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Bayesian localization of CNV candidates 
in WGS data within minutes
John Wiedenhoeft1,2*  , Alex Cagan3,4, Rimma Kozhemyakina5, Rimma Gulevich5 and Alexander Schliep1,2

Abstract 

Background:  Full Bayesian inference for detecting copy number variants (CNV) from whole-genome sequencing 
(WGS) data is still largely infeasible due to computational demands. A recently introduced approach to perform For-
ward–Backward Gibbs sampling using dynamic Haar wavelet compression has alleviated issues of convergence and, 
to some extent, speed. Yet, the problem remains challenging in practice.

Results:  In this paper, we propose an improved algorithmic framework for this approach. We provide new space-effi-
cient data structures to query sufficient statistics in logarithmic time, based on a linear-time, in-place transform of the 
data, which also improves on the compression ratio. We also propose a new approach to efficiently store and update 
marginal state counts obtained from the Gibbs sampler.

Conclusions:  Using this approach, we discover several CNV candidates in two rat populations divergently selected 
for tame and aggressive behavior, consistent with earlier results concerning the domestication syndrome as well 
as experimental observations. Computationally, we observe a 29.5-fold decrease in memory, an average 5.8-fold 
speedup, as well as a 191-fold decrease in minor page faults. We also observe that metrics varied greatly in the old 
implementation, but not the new one. We conjecture that this is due to the better compression scheme. The fully 
Bayesian segmentation of the entire WGS data set required 3.5 min and 1.24 GB of memory, and can hence be per-
formed on a commodity laptop.
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Background
Hidden Markov models (HMM) are arguably among the 
central methods for signal processing. In bioinformat-
ics, they are commonly used for the detection of copy-
number variations (CNV), which have been recognized 
to play an important role in cancer progression [1–3] 
and neuropsychiatric disorders [4, 5]. Depending on the 
application and experimental platform, the number of 
states would be chosen between 3 for simple gains and 
losses, to around 10 for complex genomic alterations 
in certain cancers. Since CNV can disrupt or duplicate 
genes and regulatory elements, effects such as loss-of-
function, chimeric proteins, as well as gene dosage can 
lead to variations in phenotype. Copy-number variants 

fixed in divergently selected populations can be used as 
candidates for genetic causes underlying phenotypic 
adaptations.

The challenges in HMM segmentation of WGS data are 
two-fold. First, though the advantages of Bayesian seg-
mentation over frequentist approaches have previously 
been noted [6–10], inference is computationally demand-
ing on WGS-scale data; in particular, Bayesian methods 
which rely on Markov Chain Monte Carlo (MCMC) 
approximations are infeasible on standard computers, in 
terms of memory requirements, speed and convergence 
characteristics. Second, HMM assume piecewise con-
stant data with variates conditionally independent given 
the true segmentation, which means that any long-range 
bias violates the model assumptions. Unfortunately, 
this is the case when using read-depth data from WGS 
experiments for CNV estimation. The number of reads 
mapped to any given position is confounded by amplifi-
cation bias due to primer affinity and GC content, as well 
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as computational bias incurred during read mapping. 
This can lead to multiple shifts in segment means, as 
well as non-linear long-range effects in the signal which 
would be modeled more accurately as piecewise higher-
order polynomials. Removing such effects computa-
tionally, e.g. by regression methods such as loess [11], is 
non-trivial, as it requires the separation of three signals: 
additive experimental noise, a smooth long-range bias 
as well as the sequence of true means. In other words, it 
is hard to differentiate between shifts in signal averages 
which are due to bias and those that represent actual CN 
changes.

The contributions of this paper aim to address these 
issues. On the matter of efficient computation, it was 
recently shown that Bayesian inference of the hidden 
state sequence using Forward–Backward Gibbs sam-
pling (FBG) [12] can be made feasible for large data sets 
by using a dynamic compression scheme based on Haar 
wavelet regression [6]. In this approach, data is presented 
to the Gibbs sampler in a compressed form, and the sam-
pler adapts the compression dynamically according to the 
noise level it obtains in each sampling step. This has led to 
drastic improvements in speed and convergence behavior 
of FBG. Conceptually, the approach allows the software 
to “zoom in” on candidate regions for CNV and concen-
trate its computational efforts there, while ignoring long 
diploid segments. While the issue of convergence has 
been addressed and overall speed has been improved 
[6], memory usage remains an obstacle when analyzing 
WGS data. Here, we present a novel algorithmic frame-
work to implement the dynamic wavelet compression 

approach for HMM inference using FBG. We provide 
new data structures to efficiently store and update mar-
ginal state counts for compression block structures, and 
to efficiently query sufficient statistics at different wavelet 
resolution levels. We derive a linear time, in-place algo-
rithm for the data transform required for its construc-
tion, based on the lifting scheme [13].

On the matter of providing FBG with data that fits its 
model to a reasonable degree, we noticed that it is com-
mon practice to sequence sample and control in a multi-
plexed fashion, often for cost reasons. Using differential 
read counts from the same, multiplexed sequencing run, 
see [14] for instance, cancels out any additive cover-
age bias. This not only reduces the potential for false 
CNV calls due to systematic shifts in the data, but also 
obviously decreases the conditional dependence of the 
observed variates given the true segmentation labels. 
Using such data is therefore a more appropriate input to 
HMM methods. Aside from these general considerations, 
wavelet compression acts favorably on such data: regres-
sion relies on a property of wavelets called polynomial 
suppression. If the underlying signal is a polynomial of a 
degree up to a certain constant, wavelets are orthogonal 
to it and hence removed during regression. This yields a 
separation of signal and noise. Higher-order polynomi-
als due to long-range experimental bias however would 
incur additional discontinuities in the regression, lead-
ing to lower compression ratios, higher memory require-
ments, and, consequently, longer running times of FBG.

In order to benchmark our method and demonstrate 
its applicability to real data, we used it to obtain CNV 

Fig. 1  Pipeline for CNV calls in rat populations, divergently selected for tame and aggressive behavior. After individual barcoding and multiplex 
sequencing, counts of mapped start positions for the tame population are subtracted from those in the aggressive population. This removes shared 
additive bias from the data. Afterwards, due to low coverage, the data is averaged over 20 positions to make the noise approximately Gaussian. 
Then, the data is transformed into a breakpoint array data structure, comprised of sufficient statistics as well as a pointer structure to facilitate 
rapid creation of compressed data blocks depending on a given threshold. The breakpoint array generates block boundaries corresponding to 
discontinuities obtained in Haar wavelet regression. The universal threshold is used for compression, based on the lowest sampled noise variance in 
the emission parameters of the HMM during Forward–Backward Gibbs sampling
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candidates from differential read depth data for rat pop-
ulations divergently selected for tame and aggressive 
behavior (Fig. 1). As expected for a behavioral phenotype, 
the results are significantly enriched for annotations of 
neuronal development and function, showing that results 
are consistent with a hypothesis that CNV play a role in 
the domestication syndrome. To the best of our knowl-
edge, this is the first time fully Bayesian inference on 
several hundreds of millions of latent state variables has 
been performed on a commodity laptop within minutes.

As was shown previously [6, 7], compressing the 
observed data into blocks of sufficient statistics can sig-
nificantly speed up Bayesian inference, in particular For-
ward–Backward Gibbs sampling (FBG). While [7] used a 
static compression heuristic based on kd-trees, we used 
the discontinuities in the Haar wavelet regression as 
block boundaries, based on the smallest emission vari-
ance among all latent states sampled in each FBG itera-
tion [6]. We used a data structure termed wavelet tree to 
solve the problem of querying sufficient statistics for each 
block for a given resolution/noise level, without explicitly 
computing the wavelet regression. We will show that this 
data structure induces superfluous block boundaries, 
leading to suboptimal compression ratios, and replace it 
by a new data structure called a breakpoint array. For 
that, as well as to elucidate the reasoning behind the use 
of differential read depth data to maximize compression 
and avoid bias in HMM inference, we briefly review the 
principles of function regression using wavelet shrinkage: 
Let L2(R) := L2(R,B(R), �) be the space of square-inte-
grable functions over the reals. This is a Hilbert space 
with inner product 

〈

f , g
〉

:=
∫∞
−∞ f (x)g(x)dx . As we are 

only concerned with functions over subsets of R , the 
inner product commutes without involving the complex 
conjugate. The inner product induces the norm 
∥

∥f
∥

∥ :=
√

〈

f , f
〉

 . Two functions f, g are said to be orthogo-

nal iff 
〈

f , g
〉

= 0 , and a function f is called normal iff 
∥

∥f
∥

∥ = 1 . L2(R) contains all continuous and piecewise 
continuous functions, including all piecewise constant 
functions. Let

be the Haar wavelet [15], and 
{

ψj,k(t) := 1√
2j
ψ

(

t−2jk
2j

)}

 , 
j, k ∈ Z (depicted in Fig.  2, top). Since 

∥

∥ψj,k

∥

∥ = 1 and 
〈

ψj,k ,ψj′k ′
〉

= 0 for (j, k)  = (j′, k ′) , this forms an ortho-
normal basis of L2(R) , where a function y is represented 
as the linear combination y =

∑

j,k∈Z
〈

ψj,k , y
〉

ψj,k . The 
set of detail coefficients dj,k :=

〈

ψj,k , y
〉

 is called the 
wavelet transform of y. A wavelet is said to have m 

ψ(t) :=







1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1

0 elsewhere

vanishing moments if 
〈

pi,ψ
〉

= 0, 0 ≤ i < m, p constant, 
it follows that ψ is orthogonal to any polynomial of 
degree less than m, since 

〈

∑m−1
i=1 pi,ψ

〉

=
∑m−1

i=1

〈

pi,ψ
〉

= 0 . 
This property is called polynomial suppression [16]. The 
Haar wavelet has one vanishing moment, so it is orthogo-
nal only to constant functions.

For computational applications, a vector f  is 
obtained by sampling f at equidistant intervals. The 
discrete versions of the wavelets are then obtained as 
ψ j,k [t] := ψj,k(t) for t ∈ N . These inherit properties such 
as orthogonality, finite energy and vanishing moments 
from their continuous counterparts. Let

be the position after the left, central and right discontinu-
ity of ψ j,k , respectively.

The Haar wavelet transform is an orthogonal transform, 
represented by a matrix W with rows ψ j,k Let the 
observed signal be a sampling of a function f corrupted by 
centered Gaussian noise, i.e. y = f + ǫ, ǫ[t] ∼i.i.d. N (0, σ 2).  
Since the wavelet transform is linear, it acts on  
the signal and noise component independently, i.e. 
Wy = W(f + ǫ) = Wf +Wǫ. The central idea in wave-
let shrinkage is that 

〈

f ,ψ j,k

〉

= 0 if f is polynomial over 
the entire support of ψ j,k due to polynomial suppression, 
and, in particular, the support does not span a discontinu-
ity in f . Furthermore, due to orthogonality of W , Wǫ is 
again a random vector of i.i.d. random variables distrib-
uted as N (0, σ 2) , so the noise is maintained under the 
wavelet transform. In general, orthogonal maps preserve 
the L2 norm, so �Wǫ� = �ǫ� and 

∥

∥Wy
∥

∥ =
∥

∥y
∥

∥ . It follows 
that for piecewise polynomial functions with only a few 
discontinuities, 

〈

y,ψ j,k

〉

=
〈

ǫ,ψ j,k

〉

 for most j,  k, i.e. 
most wavelet coefficients are only non-zero due to noise. 
The idea is then to find a way to create a vector w by set-
ting a suitable set of coefficients in Wf to zero, and then 
use the inverse wavelet transform as a regression 
f̂ := W⊺w . The simplest method is to use the universal 
threshold �u :=

√
2 lnTσ [17], which can be interpreted 

as the expected maximum deviation of T such Gaussian 
random variables from their mean, as derived by Cramér–
Chernoff’s method [18]. Hence, removing coefficients of 
absolute value below �u removes all noise coefficients with 
high probability [17]. Using different variances, the result-
ing f̂ are piecewise constant functions, whose discontinui-
ties we interpret as block boundaries in a compression 
scheme. In our approach, σ 2 is the minimum variance of 
all emission parameters in the HMM as sampled at each 
iteration. The existence of a discontinuity obviously 
depends on the magnitude of the wavelet coefficients 

b+j,k := 2jk b±j,k := 2j
(

k + 1

2

)

b−j,k := 2j(k + 1)
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involved: if 
∣

∣dj,k
∣

∣ > �u , then there are block boundaries 
before data positions b+j,k , b

±
j,k and b−j,k.

Implementation
Block generators
In order to avoid recomputing the wavelet regression 
explicitly for a new threshold in each FBG iteration, con-
sider the following abstract data structure:

Definition 2.1  (Block generator) Let b be a vector of 
breakpoint weights. For a threshold � , let Y� be a parti-
tion of y into blocks such that there is a block boundary 

between positions t − 1 and t if b[t] ≥ � . We call a data 
structure a block generator if it can, for any threshold � , 
generate an ordered sequence of sufficient statistics that 
represents Y� . A block generator is called compressive 
if, for all � , b[t] < � implies that no breakpoint is cre-
ated between t − 1 and t. It is called subcompressive if 
for some � such a superfluous block boundary is created. 
A block generator is called space-efficient if it stores no 
more than T sufficient statistics, where T is the number 
of input data points.

Fig. 2  The top subplots show the Haar wavelet basis for T = 16 . The bottom subplot shows the corresponding wavelet tree. In the tree layout 
induced by the lifting scheme, the position of a coefficient equals that of the central discontinuity of its associated Haar wavelet. For instance, ψ2,0 
has positive support on y[0], y[1] , and negative support on y[2], y[3] , with b+2,0 = 0 , b±2,0 = 2 and b−2,0 = 4 . In this example, nodes for which 

∣

∣dj,k
∣

∣ > � 
are shown in black, i. e. 

∣

∣d1,0
∣

∣ > � , inducing block boundaries at 0, 1 and 2, and 
∣

∣d1,7
∣

∣ > � , inducing block boundaries at 14, 15 and 16 (indicated by 
thin solid vertical lines), creating 5 blocks in total. The wavelet tree data structure is subcompressive, as it induces additional breakpoints. si,k denotes 
the maximum of all 

∣

∣dj′ ,k′
∣

∣ in the subtree. Nodes in gray indicate the case where 
∣

∣dj,k
∣

∣ < � , yet si,k > � , hence inducing additional block boundaries, 
indicated here by dotted lines, at 2, 4, 8, 12 an 14. This yields a total of 8 blocks
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This definition of a block generator implies that Y�1
 is a 

subdivision of Y�2
 if �1 ≤ �2 . For sufficiently small thresh-

olds, we require sufficient statistics for each data point, 
hence any block generator implementation will have to 
store a minimum of T sufficient statistics. On the other 
hand, if all entries in b are unique, each breakpoint subdi-
vides a block defined by a higher threshold, and a simple 
induction argument shows that a block generator has to 
be able to generate 2T − 1 different blocks and their suf-
ficient statistics: starting with a single block of size T and 
a sorted sequence of threshold values in b , each threshold 
creates two new blocks by subdividing one block in the 
previous partition.

We previously defined the wavelet tree data structure to 
serve as a block generator; for details, see [6]. It is based 
on the observation that the non-zero support intervals 
of wavelet basis functions are nested along scales (cf. 
Fig. 2). Each node corresponds to a basis function, with 
its position corresponding to the position of the wavelet’s 
central discontinuity. The wavelet tree stores the maxi-
mum absolute coefficient sij of its subtree in the node. To 
obtain the sufficient statistics for a block at a given noise 
level, the tree is traversed in DFS order. Whenever a node 
is encountered for which sij < � , none of its descendants 
can have a higher value, and hence no additional discon-
tinuities. The subtree is pruned from the DFS, creating a 
single block for the sufficient statistics of its leaf nodes. 
On the other hand, if sij ≥ � , the search recurses on the 
subtrees, creating additional block boundaries between 
leaves.

Unfortunately, the wavelet tree is subcompressive, as 
demonstrated by the counterexample in Fig.  2, as well 
as memory-inefficient, since it stores 2T − 1 statistics. 
It should be noted that, while the wavelet tree stores as 
many sufficient statistics as needed for T data points, the 
fact that it is subcompressive implies that the block struc-
tures it creates differ from those of a compressive block 
generator, and hence these are not the same 2T − 1 sta-
tistics that would occur in across all block structures a 
compressive block generator would yield.

In order to provide an efficient implementation, we 
separate a block generator into two sub-structures: a 
breakpoint array to derive a sequence of start and end 
positions for blocks, and an integral array to query the 
sufficient statistics for each block.

Integral array for block statistics
Let a data structure D(y) support the following query: 
given a start index s and an end index e, with s < e , return 
the sufficient statistics in the half-open interval [s,  e), 
i. e. 

∑e−1
i=s T(y[i]) . A trivial implementation of such a data 

structure would be to store the statistics of each input 
position, and then iterate through the array and calculate 
their cumulative sums between breakpoints. This is obvi-
ously costly for huge data, as it incurs �(N ) time com-
plexity for a block of size N. Constant-time queries could 
be made by pre-computing all T 2 statistics, which is obvi-
ously prohibitive for large data.

The basic idea for querying sufficient statistics comes 
from a simple data structure in image processing called 
a summed-area table or integral image [19], which is 
used to query the sum of a rectangular region in constant 
time. As its one-dimensional equivalent, let v be an inte-
gral array such that

For any arbitrary start and end positions s,  e, the suffi-
cient statistics of the block [s, e) can be calculated in con-
stant time as

In contrast to image processing, where integral arrays are 
constructed over integer data, sufficient statistics require 
floating-point values for most distributions. Unfor-
tunately, this incurs numeric problems for large data 
sizes. An IEEE 754 single-precision float has between 6 
and 9 significant digits. Assuming that values for suffi-
cient statistics are on the order of 1, the further back a 
data point is in v , the more of its significant digits is used 
to store the sum. Neighboring entries will be similar or 
even equal, leading to catastrophic cancellation for short 
segments. For instance, values above ∼ 17 million are 
rounded to multiples of 2, so that even if each entry was 
1.0, blocks of size 1 would be queried as 0.

To alleviate this, we subdivide v into non-overlapping 
cells of size c, and compute partial cumulative sums of 
sufficient statistics within each cell; for convenience, we 
compute these sums from high to low indices, see Fig. 3. 
It is then easy to see that 

∑e−1
t=s T(y[t]) =

(

∑

j v[j]
)

− v[e] 
for j ∈ {s} ∪

{

i
∣

∣ s < i ≤ e, i ≡ 0 (mod c)
}

 . In our imple-
mentation, we used c = 216 = 65, 536.

Breakpoint array for block boundaries
In order to create a block generator, the integral array 
has to be supplemented with a data structure which 
yields start and end positions sk(�) , ek(�) for subsequent 
blocks k. Since ek(�) = sk+1(�) , it suffices to implement 
an iterator over sk for increasing k, where s0 = 0 and 

v[t] =
{

T(0) t = 0
∑t−1

i=0 T(y[t]) t > 0.

e−1
∑

t=s

T(y[t]) =
(

s−1
∑

t=0

T(y[t])
)

−
(

e−1
∑

i=0

T(y[t])
)

= v[e] − v[s].
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sk = ek(�) = sk+1(�) . We use a simple array of pointers 
to facilitate these queries:

Definition 2.2  (Breakpoint array) Let b ∈ R
T be a 

vector of breakpoint weights, and p ∈ Z
T
+ be a vec-

tor of pointers. A data structure (b,p) is called 
a breakpoint array of input data y if and only if 
∀t < i < t + p[t] : b[t] > b[i] . We call each interval 
[t, . . . ,p[t] − 1] a stretch at t. A breakpoint array is called 
maximal if for all T there exist no n > p[t] such that set-
ting p[t] to n would still result in a valid breakpoint array.

A breakpoint array can be constructed in linear time 
O(T) (Algorithm 1), based on a linear-time algorithm to 
calculate the pointers to the next element at least as large 
as the current one, which is well established in algorith-
mic folklore. It is modified here to use the distance to that 
element instead of a direct pointer (line 20, which would 
normally read p[i] ← t ). The stack is changed to a deque 
to accommodate the inclusion of a maximum jump size 
m. The front of the deque is popped and its pointer set 
whenever it is m positions away, which happens at most 
T times.

3 7 11 15

2 3 6 7 10 11 14 15

1 2 3 5 6 7 9 10 11 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3  An illustration of an integral array v , using cell size c = 4 . Columns represent data positions, and contain all positions i which are added up 
and stored at v[t] ; for instance, v[9] =

∑11
i=9 T(y[i]) . The statistics of a block [s, e) are obtained by adding v[s], v[m] for all s < m < e , m ≡ 0 mod c , 

and subtracting v[e] iff e  ≡ 0 mod c . For instance, block [3, 10) is obtained as v[3] + v[4] + v[8] − v[10] , yielding 
∑9

t=3 T(y[t])

Algorithm 1 Constructor of a maximal breakpoint array for a vector b of breakpoint
weights, pointer array p and a maximum jump size m. St is a deque (double-ended
queue).
1: procedure BreakpointArrayConstructor(b,v,m)
2: pushback(St, 0) � make first position pending
3: for t ← 1, . . . ,T − 1 do
4: if |St| > 0 then
5: if t− St[front] = m then � distance to farthest element
6: p[St[front]] ← m � set farthest jump pointer
7: popfront(St) � mark as processed
8: while |St| > 0 do � go through stack to find pending elements
9: if b[St[back]] ≤ b[t] then � pending elements with smaller weights
10: reduceStack() � set pending pointers and statistics
11: else
12: break � rest of stack has larger weights
13: push(St, t) � make current position pending
14: t ← T
15: while |St| > 0 do � all remaining elements point to one-past-the-end
16: reduceStacks()
17:
18: function reduceStack()
19: i ← St[back] � get closest pending index i
20: p[i] ← t− i � set its pointer to the distance to current index
21: popback(St) � remove index from stack
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For each t, p[t] points to the beginning of next stretch. 
Within each stretch, the highest breakpoint weight is 
located at its first position; when searching for weights 
below a given threshold � , once the first weight is found 
to be below � , all others can be safely ignored, leading to 
a simple query: Starting at ek(�)+ 1 , follow pointers until 
a weight above threshold is encountered (see Fig.  4). In 
order to derive complexity results, we require the follow-
ing result:

Theorem 2.1  (Left-to-right maxima [20, 21]) For a vec-
tor x, let x[t] be called a left-to-right maximum of x iff 
∀i < t : x[i] < x[t]. Let mx count the number of left-to-
right maximal elements in x. For a random permutation 
of x with |x| = N  elements, E[mx] =

∑N
i=1

1
N → lnN  as 

N → ∞. Due to symmetry, the same result holds for min-
ima and right-to-left extrema.

Following pointers in p creates a sequence of 
left-to-right maxima. For a block of size N, start-
ing at ek(�) , there are M := N − 2 elements in 
I := [ek(�)+ 1, . . . , ek(�)+ N = ek+1(�)) which can 

appear in any order, which implies that ek+1(�) can be 
found in O(logN ) expected time. Likewise, the maxi-
mum expected stack size in the constructor (Algo-
rithm  1) is lnT  : assume m = ∞ . An element at t is 
pushed whenever there exists an index j on the stack 
such that ∀i = j, . . . , top : w[i] < w[t] . Given the small-
est such j, the stacks are popped until top = j − 1 , and 
w[j − 1] > w[t] . Therefore, the stack contains the right-
to-left minima of w[1 : t] after pushing index t, and 
the claim follows from Theorem  2.1 for t = T  . For any 
m < ∞ , the front of the deque gets popped, thus only 
decreasing the stack size. For the size Thg of the human 
genome (3.5 billion), the expected maximum stack size 
is < 22 , a negligible overhead. We noticed that, for noisy 
data, most entries in p are much smaller than T, and 
using pointer-sized integers such as size_t in C++ 
(typically 8 byte on 64-bit systems), would be wasteful. 
Instead, we use a 2-byte unsigned integer type to accom-
modate jumps up to m = 65, 536 . The resulting break-
point array is not maximal anymore, but maintains its 
space-efficiency and compressivity. The query overhead 
is minimal in practice; even in case of a single block for 
genome sized data, Thg

65,536 < 54.

Fig. 4  An example of generating blocks following pointers in a breakpoint array. The top figure represents the input data y , the bottom figure 
represents the absolute wavelet coefficients, as well as the pointers (grey lines) and the path taken by the query (red). Whenever a value above the 
threshold (horizontal blue line) is found, a breakpoint is returned (vertical blue lines)
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Haar breakpoint weights
Having established a data structure to iterate over blocks 
for any given compression level, we now define a vector 
bH of breakpoint weights for the Haar wavelet transform, 
i. e. bH [t] > � iff Haar wavelet regression with threshold 
� contains a discontinuity between t − 1 an t, and there-
fore a block boundary in Haar wavelet compression. This 
is the case if the absolute value of any coefficient of wave-
lets who have any of their discontinuities at t as above the 
threshold, so we define, for any t = b±j,k ∈ [0,T ),

for t > 0 or b−j,k < T  . Additionally, there is always a block 
boundary before the first position, so bH [0] := ∞ . Fur-
thermore, if T is not a power of 2, some wavelets have 
incomplete support. As their magnitude is unknown 
without padding the data, we assume that their detail 
coefficient is potentially larger than any threshold, induc-
ing a breakpoint at the central discontinuity, so 
bH

[

b±j,k

]

:= ∞ for b−j,k ≥ T  . A breakpoint array initial-
ized with these weights is called a Haar breakpoint array.

(1)

bH [t] := max
j,k

{∣

∣

∣

〈

ψ j,k , y
〉∣

∣

∣

∣

∣ t ∈
{

b+j,k , b
±
j,k , b

−
j,k

}}

We will show that bH can be computed in-place and in 
linear time. For that purpose, we first define the maxlet 
array as a generalization of the Haar transform to arbi-
trary data sizes and absolute values: For b±j,k ∈ [0,T ) , let

We later define the Haar boundary transform to compute 
bH from bM . In order to compute bM in-place, we cannot 
use the pyramid algorithm as in [6], since it requires pad-
ding of the data to a size T ′ ∈ 2N , T ≤ T ′ ≤ 2T  , as well as 
an auxiliary array of size T ′ , thereby increasing the memory 
by up to a factor of 4. Instead, we use a more recent in-place 
calculation of the Haar wavelet transform based on the lift-
ing scheme [13, 22]. It is based on the following recursions:

bM

[

b±j,k

]

=
{∞ t = 0 ∨ b−j,k ≥ T

∣

∣

∣

〈

ψ j,k , y
〉
∣

∣

∣
t > 0 ∨ b−j,k < T .

cj,k :=







y[k] j = 0
�

b−j,k−1

t=b+j,k
y[t] = cj−1,2k + cj−1,2k+1 j > 0, and

dj,k := 1√
2j

�

cj−1,2k + cj−1,2k+1

�

.

Fig. 5  Illustration of the various algorithms necessary to create the Haar breakpoint array in-place. The top figure represents the transformation of 
an input array y at level 0 into various other forms. The terms cj,k and wj,k represent values associated with the scale and detail coefficients of the 
wavelet transform, respectively. The wavelet tree (bold lines) represents the nested nature of the support intervals: the horizontal position of ψj,k 
represents the position t of central discontinuity b±j,k of ψ j,k , and its vertical position represents the resolution level i. The support interval for each 
wavelet corresponds to all descendants at level 0. The tree nodes contain the output arrays of the various transforms. Dotted lines indicate the 
recursive relations in the lifting scheme, as used by the in-place Haar wavelet transform and the maxlet transform. The solid lines (including tree 
edges) indicate the dependencies in the Haar boundary transform. In the bottom figure, white bullets represent maxlet coefficients, black bullets 
represent their changed values after the Haar boundary transform, and lines indicate breakpoint array pointers
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These relations are illustrated in Fig.  5 using dotted 
edges, with dj,k = wj,k and c0,k = yk = y[k] . By storing cj,k 
at index b+j,k and dj,k at index b±j,k , this yields a simple in-
place algorithm which never overwrites dj,k once it is cal-
culated. Notice that detail coefficients dj,k are stored at 
the position b±j,k corresponding to the central discontinu-
ity in their corresponding wavelet, and that this corre-
sponds to an in-order DFS layout of the wavelet tree 
without the leaves corresponding to the input data, with 
the leftmost leaf at index 1 (Fig. 5, bold lines); the tree is 
created from the leaves up, and from left to right. A 
straightforward modification of the lifting scheme to cal-
culate bM is shown in Algorithm  2, where line 13 is 
changed to yield the absolute value, and lines 9, 14 and 15 
are added to ensure bH

[

b±j,k

]

:= ∞ for b−j,k ≥ T .

Algorithm 2 Given emission data y, compute the maxlet transform, i. e. the absolute
detail coefficients of the Haar wavelet transform for arbitrary data sizes T .
1: procedure MaxletTransform(y)
2: T ← |y| � number of data points
3: for j ← 1, . . . , � ldT � do � iterate over levels, bottom-up
4: N ← 2j � support size of ψj,k

5: s ← 1√
N

� normalization constant

6: for k ← 0, . . . ,
⌈

T
N

⌉

− 1 do � process elements on level j from left to right
7: L ← �kN left index
8: R ← N(k + 1

2 ) � right index
9: if R < T then
10: y[L] ← y [L] � copy cj−1,2k
11: y[R] ← y [R] � copy cj−1,2k+1
12: y [L] ← y[L] + y[R] � calculate cj,k
13: y [R] ← s |y[L]− y[R]| � calculate

∣

∣dj,k
∣

∣

14: else
15: y[L] ← ∞ � force breakpoint for incomplete support
16: return y

To derive Haar breakpoint weight from the maxlet 
transform, we introduce the Haar boundary transform 
(Algorithm  3), which performs the necessary maximum 
computations for Eq. 1 in-place and in linear time O(T). 
In Fig.  5 (top), the set of nodes considered in Eq.  1 are 
the direct descendants of a node along the solid lines. 
Algorithm  3 is simple: it iterates over the scales j in a 
top-down fashion (Fig.  5), and writes the maxima of all 
required nodes at lower levels ℓ ≤ j to the current array 
position. Since it never reads values from levels > j , no 
extra memory is required, and the algorithm is in-place. 
Since any node is considered at most twice for updating 
a node on a higher level, the running time of the Haar 
boundary transform is also linear, O(T).

Algorithm 3 Given a maxlet transform d, for each position t compute the maximum
absolute coefficient of all wavelets which have a discontinuity at t, in-place and in linear
time.
1: procedure HaarBoundaryTransform(d)
2: d[0] ← ∞ � force breakpoint before first element
3: for j ← � ldT � , . . . , 1 do � iterate over levels, top-down
4: N ← 2j � support size of wavelet t level j
5: for k ← 0, . . . ,

⌈

T
N

⌉

− 1 do � elements on level j, left to right

6: t ← N(k + 1
2 ) � index of central discontinuity b±j,k of ψj,k

7: n ← N
2 � distance to left and right discontinuity

8: if t < T then
9: L ← t− �n index of left discontinuity
10: d[L] ← max {d[L],d[t]} � process left discontinuity
11: R ← t+ �n index of right discontinuity
12: if R < T then
13: d[R] ← max {d[R],d[t]} � process right discontinuity
14: return d
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Compressed marginal records
In order to keep track of the states sampled for each posi-
tion during Gibbs sampling, we require the following 
data structure:

Definition 2.3  (Marginal records) Let t ∈ [0, . . . ,T ) , 
smax the largest state sampled during FBG, and 
s ∈ [0, . . . , smax] . A marginal record is a data structure 
which allows to store and query the number of times 
state s was observed at data index t.

The previous solution to recording marginal state 
counts was inefficient. Since nodes in the wavelet tree 
corresponded to compression blocks, counts were 
stored directly in the nodes. For n latent HMM states, 
this required allocation of 2Tn array elements, which 
was wasteful since the quick convergence of HaMMLET 
meant that many blocks would never be sampled, or only 
be assigned to a small subset of CNV states. Such a preal-
location approach also requires the number of states to 
be known in advance, and precludes further extensions to 
priors on the state number such as the Dirichlet Process. 
Though we resorted to dynamic allocation, the necessary 
variables for housekeeping still incurred large overhead.

For static compression blocks, marginals can simply be 
stored in a set of arrays with an additional array contain-
ing block sizes, essentially a run-length encoding (RLE), 
as illustrated by the right column of Fig. 6. This approach 
however is complicated by the use of dynamic compres-
sion: at each new iteration, a different block structure is 
created, which requires existing RLE segments to be split 
into multiple parts, each of which will have counts for a 
different state added. This could be solved trivially using 
a linked list implementation, in which new segments are 
inserted with the appropriate updates of its neighbors 
size. This approach is obviously wasteful.

To get around these issues, we developed an encod-
ing for marginal records that stores counts sequentially 
in a vector of integers in a highly compressed fashion 
with minimum overhead. Adding records for run-length 
encoded state sequences is performed using a queue with 
iterator access to its front elements, such as implemented 
by the C++ STL deque, and requires a single pass over 

the state records and is therefore linear. The memory 
overhead is 2 bytes per segment, plus one bit for every 32 
integers. Encoding for marginal counts for a single posi-
tion is performed using a sequence c of signed integers. 
A negative number is used to store the counts for a state. 
The state s(i) of a position i is recursively defined as

Positive entries are called index values. We further require 
that all index values must be in strictly increasing order, 
and that no unnecessary index is used, i.  e.  we require 
∀c[i] > 0 : s(i − 1)+ 1 < c[i] . In other words, runs of 
states having observed counts are represented as runs 
of negative numbers, and runs of zero-counts are repre-
sented as a single number indicating the state label of the 
next higher state with non-zero counts. For instance, the 
count vector (2, 0, 0, 8, 1, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 
0) would be encoded as (−2, 3,−8,−1,−4, 9,−5) , and 
the corresponding states are (0,  1,  3,  4,  5,  6,  9), though 
1 and 6 are somewhat inconsequential as they have no 
counts associated with them; note that the decision to 
use negative signs for counts instead of index values is 
arbitrary in principle, but leads to using fewer negations 
in the implementation. In settings where quick conver-
gence is expected, the number of zeros is expected to be 
high, leading to good compression under this scheme. 
In general, assume that the marginals contain M distinct 
segments after running FBG, and the HMM has S states. 
Then, the queue can contain no more than (2S + 1)M 
entries: for each segment, one zero to mark the beginning 
of a segment, and up to one positive and negative value 
per state. If the number of latent HMM states is limited 
to S, then there can be no more than S non-zero entries 
per segment. Hence, for reasonably high compression 
ratios, this amounts to small memory usage. For instance, 
at a compression ratio of 300 for a human genome at 
base-level resolution and 10 latent HMM states, marginal 
records using 2-byte signed integers require less than 234  
MB. In practice, not every segment will contain 11 val-
ues, due to fast convergence, and the numbers get even 
smaller. Compared to the storage requirements of the 
block generator, this is negligible.

s(0) = 0 s(i) :=
{

s(i − 1) c[i − 1] < 0
c[i − 1] c[i − 1] > 0.

(See figure on next page.)
Fig. 6  A small three-step example of recording marginal counts using Algorithm 4. Starting at position t = 0 , 7 observations of state 5 are inserted. 
In the count queue, black boxes indicate that state counts of zero have been skipped; those numbers encode the next higher state that has a 
non-zero count. White boxes indicate the counts for the state. For instance, the right-most part of the count queue in the top subfigure is stored as 
(0,−1,−2, 4,−7) , indicating that there is 1 count for state 0, 2 counts for state 1, and 7 counts for state 4. The segment starts at position t = 9 , and 
has a length of 1. Note that 0 is used to mark the start of a new segment. Each segment has a total of 10 counts already recorded. Arrows indicate 
contiguous elements in the count queue. With every iteration, a segment is moved to the back with the new state count included. Note that in the 
last iteration, the segment t = 6, . . . , 8 is split. After finishing this step, the next count would be recorded starting at position t = 7 . Notice how each 
run of zeros in the state queue is represented by a single number, thus allowing for arbitrarily large state indices without much overhead
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Algorithm 4 Append N observations of state s to the marginal records.
1: procedure AddMarginalRecord(N, state)
2: bool done ←false
3: s ←0 � State at current index
4: while N > 0 do � Consume entire length of insert block
5: s ←0 � Assume lowest state
6: done ←false � Remember if insert was successful
7: for t ←0 t ¡ countQ.size() ++t do
8: entry ←countQ [t] � Entry at current position
9: if entry = 0 then � Segment is finished
10: if ¬ done then � Count not registered yet
11: if s < state then � Skipped over states?
12: countQ.push( state ) � Add state index
13: countQ.push( −count ) � Append negative count
14: countQ.push( 0 ) � Mark the end of this segment
15: break
16: if done then � Count was successfully registered
17: countQ.push( entry ) � Keep appending segment’s entries
18: continue
19: if entry > 0 then � Entry denotes state of next entry
20: if state < entry then � Count must be inserted here
21: if s < state then � Skipped over states?
22: countQ.push( state ) � Add state index
23: countQ.push( -count ) � Append negative count
24: if state+ 1 < entry then � Skipping states?
25: countQ.push( entry ) � Add state index
26: done ←true � Mark count insertion as successful
27: else
28: countQ.push( entry )
29: s ←entry � Update state for next entry
30: else � Entry is negative count or current state
31: if s = state then � Reached target state to be counted
32: countQ.push( entry− count ) � Add count
33: done ←true � Mark count insertion as successful
34: else
35: countQ.push( entry ) � Only append entry
36: s++ � Update current state
37: if N < sizeQ.front() then � Residual front segment remains
38: sizeQ.push( N ) � Assign its size to new segment
39: sizeQ .front() () ←sizeQ.front()−N � Remaining size
40: break
41: else � Front segment was completely absorbed
42: sizeQ.push( sizeQ .front()) � Associate size with new segment
43: N ← N − sizeQ.front() � Set insert size to its remainder
44: sizeQ.pop() � Remove empty segment’s size
45: while countQ.front() �= 0 do
46: countQ.pop() � Remove all entries for empty segment
47: countQ.pop() � Remove segment separator

Experiment background
The domestication of a handful of animal species, start-
ing in the early holocene, has played a crucial role in the 
development of complex human societies [23]. While we 
have learned a great deal about when and where animal 
domestication occurred, the genetic changes that under-
lie the phenotypic differences between domestic animals 
and their wild progenitors remain relatively unknown. 
It has been observed that domestic animal species 
tend to share a suite of behavioral, physiological and 

Results and discussion
In order to verify that the higher compression did not 
adversely affect the segmentation quality, we re-ran the 
evaluation on the 129,000 simulated datasets in [6] using 
our new implementation of HaMMLET. The F-measures 
and plots are virtually identical to Fig.   5 in that paper, 
and are therefore not shown here (see Web Supplement).

In the following subsections, we present a case study 
of CNV inference on differential WGS read depth data 
using HaMMLET with the Haar breakpoint array.
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morphological traits that are absent or rarely observed 
in their wild progenitors [24, 25]. These traits include 
changes in pigmentation, craniofacial anatomy, hormo-
nal levels, seasonal reproduction cycles and increased 
docility [26]. This suite of changes is referred to as the 
“domestication syndrome”. A long-standing question 
in evolutionary biology is whether these convergent 
changes are the result of genetic drift, artificial selection 
by humans for each individual trait, or pleiotropic effects 
of selection for a few or even a single trait. A proponent 
of the latter hypothesis was the Academician Dmitry K. 
Belyaev. He hypothesised that selection for tameness at 
the start of the domestication process had pleiotropic 
effects that explained many of the features of the domes-
tication syndrome. To test his hypothesis, he began a 
program of experimental domestication of the silver fox 
(Vulpes vulpes) in Novosibirsk, Siberia in 1959. Foxes 
obtained for fur farms were selectively bred for their 
behavioral response to an approaching human. One line 
of foxes was bred for tame behavior towards humans 
while a control line was selected for a fearful and aggres-
sive response towards humans, to maintain the wild-type 
behavior despite being maintained in captive condi-
tions. After just a few generations of selective breeding 
the tame line began to show many of the traits associated 
with the domestication syndrome, including changes in 
pigmentation, morphology and behavior [27–29].

The same experimental setup of artificially selecting 
two lines, one for tame and one for fearful and aggressive 
behavior towards humans was also repeated by the same 
research group in the brown Norway rat (Rattus nor-
vegicus) with similar results [30]. These results seem to 
confirm Belyaev’s hypothesis that selection for tameness 
alone could explain many of the features of the domesti-
cation syndrome. However, the specific genetic changes 
that underlie these changes remain unknown. Knowledge 
of the genetic variants that have been selected in these 
lines could lead to mechanistic insights into the domes-
tication process. Genomic structural variants are of par-
ticular interest as they are known to have played a role in 
the adaptation of other domestic animals [31] and struc-
tural variants that affect multiple functional genomic 
loci are one possible explanation for the rapid response 
to selection observed in these lines. To address this issue 
we analysed whole-genome data that was generated from 
multiple individuals from the tame and aggressive lines 
of rats.

Sample origins and data generation
DNA samples were obtained from two rat lines origi-
nating from a shared wild source population and subse-
quently maintained in isolation and divergently selected 
for ∼  70 generations for their behavioral response to 

humans. 20 samples were obtained from the tame line, 
which has been selected for a reduced fear response 
towards an approaching human hand. 20 samples were 
obtained from the aggressive line, which has been 
selected for an increase in fearful and aggressive behavior 
towards an approaching human hand. DNA extraction 
was carried out at the Institute of Cytology and Genetics, 
the Siberian Branch of the Russian Academy of Sciences, 
Novosibirsk and at the Max Planck Institute for Evolu-
tionary Anthropology (MPI-EVA), Germany.

For all samples, sequencing libraries were generated 
consisting of 125  bp double-indexed paired-end reads. 
Samples were pooled into a single library in order to 
avoid any batch effects during sequencing. Sequencing 
was performed on a combination of the Illumina Genome 
Analyzer II and High-Seq platforms. Library preparation 
and sequencing was carried out at the MPI-EVA. The rats 
have a mean coverage of ∼ 4× per individual. Base call-
ing was done using freeIbis [32]. Adapters were removed 
and potentially chimeric sequences flagged using leeHom 
with default parameters [33]. Reads were demultiplexed 
using deML using default quality thresholds [34]. Reads 
were then mapped to the Rattus norvegicus reference 
assembly rno5, using the BWA with default parameters 
[35]. Duplicate read removal was performed with Pic-
ard (http://broad​insti​tute.githu​b.io/picar​d/). Local indel 
realignment was performed using GATK [36]. Lowest 
mapping positions were recorded for each read, and their 
counts were accumulated. Start counts for the tame pop-
ulation were subtracted from their counterparts in the 
aggressive population, yielding 1,880,703,547 data points. 
Due to the low coverage, the data showed highly discrete 
noise, and hence the data was averaged over non-over-
lapping windows of 20 positions to approximate Gauss-
ian noise, resulting in 94,035,178 input positions. We 
then ran HaMMLET with 8 CNV states and automatic 
priors, see [6].

Computational benchmarks
On a computer with Intel Xeon CPU E7-8890 v4 (2.20 
GHz) and 1 TB RAM, running Ubuntu 14.04.5 LTS, full 
Bayesian inference with HaMMLET for 200 iterations 
with a burn-in of 1800 for an 8-state-model required 3 
min 41 s and 1.3 GB RAM on a single core. By compari-
son, the previously published version of HaMMLET took 
1 h 5 min 27 s, using 40 GB RAM, a 17.8-fold speedup.

For a broader evaluation, we have created 100 repli-
cates of the data by splitting it into 2500 chunks of equal 
sizes, which we then permuted randomly. We measured 
the memory usage (maximum resident set size), run-
ning time as well as cache behavior (minor page faults), 
see the boxplots in Fig. 7). The smaller savings in runtime 
compared to the original data can be attributed to the 

http://broadinstitute.github.io/picard/
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fact that permutation of the data is likely to disrupt long 
highly compressible sections of the data.

While the RAM usage remains almost constant among 
replicates within each implementation, we noticed that 
runtime and cache behavior varied widely in the old, but 
not the new implementation. We attribute this to the fact 
that the old compression scheme is suboptimal, yielding 
smaller blocks and hence more randomized assignment 
to states, leading to slower mixing properties of the Gibbs 
sampler. Notice that the data contains outliers which are 
likely to result from sampling small emission variances 
due to short compression blocks.

Biological results
We consider all genomic segments with an absolute state 
mean ≥ 1 as containing putative structural variation seg-
regating between the tame and aggressive rat lines. This 
results in 10,083,374 regions with a mean size of 407 
base pairs. We identify all genes that are within or over-
lap these regions by ≥ 1 base pair using Ensembl’s Vari-
ant Effect Predictor [37]. We find 1036 genes with at least 
partial overlap with these regions.

To investigate the potential phenotypic consequences 
of these structural variants we performed GO gene 
enrichment analysis using the software Webgestalt [38, 
39]. We tested for enrichment of GO categories using 
all genes overlapping these structural variants using all 
genes in the rat genome as background. We consider as 
significantly enriched all pathways with p-value < 0.05 
after using the Benjamini and Hochberg procedure to 
correct for multiple hypothesis testing [40]. We identify 
many significantly enriched pathways (Additional file  1: 
Table S1). We now briefly discuss some of these pathways 
and the genes within them and how they may inform us 
about the genetic changes underlying the phenotypic dif-
ferences between these lines.

The most significantly enriched pathway is “Synapse 
assembly” (p-value = 0.0028), with five genes that are 
in putative structural variants segregating between the 
tame and aggressive rat lines. Some of these genes are 
associated with phenotypes that may be involved in the 
behavioral differences observed between the tame and 
aggressive rat lines. For example, one of the genes is 
the neuronal cadherin gene Cdh2. Missense mutations 
in this gene are associated with obsessive-compulsive 
behavior and Tourette disorder phenotypes in humans 
[41] and this gene has been associated with anxiety in 
mice [42]. Another gene encodes the ephrin receptor 
Ephb1. The ephrin receptor-ligand system is involved in 
the regulation of several developmental processes in the 
nervous system. Notably, mice with null mutations for 
this gene exhibit neuronal loss in the substantia nigra and 
display spontaneous locomotor hyperactivity [43]. This is 

Fig. 7  Comparison of benchmarks for running time, memory usage 
and cache behavior between the old and new versions of HaMMLET 
on the rat population WGS data set. The new approach yields a 
17.8-fold speedup and 32.2-fold memory reduction. Notice that the 
number of minor page faults decreases by two orders of magnitude, 
indicating much better cache behavior due to the use of new 
data structures and an improved implementation. The number of 
major page faults is zero in both implementations. The wavelet tree 
benchmarks also contain one outlier with 2.4 billion page faults and 
6.4 h runtime, likely due to undercompression. No such anomaly was 
observed for the breakpoint array
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interesting given that the tame and aggressive rats have 
differences in their activity in an open-field test [30].

We also observe multiple additional enriched path-
ways involved in neuronal development and function, e.g. 
“transmission of nerve impulse”, “regulation of neurologi-
cal system process”, “dendrite morphogenesis”. Therefore, 
we suspect that many of these segregating structural vari-
ants may have been targeted by selection and are con-
tributing the phenotypic differences between these lines. 
Future study of the variants identified here may lead to 
insights into the domestication process. A more detailed 
evaluation of our finding will be published elsewhere. 
Plots of segmentation results for the entire genome can 
be found in the web supplement at https​://schli​eplab​.org/
Suppl​ement​s/rats/.

Conclusion
We have presented an new wavelet compression scheme 
for HaMMLET. The compression is optimal in that it does 
not introduce unnecessary block boundaries in addition 
to the wavelet regression discontinuities. This leads to 
much more stable benchmarks and reliable performance. 
Additional improvements, such as a memory-efficient 
data structure for marginal state records, allow for Bayes-
ian inference of a hidden Markov model of genome-sized 
data, such as for CNV calling, on standard consumer 
hardware. Future applications include inference on mul-
tivariate data. By computing detail coefficients in post-
order DFS across all dimensions simultaneously, and the 
maxlet transform has a straightforward generalization to 
higher dimensions with only O(log T ) overhead, instead 
of the naive �(T ) incurred by aggregating maxima in a 
second array.

Availability and requirements

Project name:	� HaMMLET
Project home page:	� https​://schli​eplab​.org/Softw​

are/HaMML​ET/
Operating system:	� Platform-independent
Programming language:	� C++
Other requirements:	� C++11-compliant com-

piler. For plotting: Python 
2.7, Matplotlib

License:	� GNU GPL.

Additional file

Additional file 1: Table S1. Significantly enriched GO categories.
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