
Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20
https://doi.org/10.1186/s13015-019-0154-7

SOFTWARE ARTICLE

Bayesian localization of CNV candidates
in WGS data within minutes
John Wiedenhoeft1,2*  , Alex Cagan3,4, Rimma Kozhemyakina5, Rimma Gulevich5 and Alexander Schliep1,2

Abstract 

Background:  Full Bayesian inference for detecting copy number variants (CNV) from whole-genome sequencing
(WGS) data is still largely infeasible due to computational demands. A recently introduced approach to perform For-
ward–Backward Gibbs sampling using dynamic Haar wavelet compression has alleviated issues of convergence and,
to some extent, speed. Yet, the problem remains challenging in practice.

Results:  In this paper, we propose an improved algorithmic framework for this approach. We provide new space-effi-
cient data structures to query sufficient statistics in logarithmic time, based on a linear-time, in-place transform of the
data, which also improves on the compression ratio. We also propose a new approach to efficiently store and update
marginal state counts obtained from the Gibbs sampler.

Conclusions:  Using this approach, we discover several CNV candidates in two rat populations divergently selected
for tame and aggressive behavior, consistent with earlier results concerning the domestication syndrome as well
as experimental observations. Computationally, we observe a 29.5-fold decrease in memory, an average 5.8-fold
speedup, as well as a 191-fold decrease in minor page faults. We also observe that metrics varied greatly in the old
implementation, but not the new one. We conjecture that this is due to the better compression scheme. The fully
Bayesian segmentation of the entire WGS data set required 3.5 min and 1.24 GB of memory, and can hence be per-
formed on a commodity laptop.

Keywords:  HMM, Wavelet, CNV, Bayesian inference

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Hidden Markov models (HMM) are arguably among the
central methods for signal processing. In bioinformat-
ics, they are commonly used for the detection of copy-
number variations (CNV), which have been recognized
to play an important role in cancer progression [1–3]
and neuropsychiatric disorders [4, 5]. Depending on the
application and experimental platform, the number of
states would be chosen between 3 for simple gains and
losses, to around 10 for complex genomic alterations
in certain cancers. Since CNV can disrupt or duplicate
genes and regulatory elements, effects such as loss-of-
function, chimeric proteins, as well as gene dosage can
lead to variations in phenotype. Copy-number variants

fixed in divergently selected populations can be used as
candidates for genetic causes underlying phenotypic
adaptations.

The challenges in HMM segmentation of WGS data are
two-fold. First, though the advantages of Bayesian seg-
mentation over frequentist approaches have previously
been noted [6–10], inference is computationally demand-
ing on WGS-scale data; in particular, Bayesian methods
which rely on Markov Chain Monte Carlo (MCMC)
approximations are infeasible on standard computers, in
terms of memory requirements, speed and convergence
characteristics. Second, HMM assume piecewise con-
stant data with variates conditionally independent given
the true segmentation, which means that any long-range
bias violates the model assumptions. Unfortunately,
this is the case when using read-depth data from WGS
experiments for CNV estimation. The number of reads
mapped to any given position is confounded by amplifi-
cation bias due to primer affinity and GC content, as well

Open Access

Algorithms for
Molecular Biology

*Correspondence: john.wiedenhoeft@med.uni-goettingen.de
1 Department of Computer Science and Engineering, University
of Gothenburg | Chalmers, Rännvägen 6, 412 58 Gothenburg, Sweden
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6935-1517
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0154-7&domain=pdf

Page 2 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

as computational bias incurred during read mapping.
This can lead to multiple shifts in segment means, as
well as non-linear long-range effects in the signal which
would be modeled more accurately as piecewise higher-
order polynomials. Removing such effects computa-
tionally, e.g. by regression methods such as loess [11], is
non-trivial, as it requires the separation of three signals:
additive experimental noise, a smooth long-range bias
as well as the sequence of true means. In other words, it
is hard to differentiate between shifts in signal averages
which are due to bias and those that represent actual CN
changes.

The contributions of this paper aim to address these
issues. On the matter of efficient computation, it was
recently shown that Bayesian inference of the hidden
state sequence using Forward–Backward Gibbs sam-
pling (FBG) [12] can be made feasible for large data sets
by using a dynamic compression scheme based on Haar
wavelet regression [6]. In this approach, data is presented
to the Gibbs sampler in a compressed form, and the sam-
pler adapts the compression dynamically according to the
noise level it obtains in each sampling step. This has led to
drastic improvements in speed and convergence behavior
of FBG. Conceptually, the approach allows the software
to “zoom in” on candidate regions for CNV and concen-
trate its computational efforts there, while ignoring long
diploid segments. While the issue of convergence has
been addressed and overall speed has been improved
[6], memory usage remains an obstacle when analyzing
WGS data. Here, we present a novel algorithmic frame-
work to implement the dynamic wavelet compression

approach for HMM inference using FBG. We provide
new data structures to efficiently store and update mar-
ginal state counts for compression block structures, and
to efficiently query sufficient statistics at different wavelet
resolution levels. We derive a linear time, in-place algo-
rithm for the data transform required for its construc-
tion, based on the lifting scheme [13].

On the matter of providing FBG with data that fits its
model to a reasonable degree, we noticed that it is com-
mon practice to sequence sample and control in a multi-
plexed fashion, often for cost reasons. Using differential
read counts from the same, multiplexed sequencing run,
see [14] for instance, cancels out any additive cover-
age bias. This not only reduces the potential for false
CNV calls due to systematic shifts in the data, but also
obviously decreases the conditional dependence of the
observed variates given the true segmentation labels.
Using such data is therefore a more appropriate input to
HMM methods. Aside from these general considerations,
wavelet compression acts favorably on such data: regres-
sion relies on a property of wavelets called polynomial
suppression. If the underlying signal is a polynomial of a
degree up to a certain constant, wavelets are orthogonal
to it and hence removed during regression. This yields a
separation of signal and noise. Higher-order polynomi-
als due to long-range experimental bias however would
incur additional discontinuities in the regression, lead-
ing to lower compression ratios, higher memory require-
ments, and, consequently, longer running times of FBG.

In order to benchmark our method and demonstrate
its applicability to real data, we used it to obtain CNV

Fig. 1  Pipeline for CNV calls in rat populations, divergently selected for tame and aggressive behavior. After individual barcoding and multiplex
sequencing, counts of mapped start positions for the tame population are subtracted from those in the aggressive population. This removes shared
additive bias from the data. Afterwards, due to low coverage, the data is averaged over 20 positions to make the noise approximately Gaussian.
Then, the data is transformed into a breakpoint array data structure, comprised of sufficient statistics as well as a pointer structure to facilitate
rapid creation of compressed data blocks depending on a given threshold. The breakpoint array generates block boundaries corresponding to
discontinuities obtained in Haar wavelet regression. The universal threshold is used for compression, based on the lowest sampled noise variance in
the emission parameters of the HMM during Forward–Backward Gibbs sampling

Page 3 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

candidates from differential read depth data for rat pop-
ulations divergently selected for tame and aggressive
behavior (Fig. 1). As expected for a behavioral phenotype,
the results are significantly enriched for annotations of
neuronal development and function, showing that results
are consistent with a hypothesis that CNV play a role in
the domestication syndrome. To the best of our knowl-
edge, this is the first time fully Bayesian inference on
several hundreds of millions of latent state variables has
been performed on a commodity laptop within minutes.

As was shown previously [6, 7], compressing the
observed data into blocks of sufficient statistics can sig-
nificantly speed up Bayesian inference, in particular For-
ward–Backward Gibbs sampling (FBG). While [7] used a
static compression heuristic based on kd-trees, we used
the discontinuities in the Haar wavelet regression as
block boundaries, based on the smallest emission vari-
ance among all latent states sampled in each FBG itera-
tion [6]. We used a data structure termed wavelet tree to
solve the problem of querying sufficient statistics for each
block for a given resolution/noise level, without explicitly
computing the wavelet regression. We will show that this
data structure induces superfluous block boundaries,
leading to suboptimal compression ratios, and replace it
by a new data structure called a breakpoint array. For
that, as well as to elucidate the reasoning behind the use
of differential read depth data to maximize compression
and avoid bias in HMM inference, we briefly review the
principles of function regression using wavelet shrinkage:
Let L2(R) := L2(R,B(R), �) be the space of square-inte-
grable functions over the reals. This is a Hilbert space
with inner product

〈

f , g
〉

:=
∫∞
−∞ f (x)g(x)dx . As we are

only concerned with functions over subsets of R , the
inner product commutes without involving the complex
conjugate. The inner product induces the norm
∥

∥f
∥

∥ :=
√

〈

f , f
〉

 . Two functions f, g are said to be orthogo-

nal iff
〈

f , g
〉

= 0 , and a function f is called normal iff
∥

∥f
∥

∥ = 1 . L2(R) contains all continuous and piecewise
continuous functions, including all piecewise constant
functions. Let

be the Haar wavelet [15], and
{

ψj,k(t) := 1√
2j
ψ

(

t−2jk
2j

)}

 ,
j, k ∈ Z (depicted in Fig. 2, top). Since

∥

∥ψj,k

∥

∥ = 1 and
〈

ψj,k ,ψj′k ′
〉

= 0 for (j, k) = (j′, k ′) , this forms an ortho-
normal basis of L2(R) , where a function y is represented
as the linear combination y =

∑

j,k∈Z
〈

ψj,k , y
〉

ψj,k . The
set of detail coefficients dj,k :=

〈

ψj,k , y
〉

 is called the
wavelet transform of y. A wavelet is said to have m

ψ(t) :=







1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1

0 elsewhere

vanishing moments if
〈

pi,ψ
〉

= 0, 0 ≤ i < m, p constant,
it follows that ψ is orthogonal to any polynomial of
degree less than m, since

〈

∑m−1
i=1 pi,ψ

〉

=
∑m−1

i=1

〈

pi,ψ
〉

= 0 .
This property is called polynomial suppression [16]. The
Haar wavelet has one vanishing moment, so it is orthogo-
nal only to constant functions.

For computational applications, a vector f is
obtained by sampling f at equidistant intervals. The
discrete versions of the wavelets are then obtained as
ψ j,k [t] := ψj,k(t) for t ∈ N . These inherit properties such
as orthogonality, finite energy and vanishing moments
from their continuous counterparts. Let

be the position after the left, central and right discontinu-
ity of ψ j,k , respectively.

The Haar wavelet transform is an orthogonal transform,
represented by a matrix W with rows ψ j,k Let the
observed signal be a sampling of a function f corrupted by
centered Gaussian noise, i.e. y = f + ǫ, ǫ[t] ∼i.i.d. N (0, σ 2).
Since the wavelet transform is linear, it acts on
the signal and noise component independently, i.e.
Wy = W(f + ǫ) = Wf +Wǫ. The central idea in wave-
let shrinkage is that

〈

f ,ψ j,k

〉

= 0 if f is polynomial over
the entire support of ψ j,k due to polynomial suppression,
and, in particular, the support does not span a discontinu-
ity in f . Furthermore, due to orthogonality of W , Wǫ is
again a random vector of i.i.d. random variables distrib-
uted as N (0, σ 2) , so the noise is maintained under the
wavelet transform. In general, orthogonal maps preserve
the L2 norm, so �Wǫ� = �ǫ� and

∥

∥Wy
∥

∥ =
∥

∥y
∥

∥ . It follows
that for piecewise polynomial functions with only a few
discontinuities,

〈

y,ψ j,k

〉

=
〈

ǫ,ψ j,k

〉

 for most j, k, i.e.
most wavelet coefficients are only non-zero due to noise.
The idea is then to find a way to create a vector w by set-
ting a suitable set of coefficients in Wf to zero, and then
use the inverse wavelet transform as a regression
f̂ := W⊺w . The simplest method is to use the universal
threshold �u :=

√
2 lnTσ [17], which can be interpreted

as the expected maximum deviation of T such Gaussian
random variables from their mean, as derived by Cramér–
Chernoff’s method [18]. Hence, removing coefficients of
absolute value below �u removes all noise coefficients with
high probability [17]. Using different variances, the result-
ing f̂ are piecewise constant functions, whose discontinui-
ties we interpret as block boundaries in a compression
scheme. In our approach, σ 2 is the minimum variance of
all emission parameters in the HMM as sampled at each
iteration. The existence of a discontinuity obviously
depends on the magnitude of the wavelet coefficients

b+j,k := 2jk b±j,k := 2j
(

k + 1

2

)

b−j,k := 2j(k + 1)

Page 4 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

involved: if
∣

∣dj,k
∣

∣ > �u , then there are block boundaries
before data positions b+j,k , b

±
j,k and b−j,k.

Implementation
Block generators
In order to avoid recomputing the wavelet regression
explicitly for a new threshold in each FBG iteration, con-
sider the following abstract data structure:

Definition 2.1  (Block generator) Let b be a vector of
breakpoint weights. For a threshold � , let Y� be a parti-
tion of y into blocks such that there is a block boundary

between positions t − 1 and t if b[t] ≥ � . We call a data
structure a block generator if it can, for any threshold � ,
generate an ordered sequence of sufficient statistics that
represents Y� . A block generator is called compressive
if, for all � , b[t] < � implies that no breakpoint is cre-
ated between t − 1 and t. It is called subcompressive if
for some � such a superfluous block boundary is created.
A block generator is called space-efficient if it stores no
more than T sufficient statistics, where T is the number
of input data points.

Fig. 2  The top subplots show the Haar wavelet basis for T = 16 . The bottom subplot shows the corresponding wavelet tree. In the tree layout
induced by the lifting scheme, the position of a coefficient equals that of the central discontinuity of its associated Haar wavelet. For instance, ψ2,0
has positive support on y[0], y[1] , and negative support on y[2], y[3] , with b+2,0 = 0 , b±2,0 = 2 and b−2,0 = 4 . In this example, nodes for which

∣

∣dj,k
∣

∣ > �
are shown in black, i. e.

∣

∣d1,0
∣

∣ > � , inducing block boundaries at 0, 1 and 2, and
∣

∣d1,7
∣

∣ > � , inducing block boundaries at 14, 15 and 16 (indicated by
thin solid vertical lines), creating 5 blocks in total. The wavelet tree data structure is subcompressive, as it induces additional breakpoints. si,k denotes
the maximum of all

∣

∣dj′ ,k′
∣

∣ in the subtree. Nodes in gray indicate the case where
∣

∣dj,k
∣

∣ < � , yet si,k > � , hence inducing additional block boundaries,
indicated here by dotted lines, at 2, 4, 8, 12 an 14. This yields a total of 8 blocks

Page 5 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

This definition of a block generator implies that Y�1
 is a

subdivision of Y�2
 if �1 ≤ �2 . For sufficiently small thresh-

olds, we require sufficient statistics for each data point,
hence any block generator implementation will have to
store a minimum of T sufficient statistics. On the other
hand, if all entries in b are unique, each breakpoint subdi-
vides a block defined by a higher threshold, and a simple
induction argument shows that a block generator has to
be able to generate 2T − 1 different blocks and their suf-
ficient statistics: starting with a single block of size T and
a sorted sequence of threshold values in b , each threshold
creates two new blocks by subdividing one block in the
previous partition.

We previously defined the wavelet tree data structure to
serve as a block generator; for details, see [6]. It is based
on the observation that the non-zero support intervals
of wavelet basis functions are nested along scales (cf.
Fig. 2). Each node corresponds to a basis function, with
its position corresponding to the position of the wavelet’s
central discontinuity. The wavelet tree stores the maxi-
mum absolute coefficient sij of its subtree in the node. To
obtain the sufficient statistics for a block at a given noise
level, the tree is traversed in DFS order. Whenever a node
is encountered for which sij < � , none of its descendants
can have a higher value, and hence no additional discon-
tinuities. The subtree is pruned from the DFS, creating a
single block for the sufficient statistics of its leaf nodes.
On the other hand, if sij ≥ � , the search recurses on the
subtrees, creating additional block boundaries between
leaves.

Unfortunately, the wavelet tree is subcompressive, as
demonstrated by the counterexample in Fig. 2, as well
as memory-inefficient, since it stores 2T − 1 statistics.
It should be noted that, while the wavelet tree stores as
many sufficient statistics as needed for T data points, the
fact that it is subcompressive implies that the block struc-
tures it creates differ from those of a compressive block
generator, and hence these are not the same 2T − 1 sta-
tistics that would occur in across all block structures a
compressive block generator would yield.

In order to provide an efficient implementation, we
separate a block generator into two sub-structures: a
breakpoint array to derive a sequence of start and end
positions for blocks, and an integral array to query the
sufficient statistics for each block.

Integral array for block statistics
Let a data structure D(y) support the following query:
given a start index s and an end index e, with s < e , return
the sufficient statistics in the half-open interval [s, e),
i. e.

∑e−1
i=s T(y[i]) . A trivial implementation of such a data

structure would be to store the statistics of each input
position, and then iterate through the array and calculate
their cumulative sums between breakpoints. This is obvi-
ously costly for huge data, as it incurs �(N) time com-
plexity for a block of size N. Constant-time queries could
be made by pre-computing all T 2 statistics, which is obvi-
ously prohibitive for large data.

The basic idea for querying sufficient statistics comes
from a simple data structure in image processing called
a summed-area table or integral image [19], which is
used to query the sum of a rectangular region in constant
time. As its one-dimensional equivalent, let v be an inte-
gral array such that

For any arbitrary start and end positions s, e, the suffi-
cient statistics of the block [s, e) can be calculated in con-
stant time as

In contrast to image processing, where integral arrays are
constructed over integer data, sufficient statistics require
floating-point values for most distributions. Unfor-
tunately, this incurs numeric problems for large data
sizes. An IEEE 754 single-precision float has between 6
and 9 significant digits. Assuming that values for suffi-
cient statistics are on the order of 1, the further back a
data point is in v , the more of its significant digits is used
to store the sum. Neighboring entries will be similar or
even equal, leading to catastrophic cancellation for short
segments. For instance, values above ∼ 17 million are
rounded to multiples of 2, so that even if each entry was
1.0, blocks of size 1 would be queried as 0.

To alleviate this, we subdivide v into non-overlapping
cells of size c, and compute partial cumulative sums of
sufficient statistics within each cell; for convenience, we
compute these sums from high to low indices, see Fig. 3.
It is then easy to see that

∑e−1
t=s T(y[t]) =

(

∑

j v[j]
)

− v[e]
for j ∈ {s} ∪

{

i
∣

∣ s < i ≤ e, i ≡ 0 (mod c)
}

 . In our imple-
mentation, we used c = 216 = 65, 536.

Breakpoint array for block boundaries
In order to create a block generator, the integral array
has to be supplemented with a data structure which
yields start and end positions sk(�) , ek(�) for subsequent
blocks k. Since ek(�) = sk+1(�) , it suffices to implement
an iterator over sk for increasing k, where s0 = 0 and

v[t] =
{

T(0) t = 0
∑t−1

i=0 T(y[t]) t > 0.

e−1
∑

t=s

T(y[t]) =
(

s−1
∑

t=0

T(y[t])
)

−
(

e−1
∑

i=0

T(y[t])
)

= v[e] − v[s].

Page 6 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

sk = ek(�) = sk+1(�) . We use a simple array of pointers
to facilitate these queries:

Definition 2.2  (Breakpoint array) Let b ∈ R
T be a

vector of breakpoint weights, and p ∈ Z
T
+ be a vec-

tor of pointers. A data structure (b,p) is called
a breakpoint array of input data y if and only if
∀t < i < t + p[t] : b[t] > b[i] . We call each interval
[t, . . . ,p[t] − 1] a stretch at t. A breakpoint array is called
maximal if for all T there exist no n > p[t] such that set-
ting p[t] to n would still result in a valid breakpoint array.

A breakpoint array can be constructed in linear time
O(T) (Algorithm 1), based on a linear-time algorithm to
calculate the pointers to the next element at least as large
as the current one, which is well established in algorith-
mic folklore. It is modified here to use the distance to that
element instead of a direct pointer (line 20, which would
normally read p[i] ← t ). The stack is changed to a deque
to accommodate the inclusion of a maximum jump size
m. The front of the deque is popped and its pointer set
whenever it is m positions away, which happens at most
T times.

3 7 11 15

2 3 6 7 10 11 14 15

1 2 3 5 6 7 9 10 11 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3  An illustration of an integral array v , using cell size c = 4 . Columns represent data positions, and contain all positions i which are added up
and stored at v[t] ; for instance, v[9] =

∑11
i=9 T(y[i]) . The statistics of a block [s, e) are obtained by adding v[s], v[m] for all s < m < e , m ≡ 0 mod c ,

and subtracting v[e] iff e ≡ 0 mod c . For instance, block [3, 10) is obtained as v[3] + v[4] + v[8] − v[10] , yielding
∑9

t=3 T(y[t])

Algorithm 1 Constructor of a maximal breakpoint array for a vector b of breakpoint
weights, pointer array p and a maximum jump size m. St is a deque (double-ended
queue).
1: procedure BreakpointArrayConstructor(b,v,m)
2: pushback(St, 0) � make first position pending
3: for t ← 1, . . . ,T − 1 do
4: if |St| > 0 then
5: if t− St[front] = m then � distance to farthest element
6: p[St[front]] ← m � set farthest jump pointer
7: popfront(St) � mark as processed
8: while |St| > 0 do � go through stack to find pending elements
9: if b[St[back]] ≤ b[t] then � pending elements with smaller weights
10: reduceStack() � set pending pointers and statistics
11: else
12: break � rest of stack has larger weights
13: push(St, t) � make current position pending
14: t ← T
15: while |St| > 0 do � all remaining elements point to one-past-the-end
16: reduceStacks()
17:
18: function reduceStack()
19: i ← St[back] � get closest pending index i
20: p[i] ← t− i � set its pointer to the distance to current index
21: popback(St) � remove index from stack

Page 7 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

For each t, p[t] points to the beginning of next stretch.
Within each stretch, the highest breakpoint weight is
located at its first position; when searching for weights
below a given threshold � , once the first weight is found
to be below � , all others can be safely ignored, leading to
a simple query: Starting at ek(�)+ 1 , follow pointers until
a weight above threshold is encountered (see Fig. 4). In
order to derive complexity results, we require the follow-
ing result:

Theorem 2.1  (Left-to-right maxima [20, 21]) For a vec-
tor x, let x[t] be called a left-to-right maximum of x iff
∀i < t : x[i] < x[t]. Let mx count the number of left-to-
right maximal elements in x. For a random permutation
of x with |x| = N elements, E[mx] =

∑N
i=1

1
N → lnN as

N → ∞. Due to symmetry, the same result holds for min-
ima and right-to-left extrema.

Following pointers in p creates a sequence of
left-to-right maxima. For a block of size N, start-
ing at ek(�) , there are M := N − 2 elements in
I := [ek(�)+ 1, . . . , ek(�)+ N = ek+1(�)) which can

appear in any order, which implies that ek+1(�) can be
found in O(logN) expected time. Likewise, the maxi-
mum expected stack size in the constructor (Algo-
rithm 1) is lnT  : assume m = ∞ . An element at t is
pushed whenever there exists an index j on the stack
such that ∀i = j, . . . , top : w[i] < w[t] . Given the small-
est such j, the stacks are popped until top = j − 1 , and
w[j − 1] > w[t] . Therefore, the stack contains the right-
to-left minima of w[1 : t] after pushing index t, and
the claim follows from Theorem 2.1 for t = T  . For any
m < ∞ , the front of the deque gets popped, thus only
decreasing the stack size. For the size Thg of the human
genome (3.5 billion), the expected maximum stack size
is < 22 , a negligible overhead. We noticed that, for noisy
data, most entries in p are much smaller than T, and
using pointer-sized integers such as size_t in C++
(typically 8 byte on 64-bit systems), would be wasteful.
Instead, we use a 2-byte unsigned integer type to accom-
modate jumps up to m = 65, 536 . The resulting break-
point array is not maximal anymore, but maintains its
space-efficiency and compressivity. The query overhead
is minimal in practice; even in case of a single block for
genome sized data, Thg

65,536 < 54.

Fig. 4  An example of generating blocks following pointers in a breakpoint array. The top figure represents the input data y , the bottom figure
represents the absolute wavelet coefficients, as well as the pointers (grey lines) and the path taken by the query (red). Whenever a value above the
threshold (horizontal blue line) is found, a breakpoint is returned (vertical blue lines)

Page 8 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

Haar breakpoint weights
Having established a data structure to iterate over blocks
for any given compression level, we now define a vector
bH of breakpoint weights for the Haar wavelet transform,
i. e. bH [t] > � iff Haar wavelet regression with threshold
� contains a discontinuity between t − 1 an t, and there-
fore a block boundary in Haar wavelet compression. This
is the case if the absolute value of any coefficient of wave-
lets who have any of their discontinuities at t as above the
threshold, so we define, for any t = b±j,k ∈ [0,T),

for t > 0 or b−j,k < T  . Additionally, there is always a block
boundary before the first position, so bH [0] := ∞ . Fur-
thermore, if T is not a power of 2, some wavelets have
incomplete support. As their magnitude is unknown
without padding the data, we assume that their detail
coefficient is potentially larger than any threshold, induc-
ing a breakpoint at the central discontinuity, so
bH

[

b±j,k

]

:= ∞ for b−j,k ≥ T  . A breakpoint array initial-
ized with these weights is called a Haar breakpoint array.

(1)

bH [t] := max
j,k

{∣

∣

∣

〈

ψ j,k , y
〉∣

∣

∣

∣

∣ t ∈
{

b+j,k , b
±
j,k , b

−
j,k

}}

We will show that bH can be computed in-place and in
linear time. For that purpose, we first define the maxlet
array as a generalization of the Haar transform to arbi-
trary data sizes and absolute values: For b±j,k ∈ [0,T) , let

We later define the Haar boundary transform to compute
bH from bM . In order to compute bM in-place, we cannot
use the pyramid algorithm as in [6], since it requires pad-
ding of the data to a size T ′ ∈ 2N , T ≤ T ′ ≤ 2T  , as well as
an auxiliary array of size T ′ , thereby increasing the memory
by up to a factor of 4. Instead, we use a more recent in-place
calculation of the Haar wavelet transform based on the lift-
ing scheme [13, 22]. It is based on the following recursions:

bM

[

b±j,k

]

=
{∞ t = 0 ∨ b−j,k ≥ T

∣

∣

∣

〈

ψ j,k , y
〉
∣

∣

∣
t > 0 ∨ b−j,k < T .

cj,k :=







y[k] j = 0
�

b−j,k−1

t=b+j,k
y[t] = cj−1,2k + cj−1,2k+1 j > 0, and

dj,k := 1√
2j

�

cj−1,2k + cj−1,2k+1

�

.

Fig. 5  Illustration of the various algorithms necessary to create the Haar breakpoint array in-place. The top figure represents the transformation of
an input array y at level 0 into various other forms. The terms cj,k and wj,k represent values associated with the scale and detail coefficients of the
wavelet transform, respectively. The wavelet tree (bold lines) represents the nested nature of the support intervals: the horizontal position of ψj,k
represents the position t of central discontinuity b±j,k of ψ j,k , and its vertical position represents the resolution level i. The support interval for each
wavelet corresponds to all descendants at level 0. The tree nodes contain the output arrays of the various transforms. Dotted lines indicate the
recursive relations in the lifting scheme, as used by the in-place Haar wavelet transform and the maxlet transform. The solid lines (including tree
edges) indicate the dependencies in the Haar boundary transform. In the bottom figure, white bullets represent maxlet coefficients, black bullets
represent their changed values after the Haar boundary transform, and lines indicate breakpoint array pointers

Page 9 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

These relations are illustrated in Fig. 5 using dotted
edges, with dj,k = wj,k and c0,k = yk = y[k] . By storing cj,k
at index b+j,k and dj,k at index b±j,k , this yields a simple in-
place algorithm which never overwrites dj,k once it is cal-
culated. Notice that detail coefficients dj,k are stored at
the position b±j,k corresponding to the central discontinu-
ity in their corresponding wavelet, and that this corre-
sponds to an in-order DFS layout of the wavelet tree
without the leaves corresponding to the input data, with
the leftmost leaf at index 1 (Fig. 5, bold lines); the tree is
created from the leaves up, and from left to right. A
straightforward modification of the lifting scheme to cal-
culate bM is shown in Algorithm 2, where line 13 is
changed to yield the absolute value, and lines 9, 14 and 15
are added to ensure bH

[

b±j,k

]

:= ∞ for b−j,k ≥ T .

Algorithm 2 Given emission data y, compute the maxlet transform, i. e. the absolute
detail coefficients of the Haar wavelet transform for arbitrary data sizes T .
1: procedure MaxletTransform(y)
2: T ← |y| � number of data points
3: for j ← 1, . . . , � ldT � do � iterate over levels, bottom-up
4: N ← 2j � support size of ψj,k

5: s ← 1√
N

� normalization constant

6: for k ← 0, . . . ,
⌈

T
N

⌉

− 1 do � process elements on level j from left to right
7: L ← �kN left index
8: R ← N(k + 1

2) � right index
9: if R < T then
10: y[L] ← y [L] � copy cj−1,2k
11: y[R] ← y [R] � copy cj−1,2k+1
12: y [L] ← y[L] + y[R] � calculate cj,k
13: y [R] ← s |y[L]− y[R]| � calculate

∣

∣dj,k
∣

∣

14: else
15: y[L] ← ∞ � force breakpoint for incomplete support
16: return y

To derive Haar breakpoint weight from the maxlet
transform, we introduce the Haar boundary transform
(Algorithm 3), which performs the necessary maximum
computations for Eq. 1 in-place and in linear time O(T).
In Fig. 5 (top), the set of nodes considered in Eq. 1 are
the direct descendants of a node along the solid lines.
Algorithm 3 is simple: it iterates over the scales j in a
top-down fashion (Fig. 5), and writes the maxima of all
required nodes at lower levels ℓ ≤ j to the current array
position. Since it never reads values from levels > j , no
extra memory is required, and the algorithm is in-place.
Since any node is considered at most twice for updating
a node on a higher level, the running time of the Haar
boundary transform is also linear, O(T).

Algorithm 3 Given a maxlet transform d, for each position t compute the maximum
absolute coefficient of all wavelets which have a discontinuity at t, in-place and in linear
time.
1: procedure HaarBoundaryTransform(d)
2: d[0] ← ∞ � force breakpoint before first element
3: for j ← � ldT � , . . . , 1 do � iterate over levels, top-down
4: N ← 2j � support size of wavelet t level j
5: for k ← 0, . . . ,

⌈

T
N

⌉

− 1 do � elements on level j, left to right

6: t ← N(k + 1
2) � index of central discontinuity b±j,k of ψj,k

7: n ← N
2 � distance to left and right discontinuity

8: if t < T then
9: L ← t− �n index of left discontinuity
10: d[L] ← max {d[L],d[t]} � process left discontinuity
11: R ← t+ �n index of right discontinuity
12: if R < T then
13: d[R] ← max {d[R],d[t]} � process right discontinuity
14: return d

Page 10 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

Compressed marginal records
In order to keep track of the states sampled for each posi-
tion during Gibbs sampling, we require the following
data structure:

Definition 2.3  (Marginal records) Let t ∈ [0, . . . ,T) ,
smax the largest state sampled during FBG, and
s ∈ [0, . . . , smax] . A marginal record is a data structure
which allows to store and query the number of times
state s was observed at data index t.

The previous solution to recording marginal state
counts was inefficient. Since nodes in the wavelet tree
corresponded to compression blocks, counts were
stored directly in the nodes. For n latent HMM states,
this required allocation of 2Tn array elements, which
was wasteful since the quick convergence of HaMMLET
meant that many blocks would never be sampled, or only
be assigned to a small subset of CNV states. Such a preal-
location approach also requires the number of states to
be known in advance, and precludes further extensions to
priors on the state number such as the Dirichlet Process.
Though we resorted to dynamic allocation, the necessary
variables for housekeeping still incurred large overhead.

For static compression blocks, marginals can simply be
stored in a set of arrays with an additional array contain-
ing block sizes, essentially a run-length encoding (RLE),
as illustrated by the right column of Fig. 6. This approach
however is complicated by the use of dynamic compres-
sion: at each new iteration, a different block structure is
created, which requires existing RLE segments to be split
into multiple parts, each of which will have counts for a
different state added. This could be solved trivially using
a linked list implementation, in which new segments are
inserted with the appropriate updates of its neighbors
size. This approach is obviously wasteful.

To get around these issues, we developed an encod-
ing for marginal records that stores counts sequentially
in a vector of integers in a highly compressed fashion
with minimum overhead. Adding records for run-length
encoded state sequences is performed using a queue with
iterator access to its front elements, such as implemented
by the C++ STL deque, and requires a single pass over

the state records and is therefore linear. The memory
overhead is 2 bytes per segment, plus one bit for every 32
integers. Encoding for marginal counts for a single posi-
tion is performed using a sequence c of signed integers.
A negative number is used to store the counts for a state.
The state s(i) of a position i is recursively defined as

Positive entries are called index values. We further require
that all index values must be in strictly increasing order,
and that no unnecessary index is used, i. e. we require
∀c[i] > 0 : s(i − 1)+ 1 < c[i] . In other words, runs of
states having observed counts are represented as runs
of negative numbers, and runs of zero-counts are repre-
sented as a single number indicating the state label of the
next higher state with non-zero counts. For instance, the
count vector (2, 0, 0, 8, 1, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0,
0) would be encoded as (−2, 3,−8,−1,−4, 9,−5) , and
the corresponding states are (0, 1, 3, 4, 5, 6, 9), though
1 and 6 are somewhat inconsequential as they have no
counts associated with them; note that the decision to
use negative signs for counts instead of index values is
arbitrary in principle, but leads to using fewer negations
in the implementation. In settings where quick conver-
gence is expected, the number of zeros is expected to be
high, leading to good compression under this scheme.
In general, assume that the marginals contain M distinct
segments after running FBG, and the HMM has S states.
Then, the queue can contain no more than (2S + 1)M
entries: for each segment, one zero to mark the beginning
of a segment, and up to one positive and negative value
per state. If the number of latent HMM states is limited
to S, then there can be no more than S non-zero entries
per segment. Hence, for reasonably high compression
ratios, this amounts to small memory usage. For instance,
at a compression ratio of 300 for a human genome at
base-level resolution and 10 latent HMM states, marginal
records using 2-byte signed integers require less than 234
MB. In practice, not every segment will contain 11 val-
ues, due to fast convergence, and the numbers get even
smaller. Compared to the storage requirements of the
block generator, this is negligible.

s(0) = 0 s(i) :=
{

s(i − 1) c[i − 1] < 0
c[i − 1] c[i − 1] > 0.

(See figure on next page.)
Fig. 6  A small three-step example of recording marginal counts using Algorithm 4. Starting at position t = 0 , 7 observations of state 5 are inserted.
In the count queue, black boxes indicate that state counts of zero have been skipped; those numbers encode the next higher state that has a
non-zero count. White boxes indicate the counts for the state. For instance, the right-most part of the count queue in the top subfigure is stored as
(0,−1,−2, 4,−7) , indicating that there is 1 count for state 0, 2 counts for state 1, and 7 counts for state 4. The segment starts at position t = 9 , and
has a length of 1. Note that 0 is used to mark the start of a new segment. Each segment has a total of 10 counts already recorded. Arrows indicate
contiguous elements in the count queue. With every iteration, a segment is moved to the back with the new state count included. Note that in the
last iteration, the segment t = 6, . . . , 8 is split. After finishing this step, the next count would be recorded starting at position t = 7 . Notice how each
run of zeros in the state queue is represented by a single number, thus allowing for arbitrarily large state indices without much overhead

Page 11 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

Page 12 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

Algorithm 4 Append N observations of state s to the marginal records.
1: procedure AddMarginalRecord(N, state)
2: bool done ←false
3: s ←0 � State at current index
4: while N > 0 do � Consume entire length of insert block
5: s ←0 � Assume lowest state
6: done ←false � Remember if insert was successful
7: for t ←0 t ¡ countQ.size() ++t do
8: entry ←countQ [t] � Entry at current position
9: if entry = 0 then � Segment is finished
10: if ¬ done then � Count not registered yet
11: if s < state then � Skipped over states?
12: countQ.push(state) � Add state index
13: countQ.push(−count) � Append negative count
14: countQ.push(0) � Mark the end of this segment
15: break
16: if done then � Count was successfully registered
17: countQ.push(entry) � Keep appending segment’s entries
18: continue
19: if entry > 0 then � Entry denotes state of next entry
20: if state < entry then � Count must be inserted here
21: if s < state then � Skipped over states?
22: countQ.push(state) � Add state index
23: countQ.push(-count) � Append negative count
24: if state+ 1 < entry then � Skipping states?
25: countQ.push(entry) � Add state index
26: done ←true � Mark count insertion as successful
27: else
28: countQ.push(entry)
29: s ←entry � Update state for next entry
30: else � Entry is negative count or current state
31: if s = state then � Reached target state to be counted
32: countQ.push(entry− count) � Add count
33: done ←true � Mark count insertion as successful
34: else
35: countQ.push(entry) � Only append entry
36: s++ � Update current state
37: if N < sizeQ.front() then � Residual front segment remains
38: sizeQ.push(N) � Assign its size to new segment
39: sizeQ .front() () ←sizeQ.front()−N � Remaining size
40: break
41: else � Front segment was completely absorbed
42: sizeQ.push(sizeQ .front()) � Associate size with new segment
43: N ← N − sizeQ.front() � Set insert size to its remainder
44: sizeQ.pop() � Remove empty segment’s size
45: while countQ.front() �= 0 do
46: countQ.pop() � Remove all entries for empty segment
47: countQ.pop() � Remove segment separator

Experiment background
The domestication of a handful of animal species, start-
ing in the early holocene, has played a crucial role in the
development of complex human societies [23]. While we
have learned a great deal about when and where animal
domestication occurred, the genetic changes that under-
lie the phenotypic differences between domestic animals
and their wild progenitors remain relatively unknown.
It has been observed that domestic animal species
tend to share a suite of behavioral, physiological and

Results and discussion
In order to verify that the higher compression did not
adversely affect the segmentation quality, we re-ran the
evaluation on the 129,000 simulated datasets in [6] using
our new implementation of HaMMLET. The F-measures
and plots are virtually identical to Fig. 5 in that paper,
and are therefore not shown here (see Web Supplement).

In the following subsections, we present a case study
of CNV inference on differential WGS read depth data
using HaMMLET with the Haar breakpoint array.

Page 13 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

morphological traits that are absent or rarely observed
in their wild progenitors [24, 25]. These traits include
changes in pigmentation, craniofacial anatomy, hormo-
nal levels, seasonal reproduction cycles and increased
docility [26]. This suite of changes is referred to as the
“domestication syndrome”. A long-standing question
in evolutionary biology is whether these convergent
changes are the result of genetic drift, artificial selection
by humans for each individual trait, or pleiotropic effects
of selection for a few or even a single trait. A proponent
of the latter hypothesis was the Academician Dmitry K.
Belyaev. He hypothesised that selection for tameness at
the start of the domestication process had pleiotropic
effects that explained many of the features of the domes-
tication syndrome. To test his hypothesis, he began a
program of experimental domestication of the silver fox
(Vulpes vulpes) in Novosibirsk, Siberia in 1959. Foxes
obtained for fur farms were selectively bred for their
behavioral response to an approaching human. One line
of foxes was bred for tame behavior towards humans
while a control line was selected for a fearful and aggres-
sive response towards humans, to maintain the wild-type
behavior despite being maintained in captive condi-
tions. After just a few generations of selective breeding
the tame line began to show many of the traits associated
with the domestication syndrome, including changes in
pigmentation, morphology and behavior [27–29].

The same experimental setup of artificially selecting
two lines, one for tame and one for fearful and aggressive
behavior towards humans was also repeated by the same
research group in the brown Norway rat (Rattus nor-
vegicus) with similar results [30]. These results seem to
confirm Belyaev’s hypothesis that selection for tameness
alone could explain many of the features of the domesti-
cation syndrome. However, the specific genetic changes
that underlie these changes remain unknown. Knowledge
of the genetic variants that have been selected in these
lines could lead to mechanistic insights into the domes-
tication process. Genomic structural variants are of par-
ticular interest as they are known to have played a role in
the adaptation of other domestic animals [31] and struc-
tural variants that affect multiple functional genomic
loci are one possible explanation for the rapid response
to selection observed in these lines. To address this issue
we analysed whole-genome data that was generated from
multiple individuals from the tame and aggressive lines
of rats.

Sample origins and data generation
DNA samples were obtained from two rat lines origi-
nating from a shared wild source population and subse-
quently maintained in isolation and divergently selected
for ∼ 70 generations for their behavioral response to

humans. 20 samples were obtained from the tame line,
which has been selected for a reduced fear response
towards an approaching human hand. 20 samples were
obtained from the aggressive line, which has been
selected for an increase in fearful and aggressive behavior
towards an approaching human hand. DNA extraction
was carried out at the Institute of Cytology and Genetics,
the Siberian Branch of the Russian Academy of Sciences,
Novosibirsk and at the Max Planck Institute for Evolu-
tionary Anthropology (MPI-EVA), Germany.

For all samples, sequencing libraries were generated
consisting of 125 bp double-indexed paired-end reads.
Samples were pooled into a single library in order to
avoid any batch effects during sequencing. Sequencing
was performed on a combination of the Illumina Genome
Analyzer II and High-Seq platforms. Library preparation
and sequencing was carried out at the MPI-EVA. The rats
have a mean coverage of ∼ 4× per individual. Base call-
ing was done using freeIbis [32]. Adapters were removed
and potentially chimeric sequences flagged using leeHom
with default parameters [33]. Reads were demultiplexed
using deML using default quality thresholds [34]. Reads
were then mapped to the Rattus norvegicus reference
assembly rno5, using the BWA with default parameters
[35]. Duplicate read removal was performed with Pic-
ard (http://broad​insti​tute.githu​b.io/picar​d/). Local indel
realignment was performed using GATK [36]. Lowest
mapping positions were recorded for each read, and their
counts were accumulated. Start counts for the tame pop-
ulation were subtracted from their counterparts in the
aggressive population, yielding 1,880,703,547 data points.
Due to the low coverage, the data showed highly discrete
noise, and hence the data was averaged over non-over-
lapping windows of 20 positions to approximate Gauss-
ian noise, resulting in 94,035,178 input positions. We
then ran HaMMLET with 8 CNV states and automatic
priors, see [6].

Computational benchmarks
On a computer with Intel Xeon CPU E7-8890 v4 (2.20
GHz) and 1 TB RAM, running Ubuntu 14.04.5 LTS, full
Bayesian inference with HaMMLET for 200 iterations
with a burn-in of 1800 for an 8-state-model required 3
min 41 s and 1.3 GB RAM on a single core. By compari-
son, the previously published version of HaMMLET took
1 h 5 min 27 s, using 40 GB RAM, a 17.8-fold speedup.

For a broader evaluation, we have created 100 repli-
cates of the data by splitting it into 2500 chunks of equal
sizes, which we then permuted randomly. We measured
the memory usage (maximum resident set size), run-
ning time as well as cache behavior (minor page faults),
see the boxplots in Fig. 7). The smaller savings in runtime
compared to the original data can be attributed to the

http://broadinstitute.github.io/picard/

Page 14 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

fact that permutation of the data is likely to disrupt long
highly compressible sections of the data.

While the RAM usage remains almost constant among
replicates within each implementation, we noticed that
runtime and cache behavior varied widely in the old, but
not the new implementation. We attribute this to the fact
that the old compression scheme is suboptimal, yielding
smaller blocks and hence more randomized assignment
to states, leading to slower mixing properties of the Gibbs
sampler. Notice that the data contains outliers which are
likely to result from sampling small emission variances
due to short compression blocks.

Biological results
We consider all genomic segments with an absolute state
mean ≥ 1 as containing putative structural variation seg-
regating between the tame and aggressive rat lines. This
results in 10,083,374 regions with a mean size of 407
base pairs. We identify all genes that are within or over-
lap these regions by ≥ 1 base pair using Ensembl’s Vari-
ant Effect Predictor [37]. We find 1036 genes with at least
partial overlap with these regions.

To investigate the potential phenotypic consequences
of these structural variants we performed GO gene
enrichment analysis using the software Webgestalt [38,
39]. We tested for enrichment of GO categories using
all genes overlapping these structural variants using all
genes in the rat genome as background. We consider as
significantly enriched all pathways with p-value < 0.05
after using the Benjamini and Hochberg procedure to
correct for multiple hypothesis testing [40]. We identify
many significantly enriched pathways (Additional file 1:
Table S1). We now briefly discuss some of these pathways
and the genes within them and how they may inform us
about the genetic changes underlying the phenotypic dif-
ferences between these lines.

The most significantly enriched pathway is “Synapse
assembly” (p-value = 0.0028), with five genes that are
in putative structural variants segregating between the
tame and aggressive rat lines. Some of these genes are
associated with phenotypes that may be involved in the
behavioral differences observed between the tame and
aggressive rat lines. For example, one of the genes is
the neuronal cadherin gene Cdh2. Missense mutations
in this gene are associated with obsessive-compulsive
behavior and Tourette disorder phenotypes in humans
[41] and this gene has been associated with anxiety in
mice [42]. Another gene encodes the ephrin receptor
Ephb1. The ephrin receptor-ligand system is involved in
the regulation of several developmental processes in the
nervous system. Notably, mice with null mutations for
this gene exhibit neuronal loss in the substantia nigra and
display spontaneous locomotor hyperactivity [43]. This is

Fig. 7  Comparison of benchmarks for running time, memory usage
and cache behavior between the old and new versions of HaMMLET
on the rat population WGS data set. The new approach yields a
17.8-fold speedup and 32.2-fold memory reduction. Notice that the
number of minor page faults decreases by two orders of magnitude,
indicating much better cache behavior due to the use of new
data structures and an improved implementation. The number of
major page faults is zero in both implementations. The wavelet tree
benchmarks also contain one outlier with 2.4 billion page faults and
6.4 h runtime, likely due to undercompression. No such anomaly was
observed for the breakpoint array

Page 15 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

interesting given that the tame and aggressive rats have
differences in their activity in an open-field test [30].

We also observe multiple additional enriched path-
ways involved in neuronal development and function, e.g.
“transmission of nerve impulse”, “regulation of neurologi-
cal system process”, “dendrite morphogenesis”. Therefore,
we suspect that many of these segregating structural vari-
ants may have been targeted by selection and are con-
tributing the phenotypic differences between these lines.
Future study of the variants identified here may lead to
insights into the domestication process. A more detailed
evaluation of our finding will be published elsewhere.
Plots of segmentation results for the entire genome can
be found in the web supplement at https​://schli​eplab​.org/
Suppl​ement​s/rats/.

Conclusion
We have presented an new wavelet compression scheme
for HaMMLET. The compression is optimal in that it does
not introduce unnecessary block boundaries in addition
to the wavelet regression discontinuities. This leads to
much more stable benchmarks and reliable performance.
Additional improvements, such as a memory-efficient
data structure for marginal state records, allow for Bayes-
ian inference of a hidden Markov model of genome-sized
data, such as for CNV calling, on standard consumer
hardware. Future applications include inference on mul-
tivariate data. By computing detail coefficients in post-
order DFS across all dimensions simultaneously, and the
maxlet transform has a straightforward generalization to
higher dimensions with only O(log T) overhead, instead
of the naive �(T) incurred by aggregating maxima in a
second array.

Availability and requirements

Project name:	� HaMMLET
Project home page:	� https​://schli​eplab​.org/Softw​

are/HaMML​ET/
Operating system:	� Platform-independent
Programming language:	� C++
Other requirements:	� C++11-compliant com-

piler. For plotting: Python
2.7, Matplotlib

License:	� GNU GPL.

Additional file

Additional file 1: Table S1. Significantly enriched GO categories.

Acknowledgements
JW would like to thank Janet Kelso, Svante Pääbo, and everyone at the Max
Planck Institute for Evolutionary Anthropology in Leipzig for their kind hospi-
tality and support.

Authors’ contributions
JW and AS conceived the computational approach. JW designed and imple-
mented the software. RG, RK and AC performed the experiments and analysis.
JW, AC and AS wrote the manuscript. All authors read and approved the final
manuscript.

Funding
Funding was provided through NIH grant 1 U01 CA198952-01 and The Federal
Research Center Institute of Cytology and Genetics Grant N 0324-2018-0016.

Availability of data and materials
https​://schli​eplab​.org/Suppl​ement​s/rats/.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science and Engineering, University of Gothen-
burg | Chalmers, Rännvägen 6, 412 58 Gothenburg, Sweden. 2 Department
of Computer Science, Rutgers University, Piscataway, NJ 08854, USA. 3 Max
Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
4 Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK. 5 Institute of Cytol-
ogy and Genetics of the Siberian Branch of the Russian Academy of Sciences,
Novosibirsk 630090, Russia.

Received: 11 September 2018 Accepted: 8 August 2019

References
	1.	 Fröhling S, Döhner H. Chromosomal abnormalities in cancer. N Engl J

Med. 2008;359(7):722–34. https​://doi.org/10.1056/NEJMr​a0803​109.
	2.	 Garraway LA, Lander ES. Lessons from the cancer genome. Cell.

2013;153(1):17–37. https​://doi.org/10.1016/j.cell.2013.03.002.
	3.	 Nakagawa H, Wardell CP, Furuta M, Taniguchi H, Fujimoto A. Can-

cer whole-genome sequencing: present and future. Oncogene.
2015;34(49):5943–50. https​://doi.org/10.1038/onc.2015.90.

	4.	 Malhotra D, Sebat J. Cnvs: Harbingers of a rare variant revolution in
psychiatric genetics. Cell. 2012;148(6):1223–41. https​://doi.org/10.1016/j.
cell.2012.02.039.

	5.	 Chung BH-Y, Tao VQ, Tso WW-Y. Copy number variation and autism: new
insights and clinical implications. J Formos Med Assoc. 2014;113(7):400–8.
https​://doi.org/10.1016/j.jfma.2013.01.005.

	6.	 Wiedenhoeft J, Brugel E, Schliep A. Fast Bayesian inference of copy
number variants using hidden Markov models with wavelet compres-
sion. PLoS Computat Biol. 2016;12(5):1–28. https​://doi.org/10.1371/journ​
al.pcbi.10048​71.

	7.	 Mahmud MP, Schliep A. Fast MCMC sampling for hidden Markov models
to determine copy number variations. BMC Bioinform. 2011;12:428. https​
://doi.org/10.1186/1471-2105-12-428.

	8.	 Shah SP, Lam WL, Ng RT, Murphy KP. Modeling recurrent DNA copy num-
ber alterations in array CGH data. Bioinformatics. 2007;23(13):450–8. https​
://doi.org/10.1093/bioin​forma​tics/btm22​1.

	9.	 Rydén T. EM versus Markov Chain Monte Carlo for estimation of hid-
den Markov models: a computational perspective. Bayesian Anal.
2008;3(4):659–88. https​://doi.org/10.1214/08-BA326​.

	10.	 Scott SL. Bayesian methods for hidden Markov models: recursive com-
puting in the 21st century. J Am Stat Assoc. 2002;97(457):337–51. https​://
doi.org/10.1198/01621​45027​53479​464.

	11.	 Cleveland WS, Grosse E. Computational methods for local regression. Stat
Comput. 1991;1(1):47–62. https​://doi.org/10.1007/BF018​90836​.

	12.	 Chib S. Calculating posterior distributions and modal estimates in markov
mixture models. J Econom. 1996;75(1):79–97.

https://schlieplab.org/Supplements/rats/
https://schlieplab.org/Supplements/rats/
https://schlieplab.org/Software/HaMMLET/
https://schlieplab.org/Software/HaMMLET/
https://doi.org/10.1186/s13015-019-0154-7
https://schlieplab.org/Supplements/rats/
https://doi.org/10.1056/NEJMra0803109
https://doi.org/10.1016/j.cell.2013.03.002
https://doi.org/10.1038/onc.2015.90
https://doi.org/10.1016/j.cell.2012.02.039
https://doi.org/10.1016/j.cell.2012.02.039
https://doi.org/10.1016/j.jfma.2013.01.005
https://doi.org/10.1371/journal.pcbi.1004871
https://doi.org/10.1371/journal.pcbi.1004871
https://doi.org/10.1186/1471-2105-12-428
https://doi.org/10.1186/1471-2105-12-428
https://doi.org/10.1093/bioinformatics/btm221
https://doi.org/10.1093/bioinformatics/btm221
https://doi.org/10.1214/08-BA326
https://doi.org/10.1198/016214502753479464
https://doi.org/10.1198/016214502753479464
https://doi.org/10.1007/BF01890836

Page 16 of 16Wiedenhoeft et al. Algorithms Mol Biol (2019) 14:20

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	13.	 Sweldens W. Lifting scheme: a new philosophy in biorthogonal wavelet
constructions. In: Laine AF, Unser MA, editors. Wavelet applications in sig-
nal and image processing III. Bellingham: International Society for Optics
and Photonics; 1995. p. 68–79. https​://doi.org/10.1117/12.21761​9. http://
proce​eding​s.spied​igita​llibr​ary.org/proce​eding​.aspx?artic​leid=10075​78.

	14.	 Daines B, Wang H, Li Y, Han Y, Gibbs R, Chen R. High-throughput multiplex
sequencing to discover copy number variants in drosophila. Genetics.
2009;182(4):935–41.

	15.	 Haar A. Zur Theorie der orthogonalen Funktionensysteme. Mathema-
tische Annalen. 1910;69(3):331–71. https​://doi.org/10.1007/BF014​56326​.

	16.	 Mallat SG. A wavelet tour of signal processing: the sparse way. Burlington:
Academic Press; 2009. http://dl.acm.org/citat​ion.cfm?id=15254​99.

	17.	 Donoho DL, Johnstone IM. Ideal spatial adaptation by wavelet shrinkage.
Biometrika. 1994;81(3):425–55. https​://doi.org/10.1093/biome​t/81.3.425.

	18.	 Massart P. Concentration inequalities and model selection. Lect Notes
Math. 2003;1896:1–324. https​://doi.org/10.1007/978-3-540-48503​-2.

	19.	 Lewis JP. Fast template matching. In: Vision interface 95. Quebec
City: Canadian Image Processing and Pattern Recognition Soci-
ety; 1995. p. 120–3. http://cites​eerx.ist.psu.edu/viewd​oc/summa​
ry?doi=10.1.1.157.3888.

	20.	 Lovász L. Combinatorial problems and exercises. Providence: American
Mathematical Society; 1993. p. 639.

	21.	 Knuth DE. The art of computer programming. Upper Saddle River:
Addison-Wesley Professional; 1997.

	22.	 Sweldens W. The lifting scheme: a construction of second generation
wavelets. SIAM J Math Anal. 1998;29(2):511–46. https​://doi.org/10.1137/
S0036​14109​52890​51.

	23.	 Diamond JM. Guns, germs and steel: a short history of everybody for the
last 13,000 years. New York: Random House; 1998.

	24.	 Darwin C. The variation in animals and plants under domestication.
London: John Murray; 1868.

	25.	 Wilkins AS, Wrangham RW, Fitch WT. The “domestication syndrome” in
mammals: a unified explanation based on neural crest cell behavior and
genetics. Genetics. 2014;197(3):795–808.

	26.	 Sánchez-Villagra MR, Geiger M, Schneider RA. The taming of the neural
crest: a developmental perspective on the origins of morphological
covariation in domesticated mammals. R S Open Sci. 2016;3(6):160107.

	27.	 Belyaev DK. Domestication of animals. Sci J. 1969;5(1):47–52.
	28.	 Trut LN, Plyusnina IZ, Oskina IN. An experiment on fox domestication and

debatable issues of evolution of the dog. Russ J Genet. 2004;40(6):644–
55. https​://doi.org/10.1023/B:RUGE.00000​33312​.92773​.c1.

	29.	 Trut L, Oskina I, Kharlamova A. Animal evolution during domestication:
the domesticated fox as a model. BioEssays. 2009;31(3):349–60. https​://
doi.org/10.1002/bies.20080​0070.

	30.	 Albert FW, Shchepina O, Winter C, Römpler H, Teupser D, Palme R,
Ceglarek U, Kratzsch J, Sohr R, Trut LN, Thiery J, Morgenstern R, Plyusnina
IZ, Schöneberg T, Pääbo S. Phenotypic differences in behavior, physiology
and neurochemistry between rats selected for tameness and for defen-
sive aggression towards humans. Horm Behav. 2008;53(3):413–21. https​
://doi.org/10.1016/j.yhbeh​.2007.11.010.

	31.	 Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski
M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K. The genomic
signature of dog domestication reveals adaptation to a starch-rich diet.
Nature. 2013;495(7441):360–4. https​://doi.org/10.1038/natur​e1183​7.

	32.	 Renaud G, Kircher M, Stenzel U, Kelso J. freeibis: an efficient basecaller
with calibrated quality scores for illumina sequencers. Bioinformatics.
2013;29(9):1208–9. https​://doi.org/10.1093/bioin​forma​tics/btt11​7.

	33.	 Renaud G, Stenzel U, Kelso J. leeHom: adaptor trimming and merging for
illumina sequencing reads. Nucleic Acids Res. 2014;42(18):141. https​://doi.
org/10.1093/nar/gku69​9.

	34.	 Renaud G, Stenzel U, Maricic T, Wiebe V, Kelso J. deML: robust demul-
tiplexing of illumina sequences using a likelihood-based approach.
Bioinformatics. 2015;31(5):770–2. https​://doi.org/10.1093/bioin​forma​tics/
btu71​9.

	35.	 Li H, Durbin R. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics. 2009;25(14):1754–60. https​://doi.
org/10.1093/bioin​forma​tics/btp32​4.

	36.	 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome
analysis toolkit: a mapreduce framework for analyzing next-generation
DNA sequencing data. Genome Res. 2010;20(9):1297–303. https​://doi.
org/10.1101/gr.10752​4.110.

	37.	 McLare W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P,
Cunningham F. The ensembl variant effect predictor. Genome Biol.
2016;17(1):122. https​://doi.org/10.1038/513S8​a.

	38.	 Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for
exploring gene sets in various biological contexts. Nucleic Acids Res.
2005;33(Web Server):741–8. https​://doi.org/10.1093/nar/gki47​5.

	39.	 Wang J, Duncan D, Shi Z, Zhang B. WEB-based gene set analysis toolkit
(WebGestalt): update 2013. Nucleic Acids Res. 2013;41(W1):77–83. https​
://doi.org/10.1093/nar/gkt43​9.

	40.	 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. J R Stat Soc Ser B.
1995;57(1):289–300.

	41.	 Moya PR, Dodman NH, Timpano KR, Rubenstein LM, Rana Z, Fried RL,
Reichardt LF, Heiman GA, Tischfield JA, King RA, Galdzicka M, Ginns EI,
Wendland JR. Rare missense neuronal cadherin gene (CDH2) variants in
specific obsessive-compulsive disorder and tourette disorder pheno-
types. Eur J Hum Genet. 2013;21(8):850–4. https​://doi.org/10.1038/
ejhg.2012.245.

	42.	 Donner J, Pirkola S, Silander K, Kananen L, Terwilliger JD, Lönnqvist J,
Peltonen L, Hovatta I. An association analysis of murine anxiety genes
in humans implicates novel candidate genes for anxiety disorders.
Biol Psychiatry. 2008;64(8):672–80. https​://doi.org/10.1016/j.biops​
ych.2008.06.002.

	43.	 Richards AB, Scheel TA, Wang K, Henkemeyer M, Kromer LF. EphB1 null
mice exhibit neuronal loss in substantia nigra pars reticulata and sponta-
neous locomotor hyperactivity. Eur J Neurosci. 2007;25(9):2619–28. https​
://doi.org/10.1111/j.1460-9568.2007.05523​.x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1117/12.217619
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1007578
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1007578
https://doi.org/10.1007/BF01456326
http://dl.acm.org/citation.cfm?id=1525499
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1007/978-3-540-48503-2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.3888
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.3888
https://doi.org/10.1137/S0036141095289051
https://doi.org/10.1137/S0036141095289051
https://doi.org/10.1023/B:RUGE.0000033312.92773.c1
https://doi.org/10.1002/bies.200800070
https://doi.org/10.1002/bies.200800070
https://doi.org/10.1016/j.yhbeh.2007.11.010
https://doi.org/10.1016/j.yhbeh.2007.11.010
https://doi.org/10.1038/nature11837
https://doi.org/10.1093/bioinformatics/btt117
https://doi.org/10.1093/nar/gku699
https://doi.org/10.1093/nar/gku699
https://doi.org/10.1093/bioinformatics/btu719
https://doi.org/10.1093/bioinformatics/btu719
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1038/513S8a
https://doi.org/10.1093/nar/gki475
https://doi.org/10.1093/nar/gkt439
https://doi.org/10.1093/nar/gkt439
https://doi.org/10.1038/ejhg.2012.245
https://doi.org/10.1038/ejhg.2012.245
https://doi.org/10.1016/j.biopsych.2008.06.002
https://doi.org/10.1016/j.biopsych.2008.06.002
https://doi.org/10.1111/j.1460-9568.2007.05523.x
https://doi.org/10.1111/j.1460-9568.2007.05523.x

	Bayesian localization of CNV candidates in WGS data within minutes
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Block generators
	Integral array for block statistics
	Breakpoint array for block boundaries
	Haar breakpoint weights

	Compressed marginal records

	Results and discussion
	Experiment background
	Sample origins and data generation
	Computational benchmarks
	Biological results

	Conclusion
	Availability and requirements
	Acknowledgements
	References

