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Abstract 

Background:  Network connectivity problems are abundant in computational biology research, where graphs are 
used to represent a range of phenomena: from physical interactions between molecules to more abstract relation-
ships such as gene co-expression. One common challenge in studying biological networks is the need to extract 
meaningful, small subgraphs out of large databases of potential interactions. A useful abstraction for this task turned 
out to be the Steiner Network problems: given a reference “database” graph, find a parsimonious subgraph that 
satisfies a given set of connectivity demands. While this formulation proved useful in a number of instances, the next 
challenge is to account for the fact that the reference graph may not be static. This can happen for instance, when 
studying protein measurements in single cells or at different time points, whereby different subsets of conditions can 
have different protein milieu.

Results and discussion:  We introduce the condition Steiner Network problem in which we concomitantly consider 
a set of distinct biological conditions. Each condition is associated with a set of connectivity demands, as well as a set 
of edges that are assumed to be present in that condition. The goal of this problem is to find a minimal subgraph that 
satisfies all the demands through paths that are present in the respective condition. We show that introducing mul-
tiple conditions as an additional factor makes this problem much harder to approximate. Specifically, we prove that 
for C conditions, this new problem is NP-hard to approximate to a factor of C − ǫ , for every C ≥ 2 and ǫ > 0 , and that 
this bound is tight. Moving beyond the worst case, we explore a special set of instances where the reference graph 
grows monotonically between conditions, and show that this problem admits substantially improved approximation 
algorithms. We also developed an integer linear programming solver for the general problem and demonstrate its 
ability to reach optimality with instances from the human protein interaction network.

Conclusion:  Our results demonstrate that in contrast to most connectivity problems studied in computational biol-
ogy, accounting for multiplicity of biological conditions adds considerable complexity, which we propose to address 
with a new solver. Importantly, our results extend to several network connectivity problems that are commonly used 
in computational biology, such as Prize-Collecting Steiner Tree, and provide insight into the theoretical guarantees for 
their applications in a multiple condition setting.
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Background
In molecular biology applications, networks are routinely 
defined over a wide range of basic entities such as pro-
teins, genes, metabolites, or drugs, which serve as nodes. 
The edges in these networks can have different meanings, 
depending on the particular context. For instance, in pro-
tein–protein interaction (PPI) networks, edges represent 
physical contact between proteins, either within stable 
multi-subunit complexes or through transient causal 
interactions (i.e., an edge (x, y) means that protein x can 
cause a change to the molecular structure of protein 
y and thereby alter its activity). The body of knowledge 
encapsulated within the human PPI network (tens of 
thousands of nodes and hundreds of thousands of edges 
in current databases, curated from thousands of studies 
[1]) is routinely used by computational biologists to gen-
erate hypotheses of how various signals are transduced in 
eukaryotic cells [2–6]. The basic premise is that a process 
that starts with a change to the activity of protein u and 
ends with the activity of protein v must be propagated 
through a chain of interactions between u and v. The nat-
ural extension regards a process with a certain collection 
of protein pairs {(u1, v1), . . . , (uk , vk)} , where we are look-
ing for a chain of interactions between each ui and vi [7]. 
In another set of applications, the notion of directionality 
is not directly assumed and instead, one is looking for a 
parsimonious subgraph that connects together a set S of 
proteins that are postulated to be active [8, 9].

In most applications, the identity of the so called termi-
nal nodes (i.e., (ui, vi) pairs or the set S) is assumed to be 
known (or inferred from experimental data such as ChIP-
seq [5, 8, 9]), while the identity of the intermediate nodes 
and interactions is unknown. The goal therefore becomes 
to complete the gap and find a probable subgraph of the 
PPI network that simultaneously satisfies all the connec-
tivity demands, thereby explaining the overall biologi-
cal activity. Since the edges in the PPI network can be 
assigned a probability value (reflecting the credibility of 
their experimental evidence), by taking the negative log 
of these values as edge weights, the task becomes mini-
mizing the total edge weight, leading to an instance of the 
Steiner Network problem. We have previously used this 
approach to study the propagation of a stabilizing signal 
in pro-inflammatory T cells, leading to the identification 
of a new molecular pathway (represented by a sub-graph 
of the PPI network) that is critical for mounting an auto-
immune response, as validated experimentally by pertur-
bation assays and disease models in mice [5]. Tuncbag 
et al. [9] have utilized the undirected approach using the 
Prize-Collecting Steiner Tree model, where the input is 
a network G along with a penalty function, p(v) for each 
protein (node) in the network (based on their impor-
tance; e.g., fold-change across conditions). The goal in 

this case is to find a probable subtree which contains the 
majority of the high cost proteins in G, while accounting 
for penalties paid by both edge usage and missing pro-
teins, in order to capture the biological activity repre-
sented in such a network [8, 9].

While these studies contributed to our understanding 
of signal transduction pathways in living cells, they do 
not account for a critical aspect of the underlying biologi-
cal complexity. In reality, proteins (nodes) can become 
activated or inactivated at different conditions, thereby 
giving rise to a different set of potential PPIs that might 
take place [10]. Here, the term condition can refer to dif-
ferent points in time [11], different treatments [12], or, 
more recently, different cells [13]. Indeed, advances in 
experimental proteomics provide a way to estimate these 
changes at high throughput, e.g., measuring phosphoryl-
ation levels or overall protein abundance, proteome-wide 
for a limited number of samples [12]. A complementary 
line work provides a way to evaluate the abundance of 
smaller numbers of proteins (typically dozens of them) in 
hundreds of thousands of single cells [13].

The next challenge is therefore to study connectivity 
problems that take into account not only the endpoints 
of each demand, but also the condition in which these 
demands should be satisfied. This added complication 
was tackled by Mazza et  al. [14], who introduced the 
“Minimum k-Labeling (MKL)” problem. In this setting, 
each connectivity demand comes with a label, which rep-
resents a certain experimental condition or time point. 
The task is to label edges in the PPI network so as to sat-
isfy each demand using its respective label, while mini-
mizing the number of edges in the resulting sub-graph 
and the number of labels used to annotate these edges. 
While MKL was an important first step, namely intro-
ducing the notion of different demands for each condi-
tion, the more difficult challenge still remains that of 
considering variability in the reference graph, namely dif-
ferent sets of proteins that may be active and available for 
use in each condition. To this effect, we note the exist-
ence of multi-layer networks in the data-mining space. 
In this context, studies have focused on networks which 
have edges that span across specified dimensions, or con-
ditions [15, 16]. However, we could not find studies that 
tackle the problem of parsimonious connectivity in this 
domain.

Summary of main contributions
To address this open challenge, here we introduce the 
Condition Steiner Network (CSN) problem. In this set-
ting, we are given a weighted undirected graph G, a set of 
C conditions and a set of k ≥ C demands, at least one per 
condition (note that we also cover the case of directed 
graphs, with similar results). The conditions are specified 
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over a sequence of graphs Gc defined over each condition, 
where vertices remain the same, but edges are allowed to 
change across conditions (notably, our results also hold 
when Gc is defined with changing vertices rather than 
edges). Furthermore, demands are in the form of “con-
nect node u to node v through a path of nodes that are 
present in condition c”. The goal is to find a minimum-
weight subgraph of G that satisfies all the demands 
(Fig. 1).

We first show that it is NP-hard to find a solution that 
achieves a nontrivial approximation factor (by the “triv-
ial” approximation, we mean the one obtained by solv-
ing the problem independently for each condition). This 
result extends to several types of connectivity problems 
and provides a theoretical lower bounds to the best-pos-
sible approximation guarantee that can be achieved in a 
multiple condition setting (Table 1). For instance, we can 
conclude that concomitantly solving the shortest path 
problem for a set of conditions is hard to approximate, 

and that the trivial solution (i.e., solving the problem to 
optimality in each condition) is, theoretically, the best 
that one can do. Another example, commonly used in 
PPI analysis, is the Prize-Collecting Steiner Tree problem 
[8, 9]. Here, our results indicate that given a fixed input 
for this problem (i.e., a penalty function p(v) for each ver-
tex), it is NP-hard to solve it concomitantly in C condi-
tions, such that the weight of the obtained solution is less 
than C times that of the optimal solution. Interestingly, 
a theoretical guarantee of C · (2− 2

|V |
)
1 can be obtained 

by solving the problem independently for each time point
While these results provide a somewhat pessimis-

tic view, they rely on the assumption that the network 
frames Gc are arbitrary. In the last part of this paper, we 
show that for the specific case where the conditions can 
be ordered such that each condition is a subset of the 

Fig. 1  Examples of well studied network problems (a), and their corresponding extension with multiple conditions (b). The problems shown are: 
Undirected Steiner Tree, Directed Steiner Network, and Shortest Path, respectively. Yellow nodes and red edges correspond to nodes and edges 
used in the optimal solutions for the corresponding instances

Table 1  Approximation bounds for the various Steiner Network Problems in their classic setting and condition setting

For the classic problems, we have indicated the papers in which the bounds are shown. For the condition problems, all the lower bounds are developed in the present 
work; all the upper bounds are the naive bounds obtained from the “union of shortest paths” heuristic, or from applying the best known approximation algorithm for 
the appropriate classic Steiner problem to each condition, then taking the union of those solutions

Problems Classic Condition

Lower bound Upper bound Lower bound(s) Upper bound(s)

Steiner Forest 1.01 [19] 2 [18] C − ǫ , k − ǫ 2C, k

Directed Steiner Network k
1/4−o(1) [27] k

1/2+ǫ [21, 22] C − ǫ , k − ǫ C · k
1/2+ǫ

, k

Undirected Shortest Path N/A 1 C − ǫ C

Directed Shortest Path N/A 1 C − ǫ C

Steiner Tree 1.01 [19] 1.39 [17] C − ǫ 1.39C

Prize-Collecting Steiner Tree 1.01 [19] 1.97 [26] C − ǫ 1.97C

1  V is the set of nodes in the reference graph G.
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next (namely, Gc ⊆ Gc′ for c ≤ c′ ) then the CSN problem 
can be reduced to a standard connectivity problem with 
a single condition, leading to substantially better theo-
retical guarantees. Finally, we develop an integer linear 
program for the general CSN problem, and show that 
provided with real-world input (namely, the human PPI) 
it is capable of reaching an optimal solution in a reason-
able amount of time.

Introduction to Steiner problems
The Steiner Tree problem, along with its many variants 
and generalizations, form a core family of NP-hard com-
binatorial optimization problems. Traditionally, the input 
to one of these problems is a single (usually weighted) 
graph, along with requirements about which nodes 
need to be connected in some way; the goal is to pick a 
minimum-weight subgraph satisfying the connectivity 
demands.

In this paper, we offer a multi-condition perspective; 
in our setting, multiple graphs over the same vertex set 
(which one can think of as an initial graph changing over 
a set of discrete conditions), are all given as input, and 
the goal is to pick a subgraph satisfying condition-sensi-
tive connectivity requirements. Our study of this prob-
lem draws motivation and techniques from several lines 
of research, which we briefly summarize.

Classic Steiner problems
A basic problem in graph theory is finding the short-
est path between two nodes; this problem is efficiently 
solved using, for example, Dijkstra’s algorithm.

A natural extension of this is the Steiner Tree prob-
lem: given a weighted undirected graph G = (V ,E) and 
a set of terminals T ⊆ V  , find a minimum-weight subtree 
that connects all the nodes in T. A further generalization 
is Steiner Forest: given G = (V ,E) and a set of demand 
pairs D ⊆ V × V  , find a subgraph that connects each 
pair in D. Currently the best known approximation algo-
rithms give a ratio of 1.39 for Steiner Tree [17] and 2 for 
Steiner Forest [18]. These problems are known to be NP-
hard to approximate to within some small constant [19].

For directed graphs, we have the Directed Steiner 
Network (DSN) problem, in which we are given a 
weighted directed graph G = (V ,E) and k demands 
(a1, b1), . . . , (ak , bk) ∈ V × V  , and must find a mini-
mum-weight sub-graph in which each ai has a path to 
bi . When k is fixed, DSN admits a polynomial-time exact 
algorithm [20]. For general k, the best known approxima-
tion algorithms have ratio O(k1/2+ǫ

) for any fixed ǫ > 0 
[21, 22]. On the complexity side, Dodis and Khanna [23] 
ruled out a polynomial-time O(2log

1−ǫ n
)-approximation 

for this problem unless NP has quasipolynomial-time 

algorithms.2 An important special case of DSN is 
Directed Steiner Tree, in which all demands have the 
form (r, bi) for some root node r. This problem has an 
O(kǫ)-approximation scheme [24] and a lower bound of 
�(log2−ǫ n) [25].

Finally, a Steiner variant that has found extensive use 
in computational biology is the Prize-Collecting Steiner 
Tree problem, in which the input contains a weighted 
undirected graph G = (V ,E) and penalty function 
p : V → R≥0 ; the goal is to find a subtree which simul-
taneously minimizes the weights of the edges in the tree 
and the penalties paid for nodes not included within the 
tree, i.e. cost(T ) :=

∑

e∈T w(e)+
∑

v/∈T p(v) . For this 
problem, an approximation algorithm with ratio 1.967 is 
known [26].

Condition Steiner problems
In this paper, we generalize the Shortest Path, Steiner 
Tree, Steiner Forest, Directed Steiner Network, and 
Prize-Collecting Steiner Tree problems to the multi-
condition setting. In this setting, we have a set of con-
ditions [C] := {1, . . . ,C} , and are given a graph for each 
condition.

Our main object of study is the natural generalization 
of Steiner Forest (in the undirected case) and Directed 
Steiner Network (in the directed case), which we call 
Condition Steiner Network:

Definition 1  (Condition Steiner Network (CSN)) We are 
given the following inputs:

1.	 A sequence of undirected graphs 
G1 = (V ,E1),G2 = (V ,E2), . . . ,GC = (V ,EC) , one 
for each condition c ∈ [C] . Each edge e in the under-
lying edge set E :=

⋃

c Ec has a weight w(e) ≥ 0.
2.	 A set of k connectivity demands D ⊆ V × V × [C] . 

We assume that for every c ∈ C there exists at least 
one demand and therefore that k ≥ |C|.

We call G = (V ,E) the underlying graph. We say a sub-
graph H ⊆ G satisfies demand (a, b, c) ∈ D if H contains 
an a-b path P along which all edges exist in Gc . The goal is 
to output a minimum-weight subgraph H ⊆ G that satis-
fies every demand in D.

Definition 2  (Directed Condition Steiner Network 
(DCSN)) This is the same as CSN except that all the edges 

2  Throughout this paper, n := |V | denotes the number of nodes in the relevant 
graph.
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are directed, and a demand (a, b, c) must be satisfied by a 
directed path from a to b in Gc.

We can also define the analogous generalizations of 
Shortest Path, (undirected) Steiner Tree, and Prize-Col-
lecting Steiner Tree. We give hardness results and algo-
rithms for these problems by demonstrating reductions 
to and from CSN and DCSN.

Definition 3  (Condition Shortest Path (CSP), Directed 
Condition Shortest Path (DCSP)) These are the special 
cases of CSN and DCSN in which the demands are pre-
cisely (a, b, 1), . . . , (a, b,C) where a, b ∈ V  are common 
source and target nodes.

Definition 4  (Condition Steiner Tree (CST)) 
We are given a sequence of undirected graphs 
G1 = (V ,E1), . . . ,GC = (V ,EC) , a weight w(e) ≥ 0 on 
each e ∈ E , and sets of terminal nodes X1, . . . ,XC ⊆ V  . 
We say a subgraph H ⊆ (V ,

⋃

c Ec) satisfies the terminal 
set Xc if the nodes in Xc are mutually reachable using 
edges in H that exist at condition c. The goal is to find a 
minimum-weight subgraph H that satisfies Xc for every 
c ∈ [C].

Definition 5  (Condition Prize-Collecting Steiner Tree 
(CPCST)) We are given a sequence of undirected graph 
G1 = (V ,E1), . . . ,GC = (V ,EC) , a weight w(e) ≥ 0 
on each e ∈ E , and a penalty p(v, c) ≥ 0 for each 
v ∈ V , c ∈ [C] . The goal is to find a subtree T that mini-
mizes 

∑

e∈T w(e)+
∑

v/∈T ,c∈[C] p(v, c).

Finally, in molecular biology applications, it is often the 
case that all the demands originate from a common root 
node. To capture this, we define the following special 
case of DCSN:

Definition 6  (Single-Source DCSN) This is the spe-
cial case of DCSN in which the demands are precisely 
(a, b1, c1), (a, b2, c2), . . . , (a, bk , ck) , for some root a ∈ V  . 
We can assume that c1 ≤ c2 ≤ · · · ≤ ck.

It is also natural to consider variants of these problems 
in which nodes (rather than edges) vary across the condi-
tions, or in which both nodes and edges vary. In Problem 
variants, we show that all three variants are in fact equiv-
alent; thus we focus on the edge-based formulations.

Our results
In this work, we perform a systematic study of the con-
dition Steiner problems defined above, from the stand-
point of approximation algorithms—that is, algorithms 
that return subgraphs whose total weights are not much 

greater than that of the optimal subgraph—as well as 
integer linear programming (ILP). Since all of the condi-
tion Steiner problems listed in the previous section turn 
out to be NP-hard (and in fact all of them except Shortest 
Path are hard even in the classic single-condition setting) 
we cannot hope for algorithms that find optimal solu-
tions and run in polynomial time.

First, in Hardness of condition Steiner problems, we 
show a series of strong negative results, starting with 
(directed and undirected) Condition Steiner Network:

Theorem  1  (Main Theorem) CSN and DCSN are NP-
hard to approximate to a factor of C − ǫ as well as k − ǫ 
for every fixed k ≥ 2 and every constant ǫ > 0 . For DCSN, 
this holds even when the underlying graph is acyclic.

Thus the best approximation ratio one can hope for 
is C or k; the latter upper bound is easily achieved by 
the trivial “union of shortest paths” algorithm: for each 
demand (a, b, c), compute the shortest a-b path at condi-
tion c; then take the union of these k paths. This contrasts 
with the classic Steiner Network problems, which have 
nontrivial approximation algorithms and efficient fixed-
parameter algorithms.

Next, we show similar hardness results for the other 
three condition Steiner problems. This is achieved by a 
series of simple reductions from CSN and DCSN.

Theorem  2  Condition Shortest Path, Directed Condi-
tion Shortest Path, Condition Steiner Tree, and Condition 
Prize-Collecting Steiner Tree are all NP-hard to approxi-
mate to a factor of C − ǫ for every fixed C ≥ 2 and ǫ > 0.

Note that each of these condition Steiner problems 
can be naively approximated by applying the best known 
algorithm for the classic version of that problem in each 
graph in the input, then taking the union of all those sub-
graphs. If the corresponding classic Steiner problem can 
be approximated to a factor of α , then this process gives 
an α · C-approximation for the condition version. Thus 
using known constant-factor approximation algorithms, 
each of the condition problems in Theorem  2 has an 
O(C)-approximation algorithm. Our result shows that in 
the worst case, one cannot do much better.

While these results provide a somewhat pessimistic 
view, the proofs rely on the assumption that the edge 
sets in the input networks (that is, E1, . . . ,EC ) do not 
necessarily bear any relationship to one another. In 
Monotonic special cases, we move beyond this worst-
case assumption by studying a broad class of special 
cases in which the conditions are monotonic: if an edge 
e exists in some graph Gc , then it exists in all the subse-
quent graphs Gc′ , c

′
≥ c . In other words, each graph in 
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the input is a subgraph of the next. For these problems, 
we prove the following two theorems:

Theorem  3  Monotonic CSN has a polynomial-
time O(log k)-approximation algorithm. It has 
no �(log log n)-approximation algorithm unless 
NP ⊆ DTIME(nlog log log n).

In the directed case, for monotonic DCSN with a sin-
gle source (that is, every demand is of the form (r, b, c) 
for a common root node r), we show the following:

Theorem  4  Monotonic Single-Source DCSN has a pol-
ynomial-time O(kǫ)-approximation algorithm for every 
ǫ > 0 . It has no �(log2−ǫ n)-approximation algorithm 
unless NP ⊆ ZPTIME(npolylog(n)).

These bounds are proved via approximation-preserv-
ing reductions to and from classic Steiner problems, 
namely Priority Steiner Tree and Directed Steiner Tree. 
Conceptually, this demonstrates that imposing the 
monotonicity requirement makes the condition Steiner 
problems much closer to their classic counterparts, 
allowing us to obtain algorithms with substantially bet-
ter approximation guarantees.

Finally in application to protein–protein interac-
tion networks, we show how to model various condi-
tion Steiner problems as integer linear programs (ILPs). 
In experiments on real-world inputs derived from the 
human PPI network, we find that these ILPs are capable 
of reaching optimal solutions in a reasonable amount of 
time.

Table  1 summarizes our results, emphasizing how 
the known upper and lower bounds change when going 
from the classic Steiner setting to the condition Steiner 
setting.

Preliminaries
Note that the formulations of CSN and DCSN in the 
introduction involved a fixed vertex set; only the edges 
change over the conditions. It is also natural to formu-
late the Condition Steiner Network problem with nodes 
changing over condition, or both nodes and edges. 
However by the following proposition, it is no loss of 
generality to discuss only the edge-condition variant.

Proposition 1  The edge, node, and node-and-edge var-
iants of CSN are mutually polynomial-time reducible via 
strict reductions (i.e. preserving the approximation ratio 
exactly). Similarly all three variants of DCSN are mutu-
ally strictly reducible.

We defer the precise definitions of the other two vari-
ants, as well as the proof of this proposition, to Problem 
variants.

In this edge-condition setting, it makes sense to 
define certain set operations on graphs, which will be 
of use in our proofs. To that end, let G1 = (V ,E1) and 
G2 = (V ,E2) be two graphs on the same vertex set. Their 
union, G1 ∪ G2 , is defined as (V ,E1 ∪ E2) . Their intersec-
tion, G1 ∩ G2 , is defined as (V ,E1 ∩ E2) . Subset relations 
are defined analogously; for example, if E1 ⊆ E2 , then we 
say that G1 ⊆ G2.

Next we state the Label Cover problem, which is the 
starting point of one of our reductions to CSN.

Definition 7  (Label Cover (LC)) An instance of this 
problem consists of a bipartite graph G = (U ,V ,E) and 
a set of possible labels � . The input also includes, for 
each edge (u, v) ∈ E , projection functions π(u,v)

u : � → C 
and π(u,v)

v : � → C , where C is a common set of colors; 
� = {π

e
v : e ∈ E, v ∈ e} is the set of all such func-

tions. A labeling of G is a function φ : U ∪ V → � 
assigning each node a label. We say a labeling φ satis-
fies an edge (u, v) ∈ E , or (u,  v) is consistent under φ , if 
π
(u,v)
u (φ(u)) = π

(u,v)
v (φ(v)) . The task is to find a labeling 

that satisfies as many edges as possible.

This problem was first defined in [28]. It has the follow-
ing gap hardness, as shown by Arora et al. [29] and Raz 
[30].

Theorem 5  For every ǫ > 0 , there is a constant |�| such 
that the following promise problem is NP-hard: Given a 
Label Cover instance (G,�,�) , distinguish between the 
following cases:

•	 (YES instance) There exists a total labeling of G; i.e. a 
labeling that satisfies every edge.

•	 (NO instance) There does not exist a labeling of G that 
satisfies more than ǫ|E| edges.

In Hardness of condition Steiner problems, we use 
Label Cover to show (2− ǫ)-hardness for 2-CSN and 
2-DCSN; that is, when there are only two demands. To 
prove our main result however, we will actually need a 
generalization of Label Cover to partite hypergraphs, 
called k-Partite Hypergraph Label Cover. Out of space 
considerations we defer the statement of this problem 
and its gap hardness to Proof of inapproximability for 
general C and k, where the (2− ǫ)-hardness result is gen-
eralized to show (C − ǫ)-hardness and (k − ǫ)-hardness 
for general number of conditions C and demands k.
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Hardness of condition Steiner problems
Overview of the reduction
Here we outline our strategy for reducing Label Cover 
to the condition Steiner problems. First, we reduce to 
the CSN problem restricted to having only C = 2 condi-
tions and k = 2 demands; we call this problem 2-CSN. 
The directed problem  2-DCSN is defined analogously. 
Later, we obtain similar hardness for CSN with more 
conditions or demands by using the same ideas, but 
reducing from k-Partite Hypergraph Label Cover.

Consider the nodes u1, . . . ,u|U | on the “left” side of 
the LC instance. We build, for each ui , a gadget (which 
is a small sub-graph in the Steiner instance) consisting 
of multiple parallel directed paths from a source to a 
sink—one path for each possible label for ui . We then 
chain together these gadgets, so that the sink of u1 ’s 
gadget is the source of u2 ’s gadget, and so forth. Finally 
we create a connectivity demand from the source of 
u1 ’s gadget to the sink of u|U | ’s gadget, so that a solu-
tion to the Steiner instance must have a path from u1 ’s 
gadget, through all the other gadgets, and finally ending 
at u|U | ’s gadget. This path, depending on which of the 
parallel paths it takes through each gadget, induces a 
labeling of the left side of the Label Cover instance. We 
build an analogous chain of gadgets for the nodes on 
the right side of the Label Cover instance.

The last piece of the construction is to ensure that 
the Steiner instance has a low-cost solution if and only 
if the Label Cover instance has a consistent labeling. 
This is accomplished by setting all the ui gadgets to 
exist only at condition 1 (i.e. in frame G1 ), setting the 
vj gadgets to exist only in G2 , and then merging cer-
tain edges from the ui-gadgets with edges from the vj
-gadgets, replacing them with a single, shared edge that 
exists in both frames. Intuitively, the edges we merge 
are from paths that correspond to labels that satisfy the 
Label Cover edge constraints. The result is that a YES 
instance of Label Cover (i.e. one with a total labeling) 
will enable a high degree of overlap between paths in 
the Steiner instance, so that there is a very low-cost 
solution. On the other hand, a NO instance of LC will 

not result in much overlap between the Steiner gadgets, 
so every solution will be costly.

Let us define some of the building blocks of the reduction 
we just sketched:

•	 A simple strand is a directed path of the form 
b1 → c1 → c2 → b2.

•	 In a simple strand, we say that (c1, c2) is the contact 
edge. Contact edges have weight 1; all other edges in 
our construction have zero weight.

•	 A bundle is a graph gadget consisting of a source node 
b1 , sink node b2 , and parallel, disjoint strands from b1 to 
b2.

•	 A chain of bundles is a sequence of bundles, with the 
sink of one bundle serving as the source of another.

•	 More generally, a strand can be made more compli-
cated, by replacing a contact edge with another bundle 
(or even a chain of them). In this way, bundles can be 
nested, as shown in Fig. 2.

•	 We can merge two or more simple strands from dif-
ferent bundles by setting their contact edges to be the 
same edge, and making that edge existent at the union 
of all conditions when the original edges existed (Fig. 2).

Before formally giving the reduction, we illustrate a simple 
example of its construction.

Example 1  Consider a toy Label Cover instance whose 
bipartite graph is a single edge, label set is � = {1, 2} , 
color set is C = {1, 2} , and projection functions are shown:

Fig. 2  (Left) A bundle whose upper strand is a chain of two bundles; the lower strand is a simple strand. Contact edges are orange. (Right) Three 
bundles (blue, green, red indicate different conditions), with one strand from each merged together
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Our reduction outputs this corresponding 2-CSN 
instance:

G1 comprises the set of blue edges; G2 is green. The 
demands are (uS1,u

S
2, 1) and (vS1 , v

S
2 , 2) . For the Label Cover 

node u, G1 (the blue sub-graph) consists of two strands, 
one for each possible label. For the Label Cover node v, 
G2 (green sub-graph) consists of one simple strand for 
the label ‘1’, and a bundle for label ‘2’, which branches out 
into two simple strands, one for each agreeing labeling of 
u. Finally, strands (more precisely, their contact edges) 
whose labels map to the same color are merged.

The input is a YES instance of Label Cover whose opti-
mal labelings (u gets either label 1 or 2, v gets label 2) 
correspond to 2-CSN solutions of cost 1 (both G1 and 
G2 contain the (u,  1,  v,  2)-path, and both contain the 
(u,  2, v,  2)-path). If this were a NO instance and edge e 
could not be satisfied, then the resulting 2-CSN sub-
graphs G1 and G2 would have no overlap.

Inapproximability for two demands
We now formalize the reduction in the case of two condi-
tions and two demands; later, we extend this to general C 
and k.

Theorem  6  2-CSN and 2-DCSN are NP-hard to 
approximate to within a factor of 2− ǫ for every constant 
ǫ > 0 . For 2-DCSN, this holds even when the underlying 
graph is acyclic.

Proof  Fix any desired ǫ > 0 . We describe a reduction 
from Label Cover (LC) with any parameter ε < ǫ (that is, 
in the case of a NO instance, no labeling satisfies more than 
an ε-fraction of edges) to 2-DCSN with an acyclic graph. 
Given the LC instance (G = (U ,V ,E),�,�) , construct a 
2-DCSN instance ( G = (G1,G2) , along with two connec-
tivity demands) as follows. Create nodes uS1, . . . ,u

S
|U |+1 

and vS1 , . . . , v
S
|V |+1 . Let there be a bundle from each uSi  to 

uSi+1 ; we call this the ui-bundle, since a choice of path from 
uSi  to uSi+1 in G will indicate a labeling of ui in G.

The ui-bundle has a strand for each possible label 
ℓ ∈ � . Each of these ℓ-strands consists of a chain of bun-
dles—one for each edge (ui, v) ∈ E . Finally, each such 
(ui, ℓ, v)-bundle has a simple strand for each label r ∈ � 
such that π(ui ,v)

ui (ℓ) = π
(ui ,v)
v (r) ; call this the (ui, ℓ, v, r)-

path. In other words, there is ultimately a simple strand 
for each possible labeling of ui ’s neighbor v such that the 
two nodes are in agreement under their mutual edge con-
straint. If there are no such consistent labels r, then the 
(ui, ℓ, v)-bundle consists of just one simple strand, which 
is not associated with any r. Note that every minimal 
uS1 → uS

|U |+1 path (that is, one that proceeds from one 
bundle to the next) has total weight exactly |E|.

Similarly, create a vj-bundle from each vSj  to vSj+1 , whose 
r-strands (for r ∈ � ) are each a chain of bundles, one for 
each (u, vj) ∈ E . Each (u, r, vj)-bundle has a (u, ℓ, vj , r)-
path for each agreeing labeling ℓ of the neighbor u, or a 
simple strand if there are no such labelings.

Set all the edges in the ui-bundles to exist in G1 only. 
Similarly the vj-bundles exist solely in G2 . Now, for each 
(u, ℓ, v, r)-path in G1 , merge it with the (u, ℓ, v, r)-path in 
G2 , if it exists. The demands are 
D =

{(

uS1,u
S
|U |+1, 1

)

,
(

vS1 , v
S
|V |+1, 2

)}

.
We now analyze the reduction. The main idea is that 

any uSi → uSi+1 path induces a labeling of ui ; thus the 
demand 

(

uS1,u
S
|U |+1, 1

)

 ensures that any 2-DCSN solution 
indicates a labeling of all of U. Similarly, 

(

vS1 , v
S
|V |+1, 2

)

 
forces an induced labeling of V. In the case of a YES 
instance of Label Cover, these two connectivity demands 
can be satisfied by taking two paths with a large amount 
of overlap, resulting in a low-cost 2-DCSN solution. In 
contrast when we start with a NO instance of Label 
Cover, any two paths we can choose to satisfy the 
2-DCSN demands will be almost completely disjoint, 
resulting in a costly solution. We now fill in the details.

Suppose the Label Cover instance is a YES instance, 
so that there exists a labeling ℓ∗u to each u ∈ U  , and 
r∗v  to each v ∈ V  , such that for all edges (u, v) ∈ E , 
π
(u,v)
u (ℓ

∗
u) = π

(u,v)
v (r∗v ) . The following is an optimal solu-

tion H∗ to the constructed 2-DCSN instance:

•	 To satisfy the demand at condition 1, for each 
u-bundle, take a path through the ℓ∗u-strand. In par-
ticular for each (u, ℓ∗u, v)-bundle in that strand, trav-
erse the (u, ℓ∗u, v, r∗v )-path.



Page 9 of 17Wu et al. Algorithms Mol Biol            (2019) 14:5 

•	 To satisfy the demand at condition 2, for each 
v-bundle, take a path through the r∗v-strand. In par-
ticular for each (u, r∗v , v)-bundle in that strand, trav-
erse the (u, ℓ∗u, v, r∗v )-path.

In tallying the total edge cost, H∗
∩ G1 (i.e. the sub-

graph at condition 1) incurs a cost of |E|, since one con-
tact edge in G is encountered for each edge in G. H∗

∩ G2 
accounts for no additional cost, since all contact edges 
correspond to a label which agrees with some neighbor’s 
label, and hence were merged with the agreeing contact 
edge in H∗

∩ G1 . Clearly a solution of cost |E| is the best 
possible, since every uS1 → uS

|U |+1 path in G1 (and every 
vS1 → vS

|V |+1 path in G2 ) contains at least |E| contact 
edges.

Conversely suppose we started with a NO instance 
of Label Cover, so that for any labeling ℓ∗u to u and r∗v to 
v, for at least (1− ε)|E| of the edges (u, v) ∈ E , we have 
π
(u,v)
u (ℓ

∗
u) �= π

(u,v)
v (r∗v ) . By definition, any solution to 

the constructed 2-DCSN instance contains a simple 
uS1 → uS

|U |+1 path P1 ∈ G1 and a simple vS1 → vS
|V |+1 path 

P2 ∈ G2 . P1 alone incurs a cost of exactly |E|, since one 
contact edge in G is traversed for each edge in G. However, 
P1 and P2 share at most ε|E| contact edges (otherwise, by 
the merging process, this implies that more than ε|E| edges 
could be consistently labeled, which is a contradiction). 
Thus the solution has a total cost of at least (2− ε)|E|.

It is thus NP-hard to distinguish between an instance 
with a solution of cost |E|, and an instance for which 
every solution has cost at least (2− ε)|E| . Thus a pol-
ynomial-time algorithm for 2-DCSN with approxima-
tion ratio 2− ǫ can be used to decide Label Cover (with 
parameter ε ) by running it on the output of the aforemen-
tioned reduction. If the estimated objective value is at 
most (2− ε)|E| (and thus strictly less than (2− ǫ)|E| ) out-
put YES; otherwise output NO. In other words, 2-DCSN 
is NP-hard to approximate to within a factor of 2− ǫ.

To complete the proof, observe that the underlying 
directed graph we constructed is acyclic, as every edge 
points “to the right” as in Example 1. Hence 2-DCSN is 
NP-hard to approximate to within a factor of 2− ǫ for 
every ǫ > 0 , even on acyclic graphs. Finally, note that the 
same analysis holds for 2-CSN, by simply making every 
edge undirected; however in this case the graph is clearly 
not acyclic. � �

Inapproximability for general C and k

Theorem  1  (Main Theorem) CSN and DCSN are NP-
hard to approximate to a factor of C − ǫ as well as k − ǫ 
for every fixed k ≥ 2 and every constant ǫ > 0 . For DCSN, 
this holds even when the underlying graph is acyclic.

Proof  We perform a reduction from k-Partite Hypergraph 
Label Cover, a generalization of Label Cover to hyper-
graphs, to CSN, or DCSN with an acyclic graph. Using the 
same ideas as in the C = k = 2 case, we design k demands 
composed of parallel paths corresponding to labelings, and 
merge edges so that a good global labeling corresponds to 
a large overlap between those paths. The full proof is left to 
Proof of inapproximability for general C and k.�  �

Note that a k-approximation algorithm is to simply 
choose H =

⋃

ci
P̃ci , where P̃ci is the shortest aci → bci 

path in Gci for demands D = {(a, b, ci) : ci ∈ [C]} . Thus 
by Theorem 1, essentially no better approximation is pos-
sible in terms of k alone. In contrast, most classic Steiner 
problems have good approximation algorithms [21, 22, 
24, 25], or are even exactly solvable for constant k [20].

Inapproximability for Steiner variants
We take advantage of our previous hardness of approxi-
mation results in Theorem  1 and show, via a series of 
reductions, that CSP, CSN, and CPCST are also hard to 
approximate.

Theorem  2  Condition Shortest Path, Directed Condi-
tion Shortest Path, Condition Steiner Tree, and Condition 
Prize-Collecting Steiner Tree are all NP-hard to approxi-
mate to a factor of C − ǫ for every fixed C ≥ 2 and ǫ > 0.

Proof  We first reduce from CSN to CSP (and 
DCSN to DCSP). Suppose we are given an instance 
of CSN with graph sequence G = (G1, . . . ,GC) , 
underlying graph G = (V ,E) , and demands 
D = {(ai, bi, ci) : i ∈ [k]} . We build a new instance 
(

G′
= (G′

1, . . . ,G
′

k),G
′
= (V ′,E′

),D′
)

 as follows.

Initialize G′ to G. Add to G′ the new nodes a and b, which 
exist at all conditions G′

i . For all e ∈ E and i ∈ [k] , if e ∈ Gci , 
then let e exist in G′

i as well. For each (ai, bi, ci) ∈ D,

1.	 Create new nodes xi , yi . Create zero-weight edges 
(a, xi) , (xi, ai) , (bi, yi) , and (yi, b).

2.	 Let (a, xi) , (xi, ai) , (bi, yi) , and (yi, b) exist only in 
frame G′

i.

Lastly, the demands are D′
= {(a, b, i) : i ∈ [k]}.

Given a solution H ′
⊆ G′ containing an a → b path at 

every condition i ∈ [k] , we can simply exclude nodes a, 
b, {xi} , and {yi} to obtain a solution H ⊆ G to the origi-
nal instance, which contains an ai → bi path in Gci for all 
i ∈ [k] , and has the same cost. The converse is also true 
by including these nodes.
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Observe that essentially the same procedure shows 
that DCSN reduces to DCSP; simply ensure that the 
edges added by the reduction are directed rather than 
undirected.

Next, we reduce CSP to CST. Suppose 
we are given an instance of CSP with graph 
sequence G = (G1, . . . ,GC) , underlying graph 
G = (V ,E) , and demands D = {(a, b, i) : i ∈ [C]} . 
We build a new instance of CST as follows: 
(

G′
= (G′

1, . . . ,G
′

C),G
′
= (V ′,E′

),X = (X1, . . . ,XC)
)

 . Set 
G′ to G , and G′ to G. Take the set of terminals in each con-
dition to be Xi = {a, b} . We note that a solution H ′

⊆ G′ 
to the CST instance is trivially a solution the CSP 
instance with the same cost, and vice-versa.

Finally, we reduce CST to CPCST. We do this by making 
an appropriate assignment of the penalties p(v,  c). Sup-
pose we are given an instance of CST with graph sequence 
G = (G1, . . . ,GC) , underlying graph G = (V ,E) , and ter-
minal sets X = (X1, . . . ,XC) . We build a new instance 
of CPCST, 

(

G′
= (G′

1, . . . ,G
′

C),G
′
= (V ′,E′

), p(v, c)
)

 . In 
particular, set G′ to G , and G′ to G. Set p(v, c) as follows:

Consider any solution H ⊆ G to the original CST 
instance. Since H spans the terminals X1, . . . ,Xc (thus 
avoiding any infinite penalties), and since the non-termi-
nal vertices have zero cost, the overall cost of H remains 
the same cost in the constructed CPCST instance. Con-
versely, suppose we are given a solution H ′

⊆ G′ to the 
constructed CPCST instance. If the cost of H ′ is ∞ , then 
H ′ does not span all the Xc ’s simultaneously, and thus H ′ 
is not a possible solution for the CST instance. On the 
other hand if H ′ has finite cost, then H ′ is also a solution 
for the CST instance, with the same cost.

To summarize: in the first reduction from CSN to 
CSP, the number of demands, k, in the CSN instance is 
the same as the number of the conditions, C, in the CSP 
instance; we conclude that CSP is NP-hard to approxi-
mate to a factor of C − ǫ for every fixed C ≥ 2 and ǫ > 0 . 
Since C remains the same in the two subsequent reduc-
tions, we also have that CST and CPCST are NP-hard to 
approximate to a factor of C − ǫ . � �

Monotonic special cases
In light of the strong lower bounds in the previous theo-
rems, in this section we consider more tractable special 
cases of the condition Steiner problems. A natural restric-
tion is that the changes over conditions are monotonic:

Definition 8  (Monotonic {CSN, DCSN, CSP, DCSP, 
CST, CPCST}) In this special case (of any of the condition 

p(v, c) =

{

∞, v ∈ Xc

0, otherwise

Steiner problems), we have that for each e ∈ E and 
c ∈ [C] , if e ∈ Gc , then e ∈ Gc′ for all c′ ≥ c.

We now examine the effect of monotonicity on the 
complexity of the condition Steiner problems.

Monotonicity in the undirected case
In the undirected case, we show that monotonicity has a 
simple effect: it makes CSN equivalent to the following 
well-studied problem:

Definition 9  (Priority Steiner Tree [31]) The input is 
a weighted undirected multigraph G = (V ,E,w) , a pri-
ority level p(e) for each e ∈ E , and a set of k demands 
(ai, bi) , each with priority p(ai, bi) . The output is a 
minimum-weight forest F ⊆ G that contains, between 
each ai and bi , a path in which every edge e has priority 
p(e) ≤ p(ai, bi).

Priority Steiner Tree was introduced by Charikar, 
Naor, and Schieber [31], who gave a O(log k) approxi-
mation algorithm. Moreover, it cannot be approxi-
mated to within a factor of �(log log n) assuming NP 
/∈ DTIME(nlog log log n) [32]. We now show that the same 
bounds apply to Monotonic CSN, by showing that the 
two problems are essentially equivalent from an approxi-
mation standpoint.

Lemma 1  Fix any function f : Z>0 → R>0 . If either 
Priority Steiner Tree or Monotonic CSN can be approxi-
mated to a factor of f(k) in polynomial time, then so can 
the other.

Proof  We transform an instance of Priority Steiner Tree 
into an instance of Monotonic CSN as follows: the set 
of priorities becomes the set of conditions; if an edge e 
has priority p(e), it now exists at all conditions t ≥ p(e) ; 
if a demand (ai, bi) has priority p(ai, bi) , it now becomes 
(ai, bi, p(ai, bi)) . If there are parallel multiedges, break up 
each such edge into two edges of half the original weight, 
joined by a new node. Given a solution H ⊆ G to this 
CSN instance, contracting any edges that were origi-
nally multiedges gives a Priority Steiner Tree solution of 
the same cost. This reduction also works in the opposite 
direction (in this case there are no multiedges), which 
shows the equivalence.�  �

Furthermore, the O(log k) upper bound applies to CST 
(We note that Monotonic CSP admits a trivial algorithm, 
namely take the subgraph induced by running Djikstra’s 
Algorithm on G1).
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Lemma 2  If Monotonic CSN can be approximated to a 
factor of f(k) for some function f in polynomial time, then 
Monotonic CST can also be approximated to within f(k) 
in polynomial time.

Proof  We now show a reduction from CST to CSN. 
Suppose we are given a CST instance on graphs 
G = (G1, . . . ,GC) and terminal sets X = (X1, . . . ,XC) . 
Our CSN instance has precisely the same graphs, and 
has the following demands: for each terminal set Xc , 
pick any terminal a ∈ Xc and create a demand (a, b, c) for 
each b �= a ∈ Xc . A solution to the original CST instance 
is a solution to the constructed CSN instance with the 
same cost, and vice-versa; moreover, if the CST instance 
is monotonic, then so is the constructed CSN instance. 
Observe that if the total number of CST terminals is k, 
then the number of constructed demands is k − C , and 
therefore an f(k)-approximation for CSN implies an 
f (k − C) ≤ f (k)-approximation for CST, as required.�  �

Monotonicity in the directed case
In the directed case, we give an approximation-pre-
serving reduction from a single-source special case of 
DCSN to the Directed Steiner Tree (DST) problem (in 
fact, we show that they are essentially equivalent from 
an approximation standpoint), then apply a known 
algorithm for DST. Recall the definition of Single-
Source DCSN:

Definition 6  (Single-Source DCSN) This is the spe-
cial case of DCSN in which the demands are precisely 
(a, b1, c1), (a, b2, c2), . . . , (a, bk , ck) , for some root a ∈ V  . 
We can assume that c1 ≤ c2 ≤ · · · ≤ ck.

Lemma 3  Fix any function f : Z>0 → R>0 . If either 
Monotonic Single-Source DCSN or Directed Steiner Tree 
can be approximated to a factor of f(k) in polynomial 
time, then so can the other.

For the remainder of this section, we refer to Mono-
tonic Single-Source DCSN as simply DCSN. Towards 
proving the theorem, we now describe a reduc-
tion from DCSN to DST. Given a DCSN instance 
(G1 = (V ,E1),G2 = (V ,E2), . . . ,GC = (V ,EC),D) with 
underlying graph G = (V ,E) , we construct a DST 
instance (G′

= (V ′,E′
),D′

) as follows:

•	 G′ contains a vertex vi for each v ∈ V  and each 
i ∈ [ck ] . It contains an edge (ui, vi) with weight w(u, v) 
for each (u, v) ∈ Ei . Additionally, it contains a zero-
weight edge (vi, vi+1

) for each v ∈ V  and each i ∈ [ck ].
•	 D′ contains a demand (a1, bcii ) for each (a, bi, ci) ∈ D.

Now consider the DST instance (G′,D′
).

Lemma 4  If the DCSN instance (G1, . . . ,GC ,D) has 
a solution of cost C∗ , then the constructed DST instance 
(G′,D′

) has a solution of cost at most C∗.

Proof  Let H ⊆ G be a DCSN solution having cost C∗ . 
For any edge (u, v) ∈ E(H) , define the earliest necessary 
condition of (u, v) to be the minimum ci such that remov-
ing (u, v) would cause H not to satisfy demand (a, bi, ci) . 
� �

Claim 1  There exists a solution C ⊆ H that is a directed 
tree and has cost at most C∗. Moreover for every path Pi in 
C from the root a to some target bi, as we traverse Pi from 
a to bi, the earliest necessary conditions of the edges are 
non-decreasing.

Proof of Claim  1  Consider a partition of H into edge-
disjoint sub-graphs H1, . . . ,Hk , where Hi is the sub-
graph whose edges have earliest necessary condition ci.

If there is a directed cycle or parallel paths in the first 
sub-graph H1 , then there is an edge e ∈ E(H1) whose 
removal does not cause H1 to satisfy fewer demands at 
condition c1 . Moreover by monotonicity, removing e also 
does not cause H to satisfy fewer demands at any future 
conditions. Hence there exists a directed tree T1 ⊆ H1 
such that T1 ∪

(

⋃k
i=2Hi

)

 has cost at most C∗ and still 
satisfies � T .

Now suppose by induction that for some j ∈ [k − 1] , 
⋃j

i=1 Ti is a tree such that 
(

⋃j
i=1 Ti

)

∪

(

⋃k
i=j+1Hi

)

 has 
cost at most C∗ and satisfies D . Consider the partial solu-
tion 

(

⋃j
i=1 Ti

)

∪Hj+1 ; if this sub-graph is not a directed 
tree, then there must be an edge (u, v) ∈ E(Hj+1) such 
that v has another in-edge in the sub-graph. However by 
monotonicity, (u,  v) does not help satisfy any new 
demands, as v is already reached by some other path 
from the root. Hence by removing all such redundant 
edges, we have Tj+1 ⊆ Hj+1 such that 
(

⋃j+1
i=1 Ti

)

∪

(

⋃k
i=j+2Hi

)

 has cost at most C∗ and satisfies 
D , which completes the inductive step.

We conclude that T :=
⋃k

i=1 Ti ⊆ H is a tree of cost at 
most C∗ satisfying D . Observe also that by construction, 
as T  is a tree that is iteratively constructed by Ti ⊆ Hi , T  
has the property that if we traverse any a → bi path, the 
earliest necessary conditions of the edges never decrease. 
� �

Now let T  be the DCSN solution guaranteed to 
exist by Claim  1. Consider the sub-graph H ′

⊆ G′ 
formed by adding, for each (u, v) ∈ E(T ) , the edge 
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(uc, vc) ∈ E′ where c is the earliest necessary con-
dition of (u,  v) in E(H) . In addition, for all ver-
tices vi ∈ H ′ where vi+1

∈ H ′ , add the free edge 
(vi, vi+1

) . Since w(uc, vc) = w(u, v) by construction, 
cost(H ′

) ≤ cost(T ) ≤ C∗.
To see that H ′ is a valid solution, consider any 

demand (a1, bcii ) . Recall that T  has a unique a → bi path 
Pi along which the earliest necessary conditions are 
nondecreasing. We added to H ′ each of these edges at 
the level corresponding to its earliest necessary con-
dition; moreover, whenever there are adjacent edges 
(u, v), (v, x) ∈ Pi with earliest necessary conditions c 
and c′ ≥ c respectively, there exist in H ′ free edges 
(vt , vc+1

), . . . , (vc
′
−1, vc

′

) . Thus H ′ contains an a1 → b
ci
i  

path, which completes the proof. � �

Lemma 5  If the constructed DST instance (G′,D′
) has 

a solution of cost C∗ , then the original DCSN instance 
(G1, . . . ,GC ,D) has a solution of cost at most C∗.

Proof  First note that any DST solution ought to be a 
tree; let T ′

⊆ G′ be such a solution of cost C. For each 
(u, v) ∈ G , T ′ might as well use at most one edge of the 
form (ui, vi) , since if it uses more, it can be improved 
by using only the one with minimum i, then taking the 
free edges (vi, vi+1

) as needed. We create a DCSN solu-
tion T ⊆ G as follows: for each (ui, vi) ∈ E(T ′

) , add 
(u,  v) to T  . Since w(u, v) = w(ui, vi) by design, we have 
cost(T ) ≤ cost(T ′

) ≤ C . Finally, since each a1 → b
ti
i  path 

in G′ has a corresponding path in G by construction, T  
satisfies all the demands.�  �

Lemma 3 follows from Lemma 4 and Lemma 5. Finally 
we can obtain the main result of this subsection:

Theorem  4  Monotonic Single-Source DCSN has a pol-
ynomial-time O(kǫ)-approximation algorithm for every 
ǫ > 0 . It has no �(log2−ǫ n)-approximation algorithm 
unless NP ⊆ ZPTIME(npolylog(n)).

Proof  The upper bound follows by composing the reduc-
tion (from Monotonic Single-Source DCSN to Directed 
Steiner Tree) with the algorithm of Charikar et  al. [24] 
for Directed Steiner Tree, which achieves ratio O(kǫ) for 
every ǫ > 0 . More precisely they give an i2(i − 1)k1/i

-approximation for any integer i ≥ 1 , in time O(nik2i) . 
The lower bound follows by composing the reduction (in 
the opposite direction) with a hardness result of Halperin 
and Krauthgamer [25], who show the same bound for 
Directed Steiner Tree. A quick note regarding the reduc-
tion in the opposite direction: Directed Steiner Tree is a 

precisely a Monotonic Single-Source DCSN instance with 
exactly one condition.�  �

In Explicit algorithm for Monotonic Single-Source 
DCSN, we show how to modify the algorithm of Charikar 
et al. to arrive at a simple, explicit algorithm for Mono-
tonic Single-Source DCSN achieving the same guarantee.

Application to protein–protein interaction 
networks
Methods such as Directed Condition Steiner Network 
can be key in identifying underlying structure in bio-
logical processes. As a result, it is important to assess the 
runtime feasibility of solving for an optimal solution. We 
show via simulation on human protein–protein inter-
action networks, that our algorithm on single-source 
instances is able to quickly and accurately infer maximum 
likelihood subgraphs for a certain biological process.

Building the protein–protein interaction network
We represent the human PPI network as a weighted 
directed graph, where proteins serve as nodes, and inter-
actions serve as edges. The network was formed by aggre-
gating information from four sources of interaction data, 
including Netpath [33], Phosphosite [34], HPRD [35], 
and InWeb [36], altogether, covering 16222 nodes and 
437888 edges. Edge directions are assigned where these 
annotations were available (primarily in Phopshosite 
and NetPath). The remaining edges are represented by 
two directed edges between the proteins involved. Edge 
weights were assigned by taking the negative logarithm 
of the associated confidence score, indicating that finding 
the optimal Steiner Network would be the same as find-
ing the most confident solution (assuming independence 
between edges). Confidence data was available for the 
largest of the data sets (InWeb). For HPRD edges that are 
not in InWeb, we used the minimum nonzero confidence 
value by default. For the smaller and highly curated data-
sets, Phopshosite and NetPath, we used the maximal 
confidence level.

Solving DCSN to optimality

Definition 6  (Single-Source DCSN) This is the spe-
cial case of DCSN in which the demands are precisely 
(a, b1, c1), (a, b2, c2), . . . , (a, bk , ck) , for some root a ∈ V  . 
We can assume that c1 ≤ c2 ≤ · · · ≤ ck.

We can derive a natural integer linear program for the 
Single-Source Directed Condition Steiner Network in 
terms of network flows, with each demand being met by 
a flow from source to target:
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Each variable duvc denotes the flow through edge 
(u, v) at condition c, if it exists; each variable duv denotes 
whether (u,  v) is ultimately in the chosen solution sub-
graph; kc denotes the number of demands at condition c .  
The first constraint ensures that if an edge is used at any 
condition, it is chosen as part of the solution. The second 
constraint enforces flow conservation, and hence that the 
demands are satisfied, at all nodes and all conditions.

We note that DCSN easily reduces DCSP, as outlined 
in Theorem  2. However, DCSP is a special case of Sin-
gle-Source DCSN. Therefore, the integer linear program 
defined above can be applied to any DCSN instance with 
a transformation of the instance to DCSP (Fig. 3).

Performance analysis of integer linear programming
Given the protein–protein interaction network G, we 
sample an instance of the node-variant Single-Source 
DCSN as so3:

•	 Instantiate a source node a.
•	 Independently sample β nodes reachable from a, for 

each of the C conditions, giving us {b1,1, . . . , bβ ,C}.
•	 For each node v ∈ V  , include v ∈ Vc if v lies on the 

shortest path from a to one of {b1,c, .., bβ ,c}
•	 For all other nodes v ∈ V  for all c, include v ∈ Vc with 

probability p.

Using a workstation running an Intel Xeon E5-2690 
processor and 250  GB of RAM, optimal solutions to 
instances of modest size (generated using the procedure 
just described) were within reach (Table 2):

We notice that our primary runtime constraint comes 
from C, the number of conditions. In practice, the num-
ber of conditions does not exceed 100.

In addition, we decided to test our DCSN ILP formula-
tion against a simple algorithm of optimizing over each 
demand independently via shortest path. Theoretically, 
the shortest path method can perform up to k times 

worse than DCSN. We note that having zero weight 
edges complicates the comparison of algorithms’ perfor-
mance on real data. The reason is that we can have the 
same weight for a large and small networks. Instead, we 
wanted to also take into account the size of the returned 
networks. To do that we added a constant weight for 
every edge. Testing over a sample set of instances gen-
erated with parameters β = 100 , C = 10 , p = 0.25 , we 
found that the shortest path method returns a solution 
on average 1.07 times more costly.

Therefore, we present a model showing preliminary 
promises of translating and finding optimal solutions to 
real world biological problems with practical runtime.

Conclusion and discussion
In this paper we introduced the Condition Steiner Net-
work (CSN) problem and its directed variant, in which 
the goal is to find a minimal subgraph satisfying a set of 
k condition-sensitive connectivity demands. We show, 
in contrast to known results for traditional Steiner prob-
lems, that this problem is NP-hard to approximate to a 
factor of C − ǫ , as well as k − ǫ , for every C , k ≥ 2 and 
ǫ > 0 . We then explored a special case, in which the con-
ditions/graphs satisfy a monotonicity property. For such 
instances we proposed algorithms significantly beating 
the pessimistic lower bound for the general problem; this 
was accomplished by reducing the problem to certain 
traditional Steiner problems. Lastly, we developed and 

minimize

subject to

Fig. 3  Integer linear program for Single-Source Condition Steiner 
Network. δvc = 1 for v at condition c if v is a target at condition c, −kc 
for v at condition c if v is the source node at condition c, 0 otherwise

Table 2  ILP solve times  for  some random instances 
generated by our random model using the Gurobi Python 
Solver package [37]

β C p Time to solve

100 1 1.0 45 s ± 5 s

10 1 0.25 1 m ± 10 s

100 1 0.25 1 m ± 10 s

10 1 0.75 1 m ± 10 s

100 1 0.75 1 m ± 10 s

100 10 1.0 7 m ± 30 s

10 10 0.25 9 m ± 30 s

10 10 0.75 11 m ± 30 s

100 10 0.25 12 m ± 30 s

100 10 0.75 17 m ± 2 m

100 100 1.0 1 h 40 m ± 15 m

10 100 0.75 2 h 30 m ± 12 m

100 100 0.75 4 h ± 40 m

3  As previously mentioned, this variant reduces to the edge variant via reduc-
tion, and vice versa
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applied an integer programming-based exact algorithm 
on simulated instances built over the human protein–
protein interaction network, and reported feasible runt-
imes for real-world problem instances.

Importantly, along the way we showed implications of 
these results for CSN on other network connectivity prob-
lems that are commonly used in PPI analysis—such as 
Shortest Path, Steiner Tree, Prize-Collecting Steiner Tree—
when conditions are added. We showed that for each of 
these problems, we cannot guarantee (in polynomial time) 
a solution with a value below C − ǫ times the optimal value. 
These lower bounds are quite strict, in the sense that naively 
approximating the problem separately in every condition, 
and taking the union of those solutions, already gives an 
approximation ratio of O(C). At the same time, by relating 
the various condition Steiner problems to one another, we 
also obtained some positive results: the condition versions 
of Shortest Path and Steiner Tree admit good approxima-
tions when the conditions are monotonic. Moreover, all of 
the condition problems (with the exception of Prize-Col-
lecting Steiner Tree) can be solved using a natural integer 
programming framework that works well in practice.

Proofs of main theorems
Problem variants
There are several natural ways to formulate the condi-
tion Steiner Network problem, depending on whether the 
edges are changing over condition, or the nodes, or both.

Definition 10  (Condition Steiner Network (edge vari-
ant)) This is the formulation described in the introduc-
tion: the inputs are G1 = (V ,E1), . . . ,GC = (V ,EC) , w(·) , 
and D = {(ai, bi, ci)} . The task is to find a minimum-
weight sub-graph H ⊆ G that satisfies all of the demands.

Definition 11  (Condition Steiner Network (node vari-
ant)) Let the underlying graph be G = (V ,E) . The inputs 
are G1 = (V1,E(V1)), . . . ,GC = (VC ,E(VC)) , w(·) , and D . 
Here, E(Vc) ⊆ E denotes the edges induced by Vc ⊆ V  . 
A path satisfies a demand at condition t if all edges along 
that path exist in Gc.

Definition 12  (Condition Steiner Network 
(node and edge variant)) The inputs are precisely 
G1 = (V1,E1), . . . ,GC = (VC ,EC) , w(·) , and D . This is the 
same as the node variant except that each Ec can be any 
subset of E(Vc).

Similarly, define the corresponding directed problem 
Directed Condition Steiner Network (DCSN) with the 
same three variants. The only difference is that the edges 
are directed, and a demand (a, b, c) must be satisfied by a 
directed a → b path in Gc.

The following observation enables all our results to 
apply to all problem variants.

Proposition 2  The edge, node, and node-and-edge vari-
ants of CSN are mutually polynomial-time reducible via 
strict reductions (i.e. preserving the approximation ratio 
exactly). Similarly all three variants of DCSN are mutu-
ally strictly reducible.

Proof  The following statements shall hold for both 
undirected and directed versions. Clearly the node-and-
edge variant generalizes the other two. It suffices to show 
two more directions:

(Node-and-edge reduces to node) Let (u,  v) be an edge 
existent at a set of conditions τ (u, v) , whose endpoints 
exist at conditions τ (u) and τ (v) . To make this a node-
condition instance, create an intermediate node x(u,v) 
existent at conditions τ (u, v) , an edge (u, x(u,v)) with 
the original weight w(u,  v), and an edge (x(u,v), v) with 
zero weight. A solution of cost W in the node-and-edge 
instance corresponds to a node-condition solution of 
cost W, and vice-versa.

(Node reduces to edge) Let (u,  v) be an edge whose 
endpoints exist at conditions τ (u) and τ (v) . To make 
this an edge-condition instance, let (u, v) exist at condi-
tions τ (u, v) := τ (u) ∩ τ (v) . Let every node exist at all 
conditions; let the edges retain their original weights. A 
solution of cost W in the node-condition instance corre-
sponds to an edge-condition solution of cost W, and vice-
versa.�  �

Proof of inapproximability for general C and k
Here we prove our main theorem, showing optimal hard-
ness for any number of demands. To do this, we introduce 
a generalization of Label Cover to partite hypergraphs:

Definition 13  (k-Partite Hypergraph Label Cover 
(k-PHLC)) An instance of this problem consists of a 
k-partite, k-regular hypergraph G = (V1, . . . ,Vk ,E) (that 
is, each edge contains exactly one vertex from each of 
the k parts) and a set of possible labels � . The input also 
includes, for each hyperedge e ∈ E , a projection func-
tion π e

v : � → C for each v ∈ e ; � is the set of all such 
functions. A labeling of G is a function φ :

⋃k
i=1 Vi → � 

assigning each node a label. There are two notions of 
edge satisfaction under a labeling φ:

•	 φ strongly satisfies a hyperedge e = (v1, . . . , vk) if the 
labels of all its vertices are mapped to the same color, 
i.e. π e

vi
(φ(vi)) = π

e
vj
(φ(vj)) for all i, j ∈ [k].
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•	 φ weakly satisfies a hyperedge e = (v1, . . . , vk) if there 
exists some pair of vertices vi , vj whose labels are 
mapped to the same color, i.e. π e

vi
(φ(vi)) = π

e
vj
(φ(vj)) 

for some i �= j ∈ [k].

The following gap hardness for this problem was shown 
by Feige [38]:

Theorem  7  For every ǫ > 0 and every fixed inte-
ger k ≥ 2 , there is a constant |�| such that the following 
promise problem is NP-hard: Given a k-Partite Hyper-
graph Label Cover instance (G,�,�) , distinguish between 
the following cases:

•	 (YES instance) There exists a labeling of G that 
strongly satisfies every edge.

•	 (NO instance) Every labeling of G weakly satisfies at 
most ǫ|E| edges.

The proof of (C − ǫ)-hardness and (k − ǫ)-hardness fol-
lows the same outline as the C = k = 2 case (Theorem 6).

Theorem  8  (Main Theorem) CSN and DCSN are NP-
hard to approximate to a factor of C − ǫ as well as k − ǫ 
for every fixed k ≥ 2 and every constant ǫ > 0 . For DCSN, 
this holds even when the underlying graph is acyclic.

Proof  Given the k-PHLC instance in the form 
(G = (V1, . . . ,Vk ,E),�,�) , and letting vc,i denote the i-
th node in Vc , construct a DCSN instance 
( G = (G1, . . . ,Gk) , along with k demands) as follows. For 
every c ∈ [k] , create nodes vSc,1, . . . , v

S
t,|Vc|+1 . Create a vc,i

-bundle from each vSc,i to vSc,i+1 , whose ℓ-strands (for 
ℓ ∈ � ) are each a chain of bundles, one for each incident 
hyperedge e = (v1,i1 , . . . , vc,i, . . . , vk ,ik ) ∈ E . Each 
(v1,i1 , . . . , vc,i, . . . , vk ,ik )-bundle has a 
(v1,i1 , ℓ1, . . . , vc,i, ℓc, . . . , vk ,ik , ℓk)-path for each agreeing 
combination of labels—that is, every k-tuple 
(ℓ1, . . . , ℓc, . . . , ℓk) such that: 
π
e
v1,i1

(ℓ1) = · · · = π
e
vc,i

(ℓc) = · · · = π
e
vk ,ik

(ℓk) , where e is 
the shared edge. If there are no such combinations, then 
the e-bundle is a single simple strand.

For c ∈ [k] , set all the edges in the vc,i-bundles to exist 
in Gc only. Now, for each (v1,i1 , ℓ1, . . . , vk ,ik , ℓk) , merge 
together the (v1,i1 , ℓ1, . . . , vk ,ik , ℓk)-paths across all Gc that 
have such a strand. Finally, the connectivity demands are 
D =

{(

vSc,1, v
S
c,|Vc|+1, c

)

: c ∈ [k]
}

.
The analysis follows the k = 2 case. Suppose we have a 

YES instance of k-PHLC, with optimal labeling ℓ∗v to each 

node v ∈
⋃k

t=1 Vc . Then an optimal solution H∗ to the 
constructed DCSN instance is to traverse, at each condi-
tion c and for each vc,i-bundle, the path through the ℓ∗vc,i
-strand. In particular for each (v1,i1 , . . . , vk ,ik )-bundle in 
that strand, traverse the (v1,i1 , ℓ∗1, . . . , vk ,ik , ℓ

∗

k)-path.
In tallying the total edge cost, H∗

∩ G1 (the sub-graph 
at condition 1) incurs a cost of |E|, one for each contact 
edge. The sub-graphs of H∗ at conditions 2, . . . , k account 
for no additional cost, since all contact edges correspond 
to a label which agrees with all its neighbors’ labels, and 
hence were merged with the agreeing contact edges in 
the other sub-graphs.

Conversely suppose we have a NO instance of k-PHLC, 
so that for any labeling ℓ∗v , for at least (1− ǫ)|E| hyper-
edges e, the projection functions of all nodes in e disa-
gree. By definition, any solution to the constructed DCSN 
instance contains a simple vSt,1 → vSt,|Vc|+1 path Pc at each 
condition c. As before, P1 alone incurs a cost of exactly 
|E|. However, at least (1− ǫ)|E| of the hyperedges in G 
cannot be weakly satisfied; for these hyperedges e, for 
every pair of neighbors vc,ic , vc′,ic′ ∈ e , there is no path 
through the e-bundle in vt,ic ’s ℓ∗vc,ic-strand that is merged 
with any of the paths through the e-bundle in vc′,ic′ ’s ℓ∗vc,ic′
-strand (for otherwise, it would indicate a labeling that 
weakly satisfies e in the k-PHLC instance). Therefore 
paths P2, . . . ,Pk each contribute at least (1− ǫ)|E| addi-
tional cost, so the solution has total cost at least 
(1− ǫ)|E| · k.

It follows from the gap between the YES and NO cases 
that DCSN is NP-hard to approximate to within a fac-
tor of k − ǫ for every constant ǫ > 0 ; and since C = k in 
our construction, it is also NP-hard for C − ǫ . Moreover 
since The directed condition graph we constructed is 
acyclic, this result holds even on DAGs. As before, the 
same analysis holds for the undirected problem CSN by 
undirecting the edges.�  �

Explicit algorithm for Monotonic Single‑Source DCSN
We provide a modified version of the approximation 
algorithm presented in Charikar et  al. [24] for Directed 
Steiner Tree (DST), which achieves the same approxi-
mation ratio for our problem Monotonic Single-Source 
DCSN.

We provide a similar explanation as of that presented 
in Charikar et al. Consider a trivial approximation algo-
rithm, where we take the shortest path from the source 
to each individual target. Consider the example where 
there are edges of cost C − ǫ to each target, and a vertex 
v with distance C from the source, and with distance 0 
to each target. In such a case, this trivial approximation 
algorithm will achieve only an �(k)-approximation. Con-
sider instead an algorithm which found, from the root, 
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an intermediary vertex v, which was connected to all the 
targets via shortest path. In the case of the above exam-
ple, this would find us the optimal sub-graph. The algo-
rithm below generalizes this process, by progressively 
finding optimal substructures with good cost relative to 
the number of targets connected. We show that this algo-
rithm provides a good approximation ratio.

Definition 14  (Metric closure of a condi-
tion graph) For a directed condition graph 
G = (G1 = (V ,E1),G2 = (V ,E2), . . . ,GC = (V ,EC))   , 
define its metric closure to be G̃ = (V ,E, w̃) where 
E =

⋃

c Ec and w̃(u, v, c) is the length of the shortest 
u → v path in Gc (note that in contrast with w, w̃ takes 
three arguments).

Definition 15  (V(T)) Let T be a tree with root r. We say 
a demand of the form (r, b, c) is satisfied by T if there is a 
path in T from r to b at condition c. V(T) is then the set of 
demands satisfied by T.

Definition 16  (D(T)) The density of a tree T is 
D(T ) =

cost(T )

|V (T )|
 , where cost(T) is the sum of edge weights 

of T.

The way we will prove the approximation ratio of this 
algorithm is to show that it behaves precisely as the 
algorithm of Charikar et al. does, when given as input 
the DST instance produced by our reduction from 
Monotonic Single Source DCSN (Lemma 3).

Proposition 3  The algorithm above is equivalent to the 
algorithm of Charikar et  al., when applied to the DST 
instance output by the reduction of Lemma 3.

Proof  To see this, note that in our reduced instance, 
we see a collection of vertices, v1, . . . , v|C| . Therefore, 
the only equivalent modifications needed to the original 
algorithm are:

•	 In the input, rather than keeping track of the cur-
rent root as some vertex vi , keep track of v at the 
current condition instead, i.e. (v, i).

•	 The distance from some vi to xj , j ≥ i is simply the 
distance from v to x at condition j, i.e. w̃(v, x, j).

•	 Instead of looping through all vertices in the form 
v1, . . . , v|C| , we instead loop through all vertices, 
and all conditions.

Therefore this algorithm guarantees the same approxi-
mation ratio for Monotonic Single Source DCSN as the 
original algorithm achieved for DST. In particular for all 
i > 1 , Ai(G, a, 0, k ,D) provides an i2(i − 1)k1/i approxi-
mation to DCSN, in time O(nik2i) [24, 39]4. � �

Abbreviations
CPCST: Condition Prize-Collecting Steiner Tree; CSN: Condition Steiner Net-
work; CST: Condition Steiner Tree; CSP: Condition Shortest Path; DSN: Directed 
Steiner Network; DST: Directed Steiner Tree; DCSN: Directed Condition Steiner 
Network; DCSP: Directed Condition Shortest Path; k-PHLC: k-Partite Hyper-
graph Label Cover; MKL: Minimum k-Labeling; PPI: protein–protein interaction.

Authors’ contributions
All authors conceived and designed the study. JW and BW derived the main 
hardness results. AK derived the monotonic hardness results and approxima-
tion algorithm. NY was the PI and oversaw the project. All authors read and 
approved the final manuscript.

Author details
1 Department of Computer Science, Stanford University, Stanford, CA, USA. 
2 Department of Electrical Engineering and Computer Science, UC Berkeley, 
Berkeley, CA, USA. 

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Our solver for the general Condition Steiner Network problem is available at: 
https​://githu​b.com/Yosef​Lab/condi​tion_conne​ctivi​ty_probl​ems.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was partially supported by the National Science Foundation 
Graduate Research Fellowship Program award DGE 1106400, NIH grants 
U01HG007910 and U01MH105979, and the U.S.-Israel Binational Science 
Foundation.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

4  The first paper [24] incorrectly claims a bound of i(i − 1)k1/i ; this was cor-
rected in [39].

https://github.com/YosefLab/condition_connectivity_problems


Page 17 of 17Wu et al. Algorithms Mol Biol            (2019) 14:5 

Received: 3 April 2018   Accepted: 26 February 2019

References
	1.	 Chatr-aryamontri A, Breitkreutz B-J, Oughtred R, Boucher L, Heinicke S, 

Chen D, Stark C, Breitkreutz A, Kolas N, O’Donnell L, Reguly T, Nixon J, 
Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, 
Livstone MS, Dolinski K, Tyers M. The BioGRID interaction database: 2015 
update. Nucleic Acids Res. 2015;43(Database issue):470–8. https​://doi.
org/10.1093/nar/gku12​04.

	2.	 Ben-Shitrit T, Yosef N, Shemesh K, Sharan R, Ruppin E, Kupiec M. System-
atic identification of gene annotation errors in the widely used yeast 
mutation collections. Nat Methods. 2012;9(4):373–8.

	3.	 Huang S-sC, Fraenkel E. Integration of proteomic, transcriptional, and inter-
actome data reveals hidden signaling components. Sci Signal. 2009;2(81):40.

	4.	 Scott MS, Perkins T, Bunnell S, Pepin F, Thomas DY, Hallett M. Identify-
ing regulatory subnetworks for a set of genes. Mol Cell Proteom. 
2005;4(5):683–92.

	5.	 Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo VK. 
Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. 
Nature. 2013;496(7446):513–7.

	6.	 Yosef N, Ungar L, Zalckvar E, Kimchi A, Kupiec M, Ruppin E, Sharan R. 
Toward accurate reconstruction of functional protein networks. Mol Syst 
Biol. 2009;5(1):248.

	7.	 Garmaroudi FS, Marchant D, Si X, Khalili A, Bashashati A, Wong BW, Tabet A, 
Ng RT, Murphy K, Luo H, Janes KA, McManus BM. Pairwise network mecha-
nisms in the host signaling response to coxsackievirus B3 infection. Proc Natl 
Acad Sci. 2010;107(39):17053–8. https​://doi.org/10.1073/pnas.10064​78107​.

	8.	 Huang SS, Fraenkel E. Integrating proteomic, transcriptional, and interactome 
data reveals hidden components of signaling and regulatory networks. Sci 
Signal. 2009;2(81):40. https​://doi.org/10.1126/scisi​gnal.20003​50.

	9.	 Tuncbag N, Gosline SJC, Kedaigle A, Soltis AR, Gitter A, Fraenkel E. 
Network-based interpretation of diverse high-throughput datasets 
through the omics integrator software package. PLOS Comput Biol. 
2016;12(4):1–18. https​://doi.org/10.1371/journ​al.pcbi.10048​79.

	10.	 Przytycka TM, Singh M, Slonim DK. Toward the dynamic interactome: it’s 
about time. Brief Bioinform. 2010;11(1):15–29. https​://doi.org/10.1093/
bib/bbp05​7.

	11.	 Mertins P, Przybylski D, Yosef N, Qiao J, Clauser K, Raychowdhury R, 
Eisenhaure TM, Maritzen T, Haucke V, Satoh T, Akira S, Carr SA, Regev 
A, Hacohen N, Chevrier N. An integrative framework reveals signal-
ing-to-transcription events in toll-like receptor signaling. Cell Rep. 
2017;19(13):2853–66. https​://doi.org/10.1016/j.celre​p.2017.06.016.

	12.	 Kanshin E, Bergeron-Sandoval L-P, Isik SS, Thibault P, Michnick SW. A 
cell-signaling network temporally resolves specific versus promiscuous 
phosphorylation. Cell Rep. 2015;10(7):1202–14. https​://doi.org/10.1016/j.
celre​p.2015.01.052.

	13.	 Bendall SC, Simonds EF, Qiu P, Amir E-aD, Krutzik PO, Finck R, Bruggner 
RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, 
Pe’er D, Tanner SD, Nolan GP. Single-cell mass cytometry of differential 
immune and drug responses across a human hematopoietic continuum. 
Science. 2011;332(6030):687–96. https​://doi.org/10.1126/scien​ce.11987​04 
21551058[pmid].

	14.	 Mazza A, Gat-Viks I, Farhan H, Sharan R. A minimum-labeling approach for 
reconstructing protein networks across multiple conditions. Algorithms 
Mol Biol. 2014;9(1):1.

	15.	 Berlingerio M, Pinelli F, Calabrese F. ABACUS: frequent pAttern mining-
BAsed Community discovery in mUltidimensional networkS. Data Min 
Knowl Discov. 2013;27:294–320.

	16.	 Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. 
Multilayer networks. J Complex Netw. 2014;2(3):203–71. https​://doi.
org/10.1093/comne​t/cnu01​6.

	17.	 Byrka J, Grandoni F, Rothvoß T, Sanità L. An improved LP-based approxi-
mation for Steiner tree. In: Proceedings of the forty-second ACM sympo-
sium on theory of computing. New York City: ACM; 2010. p. 583–92.

	18.	 Agrawal A, Klein P, Ravi R. When trees collide: an approximation algorithm 
for the generalized Steiner problem on networks. SIAM J Comput. 
1995;24(3):440–56.

	19.	 Chlebík M, Chlebíková J. The Steiner tree problem on graphs: inapproxi-
mability results. Theor Comput Sci. 2008;406(3):207–14.

	20.	 Feldman J, Ruhl M. The directed Steiner network problem is tractable for 
a constant number of terminals. In: 40th annual symposium on founda-
tions of computer science, 1999. New York: IEEE; 1999. p. 299–308.

	21.	 Feldman M, Kortsarz G, Nutov Z. Improved approximation algorithms 
for directed Steiner Forest. In: Proceedings of the twentieth annual 
ACM-SIAM symposium on discrete algorithms. Philadelphia: Society for 
Industrial and Applied Mathematics; 2009. p. 922–31.

	22.	 Chekuri C, Even G, Gupta A, Segev D. Set connectivity problems in 
undirected graphs and the directed Steiner network problem. ACM Trans 
Algorithm. 2011;7(2):18.

	23.	 Dodis Y, Khanna S. Designing networks with bounded pairwise distance. 
In: Proceedings of the thirty-first annual ACM symposium on theory of 
computing. New York City: ACM; 1999. p. 750–9.

	24.	 Charikar M, Chekuri C, Cheung T-Y, Dai Z, Goel A, Guha S, Li M. 
Approximation algorithms for directed Steiner problems. J Algorithms. 
1999;33(1):73–91.

	25.	 Halperin E, Krauthgamer R. Polylogarithmic inapproximability. In: 
Proceedings of the thirty-fifth annual ACM symposium on theory of 
computing. New York City: ACM; 2003. p. 585–94.

	26.	 Archer A, Bateni M, Hajiaghayi M, Karloff H. Improved approximation 
algorithms for prize-collecting Steiner tree and TSP. SIAM J Comput. 
2011;40(2):309–32.

	27.	 Dinur I, Manurangsi P. Eth-hardness of approximating 2-CSPs and 
directed Steiner network. In: LIPIcs-Leibniz international proceedings in 
informatics, vol. 94. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 
2018.

	28.	 Arora S, Babai L, Stern J, Sweedy Z. The hardness of approximate optima 
in lattices, codes, and systems of linear equations. In: Proceedings., 34th 
annual symposium on foundations of computer science, 1993. New York: 
IEEE; 1993. p. 724–33.

	29.	 Arora S, Lund C, Motwani R, Sudan M, Szegedy M. Proof verification and 
the hardness of approximation problems. J ACM. 1998;45(3):501–55.

	30.	 Raz R. A parallel repetition theorem. SIAM J Comput. 1998;27(3):763–803.
	31.	 Charikar M, Naor J, Schieber B. Resource optimization in QoS multicast 

routing of real-time multimedia. IEEE/ACM Trans Netw. 2004;12(2):340–8.
	32.	 Chuzhoy J, Gupta A, Naor JS, Sinha A. On the approximability of some 

network design problems. ACM Trans Algorithms. 2008;4(2):23.
	33.	 Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GSS, Venugopal 

AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, 
Tattikota SG, Mohan S, Padhukasahasram H, Subbannayya Y, Goel R, 
Jacob HK, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, 
Ramachandra Y, Rahiman BA, Prasad TK, Lin J-X, Houtman JC, Desiderio 
S, Renauld J-C, Constantinescu SN, Ohara O, Hirano T, Kubo M, Singh S, 
Khatri P, Draghici S, Bader GD, Sander C, Leonard WJ, Pandey A. Netpath: 
a public resource of curated signal transduction pathways. Genome Biol. 
2010;11(1):3. https​://doi.org/10.1186/gb-2010-11-1-r3.

	34.	 Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. 
Phosphositeplus, 2014: mutations, PTMs and recalibrations. Nucleic Acids 
Res. 2015;43(Database issue):512–20. https​://doi.org/10.1093/nar/gku12​
67.

	35.	 Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, 
Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Bal-
akrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani 
S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood 
R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, 
Ramabadran S, Chaerkady R, Pandey A. Human protein reference data-
base—2009 update. Nucleic Acids Res. 2009;37(suppl 1):767–72. https​://
doi.org/10.1093/nar/gkn89​2.

	36.	 Li T, Wernersson R, Hansen RB, Horn H, Mercer J, Slodkowicz G, et al. A 
scored human protein–protein interaction network to catalyze genomic 
interpretation. Nat Methods. 2016;14:61.

	37.	 Gurobi Optimization L. Gurobi optimizer reference manual. 2018. http://
www.gurob​i.com.

	38.	 Feige U. A threshold of in n for approximating set cover. J ACM. 
1998;45(4):634–52.

	39.	 Helvig CS, Robins G, Zelikovsky A. An improved approximation scheme 
for the group Steiner problem. Networks. 2001;37(1):8–20.

https://doi.org/10.1093/nar/gku1204
https://doi.org/10.1093/nar/gku1204
https://doi.org/10.1073/pnas.1006478107
https://doi.org/10.1126/scisignal.2000350
https://doi.org/10.1371/journal.pcbi.1004879
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1016/j.celrep.2017.06.016
https://doi.org/10.1016/j.celrep.2015.01.052
https://doi.org/10.1016/j.celrep.2015.01.052
https://doi.org/10.1126/science.1198704
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1186/gb-2010-11-1-r3
https://doi.org/10.1093/nar/gku1267
https://doi.org/10.1093/nar/gku1267
https://doi.org/10.1093/nar/gkn892
https://doi.org/10.1093/nar/gkn892
http://www.gurobi.com
http://www.gurobi.com

	Connectivity problems on heterogeneous graphs
	Abstract 
	Background: 
	Results and discussion: 
	Conclusion: 

	Background
	Summary of main contributions
	Introduction to Steiner problems
	Classic Steiner problems
	Condition Steiner problems

	Our results
	Preliminaries
	Hardness of condition Steiner problems
	Overview of the reduction
	Inapproximability for two demands
	Inapproximability for general C and k
	Inapproximability for Steiner variants

	Monotonic special cases
	Monotonicity in the undirected case
	Monotonicity in the directed case

	Application to protein–protein interaction networks
	Building the protein–protein interaction network
	Solving DCSN to optimality
	Performance analysis of integer linear programming

	Conclusion and discussion
	Proofs of main theorems
	Problem variants
	Proof of inapproximability for general C and k
	Explicit algorithm for Monotonic Single-Source DCSN

	Authors’ contributions
	References




