.
Linear-time superbubble identification algorithm for genome assem-
bly. Theor Comput Sci. 2016;609:374–83. https​://doi.org/10.1016/j.
tcs.2015.10.021.

	9.	 Paten B, Novak AM, Garrison E, Hickey G. Superbubbles, ultrabubbles and
cacti. In: International conference on research in computational molecu-
lar biology (RECOMB), Cham: Springer. 2017;10229:173–89. https​://doi.
org/10.1007/978-3-319-56970​-3_11.

	10.	 Rosen Y, Eizenga J, Paten B. Describing the local structure of sequence
graphs. In: Figueiredo D, Martín-Vide C, Pratas D, Vega-Rodríguez MA,
editors. Algorithms for computational biology—4th AlCoB. Lecture notes
in computer science. Heidelberg: Springer. 2017;10252:24–46. https​://doi.
org/10.1007/978-3-319-58163​-7_2.

	11.	 Paten B, Eizenga JM, Rosen YM, Novak AM, Garrison E, Hickey G. Super-
bubbles, ultrabubbles, and cacti. J Comput Biol. 2018;25:649–63. https​://
doi.org/10.1089/cmb.2017.0251.

	12.	 Tankyevych O, Talbot H, Passat N. Semi-connections and hierarchies.
In: Luengo Hendriks CL, Borgefors G, Strand R, editors. Mathematical
morphology and its applications to signal and image processing. Lecture
notes in computer science. Berlin: Springer. 2013;7883:159–70. https​://
doi.org/10.1007/978-3-642-38294​-9_14.

	13.	 Ronse C. Axiomatics for oriented connectivity. Pattern Recogn Lett.
2014;47:120–8. https​://doi.org/10.1016/j.patre​c.2014.03.020.

	14.	 Tarjan RE. Depth-first search and linear graph algorithms. SIAM J Comput.
1972;1:146–60. https​://doi.org/10.1137/02010​10.

	15.	 Tarjan RE. Edge-disjoint spanning trees and depth-first search. Acta
Inform. 1976;6:171–85. https​://doi.org/10.1007/BF002​68499​.

	16.	 Kahn AB. Topological sorting of large networks. Commun ACM.
1962;5:558–62. https​://doi.org/10.1145/36899​6.36902​5.

	17.	 Nuutila E, Soisalon-Soininen E. On finding the strongly connected com-
ponents in a directed graph. Inf Process Lett. 1994;49:9–14. https​://doi.
org/10.1016/0020-0190(94)90047​-7.

	18.	 Pearce DJ. A space-efficient algorithm for finding strongly connected
components. Inf Process Lett. 2016;116:47–52. https​://doi.org/10.1016/j.
ipl.2015.08.010.

	19.	 Hopcroft J, Tarjan R. Algorithm 447: efficient algorithms for graph manip-
ulation. Commun ACM. 1973;16:372–8. https​://doi.org/10.1145/36224​
8.36227​2.

	20.	 Hagberg AA, Schult DA, Swart P. Exploring network structure, dynamics,
and function using NetworkX. In: Varoquaux G, Vaught T, Millman J, edi-
tors. Proceedings of the 7th python in science conference (SciPy 2008).
Pasadena, CA; 2008. p. 11–6. http://confe​rence​.scipy​.org/proce​eding​s/
SciPy​2008/paper​_2/

	21.	 Leskovec J, Krevl A. SNAP datasets: stanford large network dataset collec-
tion; 2014. http://snap.stanf​ord.edu/data

	22.	 Balister P, Gerke S, Gutin G, Johnstone A, Reddington J, Scott E, Solei-
manfallah A, Yeo A. Algorithms for generating convex sets in acyclic
digraphs. J Discrete Algorithms. 2009;7:509–18. https​://doi.org/10.1016/j.
jda.2008.07.008.

https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1186/s13015-018-0133-4
https://doi.org/10.1186/s13015-018-0133-4
https://doi.org/10.1007/978-3-319-68705-6_2
https://doi.org/10.1007/978-3-642-40453-5_26
https://doi.org/10.1007/978-3-642-40453-5_26
https://doi.org/10.1109/TCBB.2014.2385696
https://doi.org/10.1016/j.tcs.2015.10.021
https://doi.org/10.1016/j.tcs.2015.10.021
https://doi.org/10.1007/978-3-319-56970-3_11
https://doi.org/10.1007/978-3-319-56970-3_11
https://doi.org/10.1007/978-3-319-58163-7_2
https://doi.org/10.1007/978-3-319-58163-7_2
https://doi.org/10.1089/cmb.2017.0251
https://doi.org/10.1089/cmb.2017.0251
https://doi.org/10.1007/978-3-642-38294-9_14
https://doi.org/10.1007/978-3-642-38294-9_14
https://doi.org/10.1016/j.patrec.2014.03.020
https://doi.org/10.1137/0201010
https://doi.org/10.1007/BF00268499
https://doi.org/10.1145/368996.369025
https://doi.org/10.1016/0020-0190(94)90047-7
https://doi.org/10.1016/0020-0190(94)90047-7
https://doi.org/10.1016/j.ipl.2015.08.010
https://doi.org/10.1016/j.ipl.2015.08.010
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
http://snap.stanford.edu/data
https://doi.org/10.1016/j.jda.2008.07.008
https://doi.org/10.1016/j.jda.2008.07.008

	Superbubbles revisited
	Abstract
	Background:
	Results:
	Implementation:

	Background
	Theory
	Weak superbubbloids
	Reduction to auperbubble finding in DAGs
	Detecting superbubbles in a DAG
	Implementation

	Conclusion
	Authors’ contributions
	References

