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Abstract 

Background:  Absolute fast converging (AFC) phylogeny estimation methods are ones that have been proven to 
recover the true tree with high probability given sequences whose lengths are polynomial in the number of number 
of leaves in the tree (once the shortest and longest branch weights are fixed). While there has been a large literature 
on AFC methods, the best in terms of empirical performance was DCMNJ , published in SODA 2001. The main empiri-
cal advantage of DCMNJ over other AFC methods is its use of neighbor joining (NJ) to construct trees on smaller 
taxon subsets, which are then combined into a tree on the full set of species using a supertree method; in contrast, 
the other AFC methods in essence depend on quartet trees that are computed independently of each other, which 
reduces accuracy compared to neighbor joining. However, DCMNJ is unlikely to scale to large datasets due to its reli-
ance on supertree methods, as no current supertree methods are able to scale to large datasets with high accuracy.

Results:  In this study we present a new approach to large-scale phylogeny estimation that shares some of the fea-
tures of DCMNJ but bypasses the use of supertree methods. We prove that this new approach is AFC and uses polyno-
mial time and space. Furthermore, we describe variations on this basic approach that can be used with leaf-disjoint 
constraint trees (computed using methods such as maximum likelihood) to produce other methods that are likely to 
provide even better accuracy. Thus, we present a new generalizable technique for large-scale tree estimation that is 
designed to improve scalability for phylogeny estimation methods to ultra-large datasets, and that can be used in a 
variety of settings (including tree estimation from unaligned sequences, and species tree estimation from gene trees).

Keywords:  Phylogeny estimation, Short quartets, Sample complexity, Absolute fast converging methods, Neighbor 
joining, Maximum likelihood
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Introduction
The inference of phylogenies from molecular sequence 
data is generally approached as a statistical estimation 
problem, in which a model tree (equipped with a model 
of sequence evolution) is assumed to have generated 
the observed data, and the properties of the statistical 
model are then used to infer the tree. Various statistical 
approaches can be applied for this estimation, including 
maximum likelihood, Bayesian techniques, and methods 

that operate by computing a distance matrix and then 
computing the tree from the distance matrix.

Many stochastic sequence evolution models have been 
developed, starting with the Cavender–Farris–Neyman 
[1, 2] symmetric two-state model (referred to henceforth 
as “CFN”) and including increasingly complex molecu-
lar sequence evolution models (with four states for 
DNA, 20 states for amino acids, and 64 states for codon 
sequences). However, typically the theory that can be 
established under the CFN model can also be established 
under the more complex molecular sequence evolution 
models used in phylogeny estimation.

Under standard sequence evolution models, many 
methods are known to be statistically consistent 

Open Access

Algorithms for
Molecular Biology

*Correspondence:  warnow@illinois.edu 
3 Department of Computer Science, University of Illinois Urbana-
Champaign, 201 N. Goodwin Avenue, Urbana, IL 61801, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7717-3514
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0136-9&domain=pdf


Page 2 of 12Zhang et al. Algorithms Mol Biol            (2019) 14:2 

(meaning that they will provably converge to the true 
tree as the sequence lengths increase), including maxi-
mum likelihood [3] and many distance-based meth-
ods [4, 5]. However, with the increasing availability of 
sequence datasets (e.g., the SILVA database has sev-
eral million RNA sequences [6]), the need for phylog-
eny estimation methods that can be highly accurate 
on ultra-large datasets has increased. Therefore, a key 
challenge is to have methods that can scale to large 
datasets while maintaining good accuracy. Hence, the 
most desirable methods are those that run in polyno-
mial time and that recover the true tree with high prob-
ability from short sequences (i.e., sequences that do 
not have very many sites). In this respect, methods that 
are “absolute fast converging” [7–9] (i.e., methods that 
recover the true tree with high probability from poly-
nomial length sequences) are the most promising.

There are several methods that have been established 
to be absolute fast converging (AFC) under the CFN 
model, including maximum likelihood [3] (if solved 
exactly) and various distance-based methods [7–14]. 
Some of these algorithms achieve a poly-logarithmic 
sample complexity but require a balanced model tree 
and an upper bound on g, the maximum edge weight 
(defining the expected number of changes of a random 
site) in the CFN model. Specifically, methods based 
on reconstruction of ancestral sequences provide the 
best sample complexity bounds but cannot handle the 
case where g is larger than what is known as the Kes-
ten–Stigum threshold, which is ln(

√
2) [15] for the CFN 

model. The “short quartet” methods were the earliest 
AFC methods (which are AFC in the regime where g is 
unbounded), but these are designed to either return the 
true tree or else fail to return anything [7–9].

Two of the fastest AFC methods are the Harmonic 
Greedy Triplets (HGT + FP) method by Csűrös [16] 
and a method developed by King et al. [17]; these meth-
ods use O(n2) time and are based on quartet trees, and 
have the desirable property that they always return a 
tree for every input. Another good approach is DCMNJ , 
which uses a divide-and-conquer technique [9]. In the 
first phase, O(n2) trees are computed, each based on 
dividing the sequence dataset into overlapping subsets, 
constructing trees on each subset using the polynomial 
time distance-based method neighbor joining (NJ) [18], 
and then combining the subset trees using a supertree 
method. This approach differs from other AFC methods 
in its use of neighbor joining to construct trees on sub-
sets, whereas the other AFC methods in essence con-
struct the tree by independently constructing quartet 
trees, and then assembling the quartet trees together 
using a quartet amalgamation method.

Very few AFC methods have been implemented; how-
ever, a study [10] comparing HGT+ FP [16] and DCMNJ [9] 
showed that DCMNJ had better accuracy. Since the theory 
does not predict this, the results on simulated data sug-
gest that the use of NJ to construct trees on subsets and 
then combine the trees using a supertree method may 
be empirically advantageous compared to methods that 
combine quartet trees that are estimated independently. 
Unfortunately, the reliance on a supertree method to 
combine subset trees means that DCMNJ is unlikely to 
scale to ultra-large datasets, because no current supertree 
method has shown the ability to maintain good accuracy 
and reasonable running times on large datasets [19].

The purpose of this paper is to describe a new polyno-
mial time AFC phylogeny estimation method that should 
improve on DCMNJ : it is designed to have comparable 
accuracy to DCMNJ but also to be able to analyze ultra-
large datasets (i.e., more than 100,000 sequences). The 
basic approach of this new method is similar to DCMNJ 
in that it uses divide-and-conquer, applies neighbor join-
ing to subsets of the sequence dataset, and then merges 
the subtrees together. However, it differs from DCMNJ in 
a few important ways, which we describe below. Most 
importantly, it divides the taxon set into disjoint subsets 
and then merges the subset trees without relying on any 
supertree method; thus, it avoids the challenge of relying 
on existing supertree methods, none of which are likely 
to scale to large datasets. We present the results here 
initially for the CFN model, and then extend the results 
for the Generalized Time Reversible (GTR) model [20]. 
Our arguments for correctness are very similar to those 
in [16, 17].

Background material
Absolute fast convergence under the CFN model
Under the Cavender–Farris–Neyman (CFN) model, we 
have a rooted binary tree T and substitution probabili-
ties p(e) on the edges e of T. The state at the root is 0 or 
1 with equal probability, and the state changes on edge e 
with probability p(e), with 0 < p(e) < 0.5 for all edges e. 
This model can be used for sequence evolution by requir-
ing that all the sites evolve i.i.d. down the tree. Finally, we 
define w(e) = − 1

2 log(1− 2p(e)). We also define CFNf ,g 
to be the set of all CFN model trees (T ,�) (where � 
denotes the set of numeric parameters on the edges) with 
f ≤ w(e) ≤ g for all edges in T, for arbitrarily selected 
positive real numbers f ≤ g .

Definition 1  A phylogeny estimation method � is said 
to be absolute fast converging (AFC) under the CFN 
model if, for all positive values f , g , ǫ (with f ≤ g ), there 
is a polynomial p such that for all CFN model trees (T ,�) 
in CFNf ,g the method � will recover the unrooted tree 
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topology T given sequences of length p(n) with probabil-
ity at least 1− ǫ. Note that the polynomial will in general 
depend on f, g and ǫ.

DCMNJ + SQS: an AFC method with good empirical 
performance but low scalability
Here we describe the approach used in [9] called 
“DCMNJ  + SQS”, which was shown to have high accu-
racy in simulation studies with up to 1600 sequences 
[10]. (Note: “DCM” refers to “disk-covering method” 
and “SQS” refers to the “short quartet support” crite-
rion; see [5, 9]). The input is a set of sequences gener-
ated by an unknown model tree and a dissimilarity 
matrix d (i.e., a symmetric matrix that is zero on the 
diagonal) where dij is the estimated distance between 
taxa si and sj , based on the selected sequence evolu-
tion model. For example, when the model is CFN, 
then dij = − 1

2 ln(1− 2Hij) will be the “empirical CFN 
distance”, where Hij is the Hamming distance between 
sequences i and j divided by the sequence length (i.e., 
the normalized Hamming distances). Note that these 
empirical CFN distances converge in probability to 
Dij = − 1

2 log(1− 2Eij) where Eij is the expected nor-
malized Hamming distance between sequences in 
leaves i and j, and that D is an additive matrix for the 
model tree. DCMNJ + SQS uses a two-phase structure, as 
follows.

•	 Phase 1: A set T  of O(n2) trees is computed, with at 
most one tree tq for each entry q in the dissimilarity 
matrix d.

•	 Phase 2: All the trees in T  are scored using the SQS 
criterion (where “SQS” refers to the short quartet 
support, defined in [9]) and the best-scoring tree is 
returned.

Before we can describe these phases, we need to provide 
some definitions.

Definition 2  (From [21]) For the given dissimilar-
ity matrix d and positive real number q, we define the 
threshold graph TG(d, q) to be the graph with the n taxa 
as the vertex set and edges (i,  j) if and only if dij ≤ q. 
We also assign weight dij to each edge (i,  j) in TG(d, q). 
Hence, TG(d,∞) denotes the complete graph with edge 
weights given by the dissimilarity matrix d.

We use a standard technique, called the Four Point 
Method, to compute quartet trees (i.e., unrooted binary 
trees on four leaves) that is based on the Four Point Con-
dition [22].

Definition 3  (From [7]) Given a four-taxon set 
{u, v,w, z} and a dissimilarity matrix d, the Four Point 
Method ( FPM ) infers tree uv|wz (meaning the quar-
tet tree with an edge separating u,  v from w,  z) if 
d(u, v)+ d(w, z) ≤ min{d(u,w)+ d(v, z), d(u, z)+ d(v,w)}. 
If equality holds, then the FPM infers an arbitrary 
topology.

Phase 1 for DCMNJ + SQS is performed as follows. 
Given q (the selected threshold), the threshold graph 
TG(d, q) is computed, then edges are added to the graph 
to make it triangulated (if necessary), where a triangu-
lated graph is one that has no simple cycles of size four 
or more; furthermore, if d is additive, then TG(d, q) is 
triangulated. Once the triangulated graph is computed, 
the set of all maximal cliques can be extracted in poly-
nomial time. See [9] for additional details and proofs.

Trees are computed for each maximal clique using 
neighbor joining [18], and the trees on these cliques 
are then combined into a tree on the full set of species 
using a selected supertree method. Phase 2 uses the 
SQS criterion, but other criteria also have good theo-
retical properties. The SQS score of a tree T, defined 
by SQS(T), is the maximum l such that for all quartets 
{u, v,w, x} of taxa with maximum interleaf distance at 
most l, the Four Point Method on {u, v,w, x} produces a 
four-leaf tree that agrees with the T.

Theorem  1  (From [9, 10]) The short quartet sup-
port (SQS) criterion score can be calculated for each 
tree tq ∈ T  in polynomial time. Also, there is a polyno-
mial p(n) such that if T  contains the true tree T and the 
sequences are of length p(n) (where n is the number of 
leaves), then with probability at least 1− ǫ, the tree in T  
with the highest SQS score is the true tree T.

The basic approach has good theoretical guarantees 
(i.e., it is AFC, and more generally if X is any exponen-
tially converging base method (meaning X recovers the 
tree with high probability given exponentially many 
sites) and Y is any true tree selection criteria that has 
the same theoretical properties as SQS (as given in 
Theorem  1), then DCMX + Y is AFC. Empirical perfor-
mance of DCMNJ + SQS on simulated data was excellent, 
substantially outperforming NJ and fast triplet/quartet-
based greedy tree growing methods, such as HTP+ FP, 
on large datasets especially when there was a high rate 
of evolution [10]. However, these studies were lim-
ited to datasets with at most 1600 sequences. In other 
words, DCMNJ + SQS was not tested on very large data-
sets, which is to some extent the point of absolute fast 
converging methods.
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Furthermore, the design of DCMNJ suggests some limita-
tions in terms of scalability to large datasets. Most impor-
tantly, supertree methods do not have good scalability, as 
all current supertree methods with good accuracy are 
attempts to solve NP-hard optimization problems, and so 
become computationally intensive on large datasets [19]. 
Hence, any reasonably fast method will need to com-
pletely avoid the supertree calculation step.

Incremental tree‑building ( INC)
We begin by describing the INC method in the uncon-
strained condition (i.e., when there are no constraint 
trees), and prove that it is AFC.

High‑level description of INC
The input to INC is a dissimilarity matrix d. We pre-
sent a high-level description of how tree t = INC(d) is 
computed.

•	 Find the insertion ordering σ = x1, x2, . . . , xn.

•	 Initialize t as the three-leaf tree on the first three taxa 
in the ordering.

•	 For i = 4 up to n.

•	Determine the set of valid quartets to use for plac-
ing xi into tree t.

•	Compute quartet trees for each valid quartet, and 
let them vote for where to place xi.

•	Pick the edge e in t that has the most votes; if this 
is a tie, pick an edge at random from the set of 
edges with the most votes.

•	Insert xi into edge e.

•	 Return the resulting tree t.

Thus, at a high-level, the INC algorithm operates by 
greedily growing a tree t based on a computed sequence 
addition ordering. Yet, many of the details of the algo-
rithm are unspecified (e.g., we do not say how we calcu-
late the insertion ordering, how we determine the set of 
valid quartets, how we compute trees on valid quartets, 
and how the quartet trees vote). Below, we provide details 
for each of the steps for this algorithm.

Computing the sequence addition ordering
We begin by constructing a minimum spanning tree S of 
TG(d,∞), where d is the input dissimilarity matrix. Once 
the spanning tree S is computed, we choose an arbitrary 
leaf in S to be the starting vertex in the ordering. Then 
we order the vertices according to order of traversal in a 
BFS (or DFS) from the starting vertex. See Fig. 1 for an 
example.

How we compute the growing tree t
We initialize our tree t by choosing the first three taxa 
according to our insertion ordering and forming the 
three-leaf tree with an internal node that connects 
to all three taxa. In order to define how we insert the 
remaining taxa into t, we need to formally define the 
“valid quartets” and how we compute quartet trees for 
valid quartets.

Definition 4  Let q0 be the maximum weight of an edge 
in S and let q = 8q0, A quartet of leaves is valid if its max-
imum pairwise distance (i.e., diameter) is at most q. The 
quartet tree for the valid quartet is computed using the 
Four Point Method.

As we will show later, the restriction to just the 
“valid quartets” allows us to develop a tree construc-
tion method that runs in polynomial time and that is 
AFC. Note also that restricting the diameter of the valid 
quartets to small values has a mixed effect: if the maxi-
mum permitted diameter is too small then even cor-
rect quartet trees will not be sufficient to reconstruct 
the tree, but if the maximum permitted diameter is too 
large then some computed quartet trees are more likely 
to be incorrect. We show that this setting for the max-
imum diameter q to be 8q0 is sufficient to allow us to 
prove that the algorithm is AFC. However, we did not 
try to optimize this constant, and hence the choice of 
the constant 8 is likely not optimal (i.e., smaller con-
stants might give better theoretical results).

There may be many valid quartets, but we only need 
to examine a linear number of these, as we now show. 
Suppose we wish to add a vertex x into t. Given an 
internal node u of t, because t is binary the removal of 
u splits t into three non-empty components which we 
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Fig. 1  How the insertion ordering is computed. We show the 
threshold graph TG(D,∞) and a minimum spanning tree S in red. A 
possible insertion ordering produced by a BFS on S starting at e is 
e, a, c, d, b 
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will refer to as t1, t2, t3 (with internal nodes included). 
Because the leaves of t form a connected induced sub-
tree of S, we can find taxa ui in ti and vi ∈ V (t) \ ti such 
that (ui, vi) is an edge in S, for i = 1, 2, 3. We will associ-
ate the triplet u1,u2,u3 to node u, so that the addition 
of leaf x defines a quartet, and we can check to see if the 
quartet is valid. We summarize this discussion with the 
following definition.

Definition 5  Let u be an internal node of a binary tree 
t and let u1,u2,u3 be leaves in the three components of 
t upon removing u such that there exists vi with (ui, vi) 
an edge in S where vi is not in the same component as 
ui. Then, for some choice of q ∈ R

+, a quartet query on 
{u1,u2,u3, x} is q-valid iff the d-diameter (maximum 
pairwise distance with respect to the input matrix d) of 
{u1,u2,u3, x} is less than q. We use the term valid when q 
is clear from context.

To determine how to place leaf x into the growing tree 
t, we compute a tree for each valid quartet query (which 
includes x) using the Four Point Method. For example, 
if the tree computed on valid quartet query u1,u2,u3, x 
(with ui ∈ ti, and t1, t2, t3 the three subtrees off internal 
node u) returns xu1|u2u3, then this implies that x should 
be placed in the subtree of t induced on t1 ∪ u hence, 
each edge in that subtree will receive a vote (Fig. 2).

Thus, each valid quartet adds a vote to each edge in 
some non-empty subtree of the tree. We define the sup-
port of an edge in the tree t to be the number of valid 

quartet trees that voted for that edge. We then choose 
an edge e in the tree t that has the largest total support 
(and if there is a tie, we pick an edge e at random with 
the maximum support). We then subdivide e and then 
make x adjacent to the node created. See Fig. 3 for an 
illustration of how this voting procedure operates.

Furthermore, as we will shortly show, when the 
sequences are long enough, then there will be a unique 
edge on which all queries agree, and so the algorithm 
will correctly add x into t (in such a way that it agrees 
with the model tree T), and so inductively the greedy 
algorithm will construct the model tree.

Theoretical properties of INC under the CFN model
We now establish the theoretical properties of AFC 
under the CFN model. Throughout this section, recall 
that dij is the empirical CFN dissimilarity between 
taxa i,  j and Dij is the underlying CFN model distance 
between taxa i,  j defined by the model tree (T ,�) 
with edge weights given by w(e) = − 1

2 log(1− 2p(e)). 
Given matrices d and D and positive real q, we define 
ǫ(q) = max{|dij − Dij| : dij ≤ q or Dij ≤ q}.

Theorem 2  Let d be a dissimilarity matrix, D an addi-
tive matrix defining a model tree T with edge weights 
w : E(T ) → R

+, and q = 8q0, where q0 is the maximum 
distance in the minimum spanning tree of TG(d,∞). Let 
f be the weight of the shortest internal edge in T and sup-
pose ǫ(q) < f /2 and q0 ≥ f /2, then INC(d) returns T.

u1

u2 u3

u

Votes for this subtree if FPM returns u1x|u2u3

votes for subtree in this direction

Fig. 2  How quartet queries vote. Each node u in the tree t is associated with a triplet u1, u2, u3 from each of the three subtrees around u (see text for 
details). When adding new taxon x, we make quartet queries, such as the one on {u1, u2, u3, x}, which potentially contribute to the vote for where 
to place x. Only those quartets whose diameter is below a specified threshold are allowed to vote, and these are referred to as “valid quartets”. Trees 
are computed on these valid quartets using the Four Point Method. Each valid quartet query then votes using the corresponding quartet tree 
by identifying a subset of the tree in to which x can be placed without violating the quartet tree. In this figure, FPM returns quartet tree u1x|u2u3, 
and then votes for all the edges in the subtree off u containing u1 (edges dashed). With high probability, given polynomial sequence lengths, valid 
queries make correct votes
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Proof  We proceed by induction on the number of 
leaves in T. Our claim holds when T has three leaves, 
since there is only one such topology. Let t be the tree 
maintained by INC before the insertion of the last taxon 
x according to our insertion ordering. By induction, t 
must have the correct topology. It suffices to show that 
valid queries can determine the accurate placing of x. 
Assume that the correct location on which to place x is 
e = (u, v) of t. Note that when ǫ(q) < f /2, the Four Point 
Method is guaranteed to correctly construct quartet 
trees for all quartets with diameter at most q (and hence 
for all valid quartets), so that all valid node queries will 
return the correct quartet tree. Therefore, e will receive 
all possible votes.

To show that all other edges will miss at least one vote, 
it suffices to show that node queries are valid at u and v 
because all other edges will miss a vote from one of the 
two such queries, confirming that x is inserted at e (if one 
of u, v is a leaf vertex, the same conclusion is achieved).

We will show that a node query at u is valid; a similar 
argument is done for v. Let u1,u2,u3 be selected upon the 
deletion of u with their corresponding vi. First, for all i, 
D(ui, vi) ≤ q0 + f /2 since d(ui, vi) ≤ q0 and ǫ(q) ≤ f /2. 
Then, since vi ∈ V \ ti and t is the correct tree topology, 
D(ui,u) ≤ D(ui, vi) ≤ q0 + f /2, where D is the true dis-
tance matrix and u is the corresponding internal node in 
T.

Next, we claim that D(x,u) ≤ 2q0 + f  and together 
we will have concluded that {u1,u2,u3, x} is a quartet of 
d-diameter at most 3q0 + 2f  since by triangle inequal-
ity, we deduce {u1,u2,u3, x} is of D-diameter 3q0 + 3f /2 

and so the d-diameter is bounded at 3q0 + 2f ≤ 7q0 ≤ q, 
proving validity.

For the last claim, since x is within q0 of some leaf x′ 
in t, D(x, x′) ≤ d(x, x′)+ f /2 ≤ q0 + f /2. Since the path 
x to x′ must pass through u or v in T and e = (u, v) is 
the correct edge insertion location, we conclude that 
min(D(x,u),D(x, v)) ≤ q0 + f /2.

If D(x,u) ≤ q0 + f /2, then our claim follows (we auto-
matically get D(x,u) ≤ 2q0 + f  ). Else, D(x, v) ≤ q0 + f /2. 
Since v ∈ V (t3), D(x,u) ≤ D(x, v)+ D(u, v) ≤ q0 + f /2+
D(u, v) ≤ q0 + f /2+ D(u,u3) ≤ q0 + f /2+ q0 + f /2 ≤
≤ 2q0 + f .

Therefore, if the correct edge is (u, v), then the query 
at u votes against all edge placements for x in t1 ∪ t2, and 
symmetrically for v. Hence all other edges will miss at 
least one vote. � �

Theorem 3  Given the n× n dissimilarity matrix d and 
a given q, INC(d) can be implemented in O(n2) time and 
space.

Proof  It suffices to show that as we grow our tree t, 
each insertion step can be implemented to take O(n) 
time. First, each internal node, when initialized due to an 
inserted taxon, can store the necessary vertices u1,u2,u3 
and that can be done in O(n) time. Each node query is 
O(1), so in total the |V(t)| node queries take O(n) time.

The only possible difficulty is efficiently finding the 
edge with the most votes. A naive implementation will 
lead to an O(n3) runtime. For any edge e = (u, v) on the 
tree, let n(e) denote the total number of votes that e has. 

u v

p

q

x

a

b

c
d

e

f

Fig. 3  Using quartet queries to place new taxa. When adding a taxon x into the tree t, all valid quartet queries are allowed to vote for the edges 
in the tree (see Fig. 2) and x is then added to the edge that receives the most votes. In this figure, we show x being placed into edge uv, based on 
the following possible vote outcomes: The query at p returns tree ab|xc and so votes for {pu, uc, uv , vd, vq, qe, qf }, and similarly the queries at u and 
v vote for {uv , vd, vq, qe, qf } and {uv , uc, up, pb, pa}, respectively. The query at q is not valid and does not get to vote. Our algorithm guarantees that 
queries at u, v are valid with high probability. Note that internal nodes are boxed and taxon nodes are circled
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Note that if e, e′ are adjacent edges in t with common 
vertex u, then n(e)− n(e′) can be determined by simply 
looking at the short quartet query at u. Specifically, let 
e = (u, v) and e′ = (u, v′) be adjacent edges at vertex u. If 
the query at u was invalid or it showed that x should be in 
tj with v, v′ �∈ tj , then n(e)− n(e′) = 0. Otherwise, if the 
query returned tj with v ∈ tj , then n(e)− n(e′) = 1; a sim-
ilar argument shows that if v′ ∈ tj then n(e)− n(e′) = −1. 
Therefore, by using this local property, we can calculate 
n(e)+ C for some constant C in O(n) time by performing 
BFS starting from any leaf of the tree. The BFS then sim-
ply returns the edge with the highest score.

Finally, throughout the algorithm, we need to store the 
dissimilarity matrix, spanning tree, insertion ordering, 
and O(1) vertices at each node of the tree. Together, this 
requires O(n2) space. � �

Theorem  4  (Azuma’s inequality [23]) Suppose 
X = (X1,X2, ...,Xk) are independent random variables 
taking values in any set S, and let L : Sk → R be any func-
tion that satisfies the condition: |L(u)− L(v)| ≤ t when-
ever u and v differ in just one coordinate. Then,

Theorem  5  For k = �

(

ln(n/ǫ)e4q

f 2

)

, with probability 
≥ 1− ǫ, we have ǫ(q) < f /2. Furthermore, if q0 is the 
minimum value of q such that TG(d, q) is connected, then 
q0 = O(g log n) and q0 ≥ f /2.

Proof  To show that ǫ(q) < f /2, we must show that 
|Dij − dij| < f /2 when Dij < q or dij < q. First, if Dij < q 
we show that k = �

(

ln(n/ǫ)e2q

f 2

)

 suffices to show 
|Dij − dij| < f /2 holds with probability ≥ 1− ǫ/n2. We 
express our probability of failure as:

The first expression can be written as:

P(|L(X)− E[L(X)]| ≥ �) ≤ 2 exp

(

− �
2

2t2k

)

P(|Dij − dij| ≥ f /2) = P

(∣

∣

∣

∣

log

(

1− 2Hij

1− 2Eij

)∣

∣

∣

∣

≥ f

)

≤ P((1− 2Eij)e
−f ≥ 1− 2Hij)+ P(1− 2Hij ≥ (1− 2Eij)e

f )

P(Hij − Eij ≥
1

2
(1− e−f )(1− 2Eij))

≤ P(|Hij − Eij| ≥
1

2
(1− e−f )e−2Dij )

≤ 2 exp(−�(k(1− e−f )2e−4q))

≤ 2 exp(−�(ln n/ǫ))

The second line follows from Azuma’s (Theorem 4) with 
t = 1/k . Similarly, the second expression is equivalent to:

Next, if dij < q, then we show that Dij < 2q + 1 with 
high probability and then apply the previous result with 
q′ = 2q + 1. First, if we let rij = Dij − q, then by simple 
algebra our probability that dij < q when rij > q + 1 is 
bounded by

The fourth to fifth line follows since e2rij − 1 > 1
2e

2rij 
whenever rij > 1. Therefore, by a union bound, we con-
clude our claim that ǫ(q) < f /2 with probability ≥ 1− ǫ.

We now show that q0 = O(g log n). Note that in our 
model tree, since g is the maximum weight of an edge in a 
binary tree with n leaves, it follows that TG(D,O(g log n)) 
is connected. By our previous part, we know that 
|dij − Dij| < f /2 for all edges in TG(D,O(g log n)). There-
fore, we conclude that TG(d,O(g log n)) is also con-
nected, and so q0 = O(g log n).

Lastly, we show q0 ≥ f /2. Consider all edges in the 
minimum spanning tree of TG(d,∞). These edges have 
true weight (in D) at least f and by our previous part the 
weight of the edges in the minimum spanning tree devi-
ate from the true weight (as defined by the model tree) by 
at most f / 2. Thus, we conclude that q0 ≥ f /2. � �

Theorem 6  INC is absolute fast converging for the CFN 
model and takes O(n2) time and space (assuming dis-
tances are precomputed).

Proof  All we need to establish is that for every triplet 
ǫ, f , g with 0 < f < g < ∞ and ǫ > 0, there is a polyno-
mial p(n) such that for all model trees (T ,�) in CFNf ,g , 

P(Eij −Hij ≥
1

2
(ef − 1)(1− 2Eij))

≤ P(|Eij −Hij| ≥
1

2
(ef − 1)e−2Dij )

≤ 2 exp(−�(k(ef − 1)2e−4q))

≤ 2 exp(−�(ln n/ǫ))

P(dij < q) = P(Dij − dij > Dij − q)

= P

(

−1

2
log

(

1− 2Eij

1− 2Hij

)

> Dij − q

)

= P(1− 2Hij > e2rij (1− 2Eij))

= P

(

Eij −Hij >
1

2
(e2rij − 1)e−2Dij

)

= P

(

|Eij −Hij| >
1

4
e2rij−2Dij

)

≤ 2 exp(−�(ke−4q))

≤ 2 exp(−�(ln n/ǫ))
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given sequences of length at least p(n) generated by 
(T ,�) and empirical CFN dissimilarity matrix d com-
puted on these sequences, the tree returned by INC(d) is 
the model tree T with probability at least 1− ǫ.

Let q be the maximum edge weight on the mini-
mum spanning tree in the underlying model tree. We 
know q = O(g log n). By Theorem  5, with probability 
≥ 1− ǫ, when k = �(ln(n/ǫ)e4q/f 2) = poly(n), we have 
ǫ(q) < f /2 Furthermore, q0 ≥ f /2. Therefore, by Theo-
rem 2, the insertion algorithm will return the model tree 
T. Hence, INC is absolute fast converging for the CFN 
model.

Finally, given the dissimilarity matrix, the running time 
and space complexity to compute and store the minimum 
spanning tree and to run INC are all O(n2) by Theorem 3.
� �

The method we described runs in O(n2) time and is 
AFC. As shown by [17], any algorithm that reconstructs 
the true tree with high probability and uses distance 
calculations as its only source of information about the 
phylogeny on sequences of length O(poly log n) will have 
�(n2) runtime, up to logarithmic factors. Hence, our 
runtime is optimal.

Boosting INC using constraint trees
We show how INC can be modified to take an arbitrary 
set of disjoint constraint trees. We present several vari-
ants of this method: one that optimizes speed while still 
guaranteeing that the resultant algorithm is AFC, and 
other variants that are designed for improved empirical 
accuracy but with an increase in running time and poten-
tially a loss of the AFC property.

Constrained INC
The input to the constrained version of INC includes a set 
of leaf-disjoint trees. Therefore, the constraint set is com-
patible (i.e., a compatibility tree exists). We will describe 
a straightforward modification to INC so that it never 
violates the topological information in the constraint 

trees, by which we mean only that the final output tree is 
required to induce each constraint tree, when restricted 
to that specific set of leaves. Thus, the constraint trees are 
not required to be clades in the output tree.

Before proceeding, we define the induced tree topol-
ogy, tA, on a tree t and a subset of leaves A as follows. 
Consider the minimal subtree of t that contains the leaves 
A, and then suppress all nodes of degree two (i.e., replace 
all maximal paths of degree two nodes by a single edge). 
The endpoints of an edge e ∈ tA correspond to vertices in 
t and so e corresponds to a (possibly length 1) path in t; 
we denote the corresponding endpoints of e as et(u) and 
et(v). For an induced tree tA, the component in t corre-
sponding to an edge e ∈ tA is the set of edges and verti-
ces that can be reached by a walk starting from et(u) and 
ending at et(v) without using et(u) or et(v) multiple times. 
Note this will be a subgraph of t that includes et(u) and 
et(v) as leaves. See Fig. 4.

When working with constraint trees, we alter the inser-
tion algorithm to account for the constraints. Recall that 
the constraint trees are on disjoint sets of taxa. Thus, 
when inserting a taxon, we identify the corresponding 
constraint tree tc that includes that new taxon. Let A 
be the set of taxa shared between tc and t and note that 
tAc = tA since the trees are consistent. Thus, in tA∪{x}c , the 
taxon x can be viewed as being attached to some edge e 
in tA. The eligible edges are in the component in t cor-
responding to e. We then simply run INC on the compo-
nent to find the desired edge of insertion.

INC−NJ

We continue by presenting the O(n2) INC−NJ method, 
which is AFC and uses neighbor joining on carefully 
selected subsets to achieve this running time. Given 
the selected threshold q, we take our threshold graph 
TG(d, q) and compute a greedy disjoint clique decompo-
sition, such that each clique is of size O(

√
n). This is done 

by a simple ball-growing procedure that is interrupted 
when the ball includes more than O(

√
n) vertices; it is 

easy to see this takes O(n2) time. Next, we run NJ on each 

a

b
d

f

vp corresponding component in t

v

q

e

f

Fig. 4  How constrained INC uses constraint trees to insert taxa. Left: the induced tree topology on taxon set {a, b, d, f } of t in Fig. 3. Right: the 
subtree of t (on leaf set {v , q, e, f } corresponding to the edge vf from the left subfigure
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of these clique; this produces a set of neighbor joining 
subset trees that will serve as our constraint trees. Since 
the subsets are disjoint, the subset trees are guaranteed 
to be compatible (meaning that a compatibility supertree 
exists). Finally, if ǫ(q) < f /2, then the following theorem 
guarantees that all constraint trees produced by our tech-
nique are correct. Furthermore, since NJ applied to each 
clique of size O(

√
n) takes at most O(n1.5) time, our total 

runtime over all cliques is O(n2).

Theorem  7  Neighbor Joining (NJ) will recover the 
true tree T whenever the input matrix d satisfies 
L∞(d,D) < f /2, where D is an additive matrix defining 
an edge-weighted version of the true tree T and f is the 
shortest internal branch weight in T. Furthermore, the 
runtime and space complexity is O(n3).

Proof  The first sentence follows from [4]. The second sen-
tence follows easily from the description of the algorithm.

Theorem 8  INC−NJ is AFC and has runtime and space 
complexity O(n2) (assuming distances are precomputed).

Proof  Follows directly from combining Theorems 6 and 
7. � �

Boosting INC using other constraint trees
The version of constrained-INC we presented in the 
previous section achieves an optimal running time, but 
is based on obtaining constraint trees using neighbor 
joining on small subsets. However, we could modify 
the decomposition to produce larger subsets and thus 
take advantage of the likely improvement in accuracy 
obtained by using neighbor joining on these larger sub-
sets to produce the constraint trees. This would still pro-
duce a polynomial time algorithm, but one with a higher 
(and hence suboptimal) running time.

Another variation would be to use other phylogeny estima-
tion methods besides neighbor joining. In particular, maxi-
mum likelihood could be used to construct the constraint 
trees. As shown in [3], maximum likelihood under the CFN 
model is AFC. Hence, running maximum likelihood on sub-
sets of the taxon set produced using the same technique as 
for INC−NJ will provide correct subset trees from polyno-
mial length sequences with high probability. Hence, the same 
approach we describe for use with neighbor joining (where 
that subset trees are computed using neighbor joining) can 
be modified to be used with maximum likelihood, and will 
be an AFC method. One negative impact of doing this would 
be running time, since maximum likelihood is NP-hard [24] 
and heuristics for maximum likelihood are computationally 
more intensive than neighbor joining.

Extension to the generalized time reversible (GTR) 
Markov models
In this section, we extend our AFC convergence guar-
antees to the generalized time reversible (GTR) Markov 
model [20], which is the most commonly used site evolu-
tion model used in phylogenetics. We will show that INC 
is AFC for the GTR model, drawing on established tech-
niques and theory which we now present and summarize.

The GTR model can be seen as a special case of the 
general Markov model [25], which we first describe. 
Under the general Markov model on m ≥ 2 states, we 
have a rooted binary tree T with some distribution of 
states π > 0 at the root of the tree and m-by-m stochas-
tic transition matrices M(e) for each edge e of T. Starting 
with a random sequence drawn i.i.d. from π , each site of 
the sequence evolves i.i.d. down the tree, according to the 
transition matrices specified by the model.

Definition 6  (GTR model) Let � be the set of states 
with |�| = m. Let Q be an m×m rate matrix with 
Qij > 0 for i �= j and 

∑

j∈�Qij = 0 for all i ∈ �. Assume 
that Q satisfies detailed balance with respect to π , or 
πiQij = πjQji. Then, the General Time Reversible model 
is a general Markov model on � with π as the initial state 
distribution and M(e) = eτeQ for some τe > 0 for each 
edge.

Note that the GTR model captures the CFN model by 
setting m = 2, π = (1/2, 1/2) and

If we just consider one site, let fij(α,β) be the probabil-
ity that leaf i is in state α and leaf j is in state β . By some 
indexing of the states, we can form a m-by-m square 
matrix Fij = [fi,j(α,β)]. Then, we define the true distance 
function to be Dij = − log det(Fij). Let f̂ij(α,β) be the 
empirical probability (or relative frequency) that leaf i 
and leaf j are in state α,β respectively, calculated by tak-
ing a simple average over all k sequence sites. Similarly, 
we define F̂ij = [f̂i,j(α,β)] and the empirical distance 
function to be dij = − log det(F̂ij). This log-det distance 
function is well-known for the general Markov model 
(and hence applicable for its submodels, including the 
GTR model) and is a generalization of the CFN distance 
function that also satisfies similar properties [25]. Note 
that the empirical distance function will converge to the 
true distance function as the number of sites k → ∞. 
With this extended definition of dij ,Dij , we define ǫ(q) 
similarly.

Note that det(M(e)) takes the values 1 or – 1 precisely 
if M(e) is a permutation matrix. Also, for the CFN model, 
det(M(e)) = 1− 2p(e), where p(e) is the substitution 

Q =
[

−1/2 1/2
1/2 −1/2

]
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probability on edge e; thus we know that det(M(e)) > 0 
and det(M(e)) → 0 as p(e) → 0.5, which correctly sup-
ports the intuition that information loss is large when 
p(e) is close to 0.5. In general, (1/2)[1− det(M(e))] plays 
the role of p(e) in the general model and − log(det(M(e))) 
is the corresponding w(e).

Thus, the natural extension of CFNf ,g model to the GTR 
model, GTRf ,g , is to enforce f ≤ − log(det(M(e))) ≤ g 
for all edges in all model trees in GMf ,g .

Definition 7  A phylogeny estimation method � is said 
to be absolute fast converging (AFC) under the GTR 
model if, for all positive values f , g , ǫ (with f ≤ g ), there 
is a polynomial p such that for all GTR model trees T in 
GTRf ,g , the method � will recover T given sequences of 
length k = O(p(n)) with probability at least 1− ǫ.

Now, we apply INC with the extended version of the 
empirical distance matrix and we define TG(d,  q), q0, 
ǫ(q) analogously for our generalized distance measure. 
Note that by our Markov property and time-reversi-
bility, if P is the unique path between leaves i,  j in T, 
then the true distance matrix is additive and satisfies 
Dij =

∑

e∈P − log(det(M(e))) up to a constant shift [8]. 
Thus, if ǫ(q) < f /2, then applying a quartet query via the 
Four Point Method will return the accurate quartet tree. 
Therefore, the claim that INC is AFC for the GTR model 
follows immediately after we establish a slightly extended 
concentration bound.

Theorem  9  For k = �(
ln(n/ǫ)e4q

f 2
), with probability 

≥ 1− ǫ, we have ǫ(q) < f /2 for all q = O(g log n) in the 
GTR model. Furthermore, if q0 is the minimum value of q 
such that TG(d, q) is connected, then q0 = O(g log n) and 
q0 ≥ f /2.

Proof  Since the log-det distance function is still addi-
tive and corresponds to a tree metric with f,  g still as 
minimum and maximum distances of an edge in the tree 
metric, our proof for the GTR model follows analogously 
once the following concentration equality is proved:

By Hadamard’s inequality, we note that

Since m is regarded as a constant (for DNA models, 
m = 4 ) and since Fij , F̂ij are matrices whose entries 

P(| det(F̂ij)− det(Fij)| ≥ x) ≤ e−�(kx2)

∣

∣

∣
det(F̂ij)− det(Fij)

∣

∣

∣

≤ m
m+1

∥

∥

∥
F̂ij − Fij

∥

∥

∥

max
max

(

∥

∥Fij

∥

∥

max
,

∥

∥

∥
F̂ij

∥

∥

∥

max

)

denote frequencies or probabilities and thus are all 
bounded by 1, we conclude that it suffices to prove:

For each of the m2 entries of F̂ij , Fij , which are 
f̂ij(α,β), fij(α,β) respectively for all pairs of states 
α,β ∈ �, we can prove concentration by applying Azu-
ma’s inequality (Theorem 4) for sum of k indicators.

And our conclusion follows. �

Theorem 10  INC is absolute fast converging for the GTR 
model and takes O(n2) time and space (assuming dis-
tances are precomputed).

Discussion
This paper presents a novel algorithmic technique for 
constructing phylogenetic trees, which allows statisti-
cally consistent and highly accurate methods to be used 
on subsets of the taxa in a divide-and-conquer frame-
work. We proved that several of these variants are abso-
lute fast converging (AFC) under the CFN and GTR 
sequence evolution models, and that some of these meth-
ods achieve O(n2) time and space (where n is the num-
ber of sequences) once the dissimilarity matrix relating 
the sequences is computed. More generally, tree estima-
tion methods could be scaled to large datasets using this 
approach, provided that it is possible to compute a matrix 
of pairwise distances that is guaranteed to converge to an 
additive matrix as the amount of data increases.

Many of the ideas in the algorithmic design of INC 
are derived from prior algorithms for similar problems. 
For example, the node query insertion procedure was 
explored earlier in [26, 27] to produce a fast O(n log n) 
tree-growing algorithm, but analyzed under a different 
model of quartet tree error than we use here; further-
more, a direct implementation of their model does not 
produce an AFC algorithm. The idea of using a distance 
matrix to combine disjoint trees was originally presented 
in [28] in the context of multi-locus species tree estima-
tion; that technique (called NJMerge) is a modification of 
the neighbor joining method [18] to allow for constraint 
trees. Since neighbor joining is not AFC [29], it seems 
unlikely that NJMerge can be used to produce an AFC 
method.

The goal of this work was improved empirical per-
formance, compared to prior AFC methods. One of 
the interesting aspects of INC is the potential to use 
it with disjoint constraint trees. As noted in this paper, 

P
(∥

∥

∥
F̂ij − Fij

∥

∥

∥

max
≥ x

)

≤ e−�(kx2)

P
(∣

∣

∣
f̂ij(α,β)− fij(α,β)

∣

∣

∣
≥ x

)

≤ e−�(kx2)
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maximum likelihood (if solved exactly) is AFC under 
the standard sequence evolution models, and although 
it is NP-hard to solve exactly there are many seemingly 
good heuristics for maximum likelihood (e.g., RAxML 
[30]). One possible technique that could result in excel-
lent empirical accuracy and scalability is to use a maxi-
mum likelihood heuristic to compute constraint trees, 
and then combine the constraint trees using constrained 
INC. The value of such an approach, however, depends 
on the decomposition strategy, as not all decomposi-
tions will produce AFC methods. Consider, for example, 
the impact of selecting quartets from a large phylogeny: 
if these quartets are selected arbitrarily, it is possible to 
produce quartets whose true trees fall in the Felsenstein 
Zone, where methods such as maximum parsimony are 
not statistically consistent and maximum likelihood—
although consistent—will tend to have poor accuracy 
unless very long sequences are available [31, 32]. There-
fore, the use of constrained INC with maximum likeli-
hood, or any other tree estimation method, will only be 
AFC for some decomposition strategies (and not for arbi-
trary ones), and may not provide accuracy advantages 
except when combined with carefully designed decom-
position strategies.

Thus, additional work is needed to develop provably 
AFC divide-and-conquer strategies that enable this kind 
of approach to be used to the greatest empirical advan-
tage on large challenging phylogenetic datasets.
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