
Georgiev et al. Algorithms Mol Biol (2020) 15:11
https://doi.org/10.1186/s13015-020-00168-z

RESEARCH

Precise parallel volumetric comparison
of molecular surfaces and electrostatic
isopotentials
Georgi D. Georgiev†, Kevin F. Dodd† and Brian Y. Chen* 

Abstract 

Geometric comparisons of binding sites and their electrostatic properties can identify subtle variations that select dif-
ferent binding partners and subtle similarities that accommodate similar partners. Because subtle features are central
for explaining how proteins achieve specificity, algorithmic efficiency and geometric precision are central to algorith-
mic design. To address these concerns, this paper presents pClay, the first algorithm to perform parallel and arbitrarily
precise comparisons of molecular surfaces and electrostatic isopotentials as geometric solids. pClay was presented
at the 2019 Workshop on Algorithms in Bioinformatics (WABI 2019) and is described in expanded detail here, espe-
cially with regard to the comparison of electrostatic isopotentials. Earlier methods have generally used parallelism to
enhance computational throughput, pClay is the first algorithm to use parallelism to make arbitrarily high precision
comparisons practical. It is also the first method to demonstrate that high precision comparisons of geometric solids
can yield more precise structural inferences than algorithms that use existing standards of precision. One advantage
of added precision is that statistical models can be trained with more accurate data. Using structural data from an
existing method, a model of steric variations between binding cavities can overlook 53% of authentic steric influences
on specificity, whereas a model trained with data from pClay overlooks none. Our results also demonstrate the parallel
performance of pClay on both workstation CPUs and a 61-core Xeon Phi. While slower on one core, additional proces-
sor cores rapidly outpaced single core performance and existing methods. Based on these results, it is clear that pClay
has applications in the automatic explanation of binding mechanisms and in the rational design of protein binding
preferences.

Keywords:  Specificity annotation, Molecular representations, Solid modeling

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Molecular shape and electric fields have a strong influ-
ence on binding specificity. At binding interfaces, com-
plementary molecular shapes can accommodate some
ligands and hinder those that fit poorly. Electric fields
attract molecules with complementing charges and repel
others. This connection, between molecular recognition

and the complementarity of surfaces and fields, is evi-
dence by which human investigators infer the roles of
individual mechanisms in function. Comparison soft-
ware can make similar inferences. Some methods detect
proteins with geometrically conserved binding sites,
supporting the inference that they bind similar partners
[1–11]. Other methods find variations in electric fields
near binding sites, suggesting that they accommodate dif-
ferently charged ligands [12–15]. These techniques, and
their potential for large scale and accurate applications,
depend on rapid and precise algorithms for representing

Open Access

Algorithms for
Molecular Biology

*Correspondence: chen@cse.lehigh.edu
†Georgi D. Georgiev and Kevin F. Dodd contributed equally to this work
Department of Computer Science and Engineering, Lehigh University,
113 Research Drive, Bethlehem, PA, USA

http://orcid.org/0000-0001-9025-0107
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-020-00168-z&domain=pdf

Page 2 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

and comparing molecular surfaces and electrostatic
isopotentials.

This paper presents pClay, an algorithm that uses fine-
grained multi-threaded parallelism and mathematically
exact representations to achieve more rapid and precise
comparisons. In addition to simply making single com-
parisons faster and more precise, the importance of pClay
is that it enhances methods for integrating many com-
parisons into informed structure-function inferences.
For example, binding sites that prefer the same ligand
can exhibit many small steric variations. Binding sites
that prefer different ligands often have larger variations,
because the differences in steric hindrance accommodate
different binding partners. Distinguishing small varia-
tions between similar binding sites from the bigger vari-
ations between different ones can be challenging without
some context for what is “large enough”. In such cases, a
statistical model, trained on many small variations, can
build a frame of reference that can predict atypically
large variations that influence specificity [16–19]. The
same statistical approach can identify large variations in
electrostatic fields that influence specificity [20]. By con-
textualizing individual comparisons within a framework
built from many comparisons, statistical models offer
ways to make structure-function inferences that would
otherwise rely on human expertise. We hypothesize that
statistical models can produce more accurate inferences
when trained with data produced with pClay, which rap-
idly performs more precise comparisons than existing
methods.

pClay performs comparisons using operations for
Constructive Solid Geometry (CSG) (Fig. 1a). These
operations, which include unions, intersections and dif-
ferences, can be combined like arithmetic operators to

sculpt geometric solids that represent molecular struc-
ture. For example, the union of large spheres centered at
ligand atoms can represent the neighborhood of a ligand
(Fig. 1b, c). The difference between the spheres and the
molecular surface of a receptor can describe the solvent-
accessible binding cavity in the receptor (Fig. 1d, e). The
CSG difference between one binding cavity and another
is the cavity region that is solvent accessible in one pro-
tein and inaccessible in the other (Fig. 1g). This sculptural
approach inspires both the name pClay, a portman-
teau for “protein” and “clay,” and also the solid geometry
approach to the analysis of protein shape and charge that
pClay enhances. Here, the contribution of pClay is not to
introduce CSG-based comparison, which was done ear-
lier (e.g. [13, 21]), but rather to demonstrate that rapid
and precise comparison can significantly enhance the
speed and accuracy of inferences drawn with CSG-based
comparisons.

As input, pClay can accept protein structures as atomic
coordinates in three dimensions, which may arise from
crystallography or computational molecular models. It
can also accept geometric solids, such as spheres, tet-
rahedra, and the regions within surfaces derived from
structural data, including molecular surfaces and elec-
trostatic isopotentials. pClay can be used to output
detailed geometric differences between binding cavities,
conserved regions of solvent accessibility in binding cavi-
ties, regions of electrostatic complementarity, and other
structure-function annotations. The regions and surfaces
identified by CSG operations are all outputs of pClay,
and they make a dual prediction: They predict both the
structural influence on specificity (e.g. the red region in
Fig. 1g) as well as the steric mechanism by which it acts.
Likewise, the CSG-based comparison of electrostatic

a

Input

Union

Intersection

Difference

Output

b c

d

g

fe

Fig. 1  CSG operations on Protein Structure Data. a Basic CSG operations. Input solids are yellow with dotted outlines. Output solids have unbroken
outlines. b Sample ligand with grey atoms and white bonds. Light blue circles are spheres centered on each atom. c The CSG union of all spheres
in each ligand. d The molecular surface of two proteins (blue, red) in complex with each ligand, shown as sphere unions (black outlines). e CSG
difference of the sphere unions minus molecular surfaces (dotted outlines), shown with molecular surfaces (blue and red, no outline) and envelope
surfaces (black outline). f Intersection of differences with envelope surfaces (light blue and red, black outlines). g The CSG difference between
binding cavities reveals a variation in steric hindrance that causes differences in binding preferences

Page 3 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

isopotentials predicts both influential elements of protein
structure that and an electrostatic mechanism of action.

These two-part predictions yield important utility in
applications that we have demonstrated earlier. CSG
differences between the S1 subsites of the trypsins and
elastases can identify threonine 226 which, in elastases,
sterically hinders the longer substrates preferred by
trypsins that might otherwise bind [21]. That region of
hindrance is only 50% larger than a carbon atom ( 31Å3 ),
illustrating how important it is to have the precise CSG
operations enabled with pClay. A similar approach can
identify gatekeeper residues in the tyrosine kinases,
which are single amino acids that sterically hinder larger
drugs [22]. This application is illustrated in Fig. 2, where
a larger phenylalanine gatekeeper can interfere with the
binding of imatinib, a larger tyrosine kinase inhibitor.

We have also observed that a CSG-based comparison
of electrostatic isopotentials can reveal single amino
acids crucial for selecting ligands in the in the cysteine
proteases [13] and for stabilizing the three interfaces of
the SMAD trimer [14]. In such cases the contribution of
a single amino acid to the electrostatic field of the pro-
tein is subtle, but the difference is still detected in CSG
comparisons of electric fields at the binding site. The
correctness of CSG-based predictions was further dem-
onstrated when a blind prediction of the electrostatic
importance of arginine 235 was later verified experimen-
tally on a study of the ricin toxin [15]. Since no large data-
bases currently link individual mutations to biophysical
mechanisms of action, a larger scale validation of the
CSG-based approach is not possible. To these smaller-
scale studies, however, pClay contributes parallelism,

for enhanced throughput, and precision, up to machine
limits, to ensure that subtle but influential details are not
overlooked.

The precision that pClay achieves derives from geomet-
ric solids that have analytical representations. pClay can
assemble these primitives into solvent excluded regions,
which we call molecular solids. The boundary of a molec-
ular solid is the classic molecular surface, also known as
the solvent excluded surface or Connolly surface, which
was originally developed by Richardson and others [23,
24]. While we can construct molecular solids with CSG
operations on many individual primitives, pClay exploits
molecular properties to sidestep those operations and
achieve greater efficiency. The resulting molecular solids
avoid the “photocopier effect,” where multiple CSG oper-
ations can accumulate geometric errors. They can also be
translated into triangle meshes at an arbitrary degree of
precision.

pClay also performs CSG operations on any closed tri-
angle mesh as if it was an exact geometric solid. Much
like VASP-E, this capability enables CSG operations
to be performed on electrostatic isopotentials, such
as those produced by GRASP2 [25]. In such cases, the
electrostatic isopotential, a surface, is used to define the
boundary of an electrostatic solid. Since electrostatic
solids and molecular solids are simply geometric solids
with different origins, pClay can express and compute
CSG operations that combine electrostatic isopotentials
and molecular surfaces. These data can be used to iden-
tify electrostatic influences on specificity based on their
locality to binding cavities and their complementarity
with other charges, as we have shown in the past [13–15].

Fig. 2  Steric hindrance in the tyrosine kinase active site induced by a large gatekeeper residue. A transparent cross section of the c-Kit tyrosine
kinase is shown in gray (pdb: 1t46). The inhibitor imatinib (magenta sticks) is co-crystallized with c-Kit in the active site (dark gray channel).
Interleukin-2 tyrosine kinase (pdb: 1snx) is structurally aligned to the c-Kit kinase but not shown for clarity, except for its gatekeeper residue F435
(cyan spheres). This phenylalanine gatekeeper residue is substantially larger than the threonine gatekeeper of c-Kit, creating steric hindrance that
prevents longer inhibitors like imatinib from binding in Interleukin-2. Identifying substitutions that influence binding preferences through steric
hindrance is one important application of CSG-based comparison methods like pClay

Page 4 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

Also, because triangle meshes are treated as exact solids,
electrostatic isopotentials never lose precision after their
original approximation into meshes.

pClay boosts computational efficiency with parallel-
ism. As a result, CSG expressions can be evaluated more
rapidly than they would have been on a single proces-
sor core. We achieve parallelism in pClay in a number of
ways, most notably by recasting Marching Cubes, a tra-
ditional method for implementing CSG operations [26,
27], into a series of parallel breadth first searches (BFS).
In pClay, we use BFS to traverse cubic lattices and iden-
tify contiguous regions of cubes within defined boundary
regions. These breadth first traversals can be distributed
evenly across arbitrary numbers of threads. By dividing
the computation in this way, parallelism can make com-
parisons faster and also enable more detail to be con-
sidered. This advancement stands in qualitative contrast
with existing efforts to parallelize structure comparisons
(e.g. [4]), where throughput was increased without bene-
fiting precision. To demonstrate the parallel scalability of
our method, pClay was tested on both modern multicore
processors as well as on a Xeon Phi, a manycore coproc-
essor with 61 cores.

In our experimental results, pClay achieved precise,
scalable performance on range of problem sets. First, we
demonstrate that pClay generates molecular solids that
are essentially identical to those generated by existing
algorithms. Second, we show that pClay exhibits substan-
tial parallel speedup on a range of CSG operations rep-
resenting both realistic and artificial applications. Finally,
we demonstrate an example application of pClay, where a
statistical model trained on data from pClay has substan-
tially improved prediction accuracy over the same model
trained with data from earlier methods. These results
point to a range of applications in automatically inferring
the functional role of steric and electrostatic elements of
protein structure in molecular recognition.

Related work
VASP [21] and VASP-E [13] were the first algorithms to
use CSG-based comparison to identify elements of pro-
tein structures that influence specificity and connect
them to steric and electrostatic mechanisms of action.
pClay advances on these methods by enabling repre-
sentations of molecular structures that are exact up to
machine precision and by performing CSG operations
in fine-grained parallelism. By distributing comparisons
over over multiple processors, pClay enables compari-
sons to be performed at larger scales and at degrees of
precision that were previously impractical. While pClay
is the first algorithm to integrate arbitrary precision
and parallelism to perform comparisons of molecular

structure, aspects of these capabilities exist separately in
methods for other applications.

One such application is molecular visualization, which
has often made use of high precision molecular surfaces
for visual clarity. Molecular surfaces, also known as sol-
vent excluded surfaces or Connolly surfaces, are com-
monly generated as a collection of points [24, 28], arcs
[23] or as triangle meshes [25, 29–32] in visualization
applications (e.g. [33, 34]) and for calculating solvent
accessible surface area (e.g. [35]). For these applica-
tions, existing methods could be modified to generate
molecular surfaces at arbitrary degrees of precision, but
most operate at a fixed precision because more detail is
unnecessary: Meshes that are finer than those needed
for visualization are more difficult to render on the same
hardware, they take longer to generate, and the added
refinement may not be visible to a user. They also yield
biologically insignificant refinements to calculated sur-
face area. While the design of pClay has similarities to
these methods, especially in that it is also inspired by
the Shrake-Rupley approach [28], it uses arbitrary preci-
sion representations to support comparison rather than
visualization. In the comparison scenario, arbitrarily fine
resolutions yield more precise comparisons and more
accurate predictions, as we shall demonstrate in our
results.

Several recent methods do generate arbitrarily precise
representations of the molecular surface. Techniques
using NURBs [36], alpha shapes [37] or spherical coor-
dinates [38, 39] fall into this second category. Generally,
these techniques for surface generation have been used
for visualization and not for computing CSG operations,
though NURBs and perhaps others are compatible with
CSG applications. In this regard, pClay explores new
applications of CSG on arbitrarily precise represen-
tations of molecular surfaces. pClay also differs from
existing methods because it generates molecular solids
from collections of three dimensional solids rather than
by connecting surface patches or generating surface
approximations.

The comparison of protein structure is frequently par-
allelized because large scale comparisons can be used to
build statistical models and scan for remote homologs.
MASH [4] was the first such parallel comparison algo-
rithm and it demonstrated that parallel distributed
protein structure comparison could refine motifs as geo-
metric search terms for remote homologs, and it achieves
a superlinear speedup in doing so [4]. Parallel-Probis
achieves parallel speedups for the direct parallelization
of large database searches [40]. More recent methods use
cloud based resources to make parallel structure search
more accessible to other users [41]. In contrast to these
efforts to perform more comparisons more quickly, pClay

Page 5 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

uses parallelization different to add higher precision as
well as faster performance.

For applications in computer assisted design, algo-
rithms for visualizing the output of CSG operations
have been parallelized to create efficient user interfaces
(e.g. [42]). These efforts do not generate an explicit sur-
face as pClay does, nor do they yield analyzable volume
data. CSG operations may be decomposed into compo-
nents and processed in parallel (e.g. [43]), for additional
performance.

Methods
As input, pClay accepts a collection of geometric solids
and an expression of CSG operations. We convert the
CSG expression into a binary tree, a CSG tree, where the
nodes of the tree are geometric solids. The input solids,
which include spheres, spindles, tetrahedra, molecu-
lar surfaces or triangle meshes, are leaves on the CSG
tree, while the result of CSG operations are the non-leaf
nodes. The final result of all operations, the root node,
is the output. pClay can also generate a closed triangu-
lar mesh at user-defined resolutions to approximate the
boundary of the output.

To perform CSG operations, pClay implements a
parallel version of Marching Cubes [26] (the “Paral-
lel marching cubes” section), which we summarize
below. Our method requires three basic functions to
be performed by every geometric solid. These func-
tions are containsPoint(), intersectSegment(), and find-
SurfaceCubes(). Given any point p in three dimensions,
containsPoint(p) determines exactly if p is inside or
outside the solid. A point exactly on the surface is said
to be inside the solid. Second, given a line segment s,
intersectSegment(s) determines all points of intersection

between the surface of the operand and s, as well as the
interior or exterior state of each interval on the segment.
Finally, given a cubic lattice l that surrounds the primi-
tive, findStartingCubes(l) finds a few cubes of the lattice
that are surface cubes, having at least one corner inside
and one corner outside the solid. These cubes are used to
initiate a parallel breadth first search for all surface cubes,
called findAllSurfaceCubes(), which is implemented once
for all primitives and described in the “Finding all sur-
face cubes” section. To implement each leaf node it is
thus sufficient to describe how these basic functions are
implemented for that solid. Non-leaf nodes implement
the basic functions as logical operations, as we will detail
later.

Below, we first describe how the output approximations
are generated using a parallelization of Marching Cubes
and how we find all surface cubes beginning the output
from the starting cubes generated by the basic function.
We next explain how the three basic functions are imple-
mented for every primitive. Finally, we detail how the
basic functions are implemented in non-leaf nodes.

Parallel marching cubes
As input, Marching Cubes accepts a set of geometric
solids (Fig. 3a), which we will refer to as operands, and
a CSG expression tree to be performed on the operands.
It also accepts a resolution parameter in angstrom units
that specifies the degree to which the result of the CSG
expression should be approximated in the output.

We begin by defining l, an axis aligned cubic lattice sur-
rounding the input operands, where each cube has sides
equal to the user-specified resolution parameter (Fig. 3b).

Fig. 3  a Input operands, shown in red and green solids, with black outlines. b Cubic lattice surrounding operands (gray). c, f Surface cubes for both
operands (gray boxes). d, e, g Several steps of floodfill propagation (starting at yellow circle, following yellow arrow). i Corner points of each surface
cube (joined gray squares) tested for exterior (yellow) or interior (red) state. j Segments that cross the boundary of the output surfaces (Black
lines). k Intersection points (white circles) where the segments intersect the output surface. l lookup table representing three dimensional surface
constructions with different edge intersection patterns. m Triangles (black lines) approximating the intersection points (gray). n Final output surface,
black lines

Page 6 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

This step is performed by examining the sizes of all oper-
ands and the related CSG operations.

Once the lattice is defined, we invoke
findStartingCubes(l) on each input solid (Fig. 3c, f).
The surface cubes identified are provided as input to
findAllSurfaceCubes(), which identifies all remaining
surface cubes of all inputs solids in parallel (Fig. 3h).
The process of identifying surface cubes for all input
solids also necessarily determines the interior/exterior
state of the points on these cubes in relation to specific
solids. We then compute the interior/exterior state of
these points in relation to all other solids in an embar-
rassingly parallel manner. Once this assessment is
made for any point, we can access whether that point
is inside or outside the output region (Fig. 3i). In this
way, we find the subset of cubes that contain a corner
inside and a corner outside the output region.

Next, on each cube of the output surface, we identify
edges that connect one corner that is inside the output
region to one that is outside (Fig. 3j). Since these edges
must pass through the output surface, we call segInter-
sect() on the root node to find the point of intersection
between the edge and the output surface (Fig. 3k). This
process is parallelized across the list of edges, ensuring
that the calculation is never duplicated when dealing
with adjacent cubes.

Finally, once intersections for every edge on every
surface cube are determined, triangles are generated in
each cube following a lookup table (Fig. 3l). The col-
lection of all resulting triangles form a closed triangu-
lar mesh that approximates the output region (Fig. 3m,
n).

Finding all surface cubes
findAllSurfaceCubes() accepts a cubic lattice l (Fig. 3b),
a list of starting cubes c (e.g. Fig. 3c,f), and a primi-
tive p for which to find all remaining surface cubes.
We perform a parallel floodfill algorithm to identify
the remaining surface cubes: Each available thread is
assigned a surface cube. Each thread then tests cubes
adjacent to the assigned cube to find any that are also
on the surface of the input solid (e.g. Fig. 3d). This test
is performed by calling containsPoint() on the corners
of the adjacent cube. If at least one corner is inside the
input solid and another corner is outside, the adjacent
cube is stored on a queue of upcoming cubes. Once all
cubes adjacent to the initial surface cubes have been
either added to the queue or discarded, all threads are
then directed to find cubes adjacent to those still on
the queue (e.g. Fig. 3e), and so on, until the queue is
empty, and all cubes on the surface of the input solid
have been identified. Duplicate entries onto the queue

are eliminated by recording previously-examined cubes
on a hash table.

Input solids (leaf nodes)
pClay supports several kinds of simple and complex sol-
ids for CSG operations. These are spheres, tetrahedra,
spindles, molecular surfaces and polyhedral meshes.
Each solid type must support the three basic functions:
containsPoint(), intersectSegment(), and findSurface-
Cubes(). Thus, to describe the implementation of these
solids, we describe how each method is implemented for
the solid.

Spheres
Spheres (Fig. 4a) are defined by center point and
radius. containsPoint(p) is implemented by determin-
ing if the distance from a point p to the center point
of the sphere is at most equal to the radius. To com-
pute intersectSegment(s), we recast the problem on the
plane coplanar with the segment and the center of the
sphere, where it reduces to the trivial problem of find-
ing intersections between a line and a circle. In the rare
case where the segment intersects the sphere exactly at a
point of tangency, two artificial points of intersection are
generated at a trivial separation to maintain topological
consistency. findStartingCubes() is implemented by iden-
tifying the cube that contains the center of the sphere.
From this center cube, we step outwards, along adjacent
squares, in the six orthogonal directions until we find six
cubes that are partially inside and partially outside the
sphere (e.g. Fig. 3c, f).

Tetrahedra
Tetrahedra (Fig. 4b) are defined by four points in
space. containsPoint(p) is implemented by determin-
ing if the point p exists on the correct side of the four
half-planes that define the faces of the tetrahedron.
intersectSegment(s) is implemented by identifying points
of intersection between a given segment and each tri-
angle face of the tetrahedron. In the rare case where the
segment intersects the tetrahedron at a point of tangency
to an edge or to a corner, two artificial points of inter-
section are generated at a trivial separation to maintain

Fig. 4  a A sphere. b A tetrahedron. c A spindle

Page 7 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

topological consistency. Where the segment is colinear
with the edge or face of the tetrahedron, the interval
returned is the interval of overlap. Finally, findStarting-
Cubes() is implemented by first identifying the cubes that
contain each corner of the tetrahedron. In some cases,
these cubes do not have both a corner that is inside and
a corner that is outside the tetrahedron. In that case, we
generate the vector from the tetrahedron corner to the
center of the opposite face of the tetrahedron, we find the
face of the corner cube that this vector passes through,
and identify the cube on the other side. We then repeat
our check for interior and exterior corners on that cube,
repeating again as necessary until we reach the center of
the opposite face. We repeat this process for each of the
four corner points, and if no surface cube is identified,
none are returned.

Spindles
Spindles (Fig. 5a) define the solvent excluded region
between two atoms that are too close to permit a sphere
representing a solvent molecule to pass between them
(Fig. 5b). “Broken” spindles (Fig. 5c) occur when the
edge of the solvent sphere can pass beyond the center-
line of the two atoms. Conceptually, spindles are the vol-
ume within a cylinder minus the volume within a coaxial
torus. We define spindles by center point, perpendicular
vector, major radius, and minor radius taken from the
torus (Fig. 5d), and end cap positions along the perpen-
dicular vector (fig. 5e). The center point is the perpen-
dicular projection of the center of the solvent sphere onto
the segment between atom centers. The perpendicular
vector points from the center point towards the center
of one atom. The major radius is the radius of the circle
defined by the center of the solvent sphere as it rotates
about the two atoms. The minor radius is the radius of
the solvent sphere. The endcaps are circles perpendicular
to the perpendicular vector that are defined by the point
of tangency between the solvent sphere and the atoms, as

the solvent sphere rotates about the atoms. The boundary
surface of a spindle is defined by the end caps and else-
where by the interior curve of the torus (Fig. 5d).

To implement containsPoint(p), note that the spindle
is rotationally symmetric about the perpendicular vec-
tor. Thus, a plane K can be defined coplanar to p and the
perpendicular vector of the torus. In K, p is inside the
spindle only if it is inside the rectangle that defines the
rotational cross section of the cylinder and also outside
the circle that defines the rotational cross section of the
torus.

intersectSegment(s) is computed by first setting up
the calculation by translating the center of the spindle to
the origin and rotating its axis to align it with the x axis.
The segment s is translated and rotated with it. We can
describe the torus aligned to the x axis as follows:

where R is the major radius, and r is the minor radius of
the torus. In the torus equation, we substitute x, y and z
with the line expressions x0 + tdx, y0 + tdy, andz0 + tdz ,
where x0, y0, z0 are segment starting points, and t param-
eterizes the line containing the line segment. The result
of this substitution is a quartic equation on t, and roots of
the equation will be parameters on the segment at points
of intersection between the segment and the torus. We
converted this equation into a monic quartic using Max-
ima, a computer algebra system [44].

To find the solutions of this equation, we produce the
Frobenius companion matrix of this quartic polynomial.
The roots of Eq. 1 are the eigenvalues of this matrix.
Complex eigenvalues correspond to nonexistent points
of intersection between the segment and the torus, while
real eigenvalues correspond to intersection points on
the torus. We find these intersection points and elimi-
nate any intersections that are outside of the cylinder.
Separately, we also find intersections with the end caps
of the spindle, treating them first as infinite planes and

(1)(x2 + y2 + z2 + R2
− r2)2 − 4R2(y2 + z2) = 0

Fig. 5  a Spindle. b Formation of a spindle (gray) in a simple molecular surface defined on two atoms (red) and a solvent sphere (yellow). The
perpendicular projection of the center of the solvent sphere onto the interatomic axis defines the center point. c “broken” spindle. d Torus defining
some characteristics of a spindle, including center point (black dot, center), perpendicular vector (vertical arrow), major radius (arrow from center
point to horizontal ellipse), minor radius (diagonal arrow from horizontal ellipse to torus surface. e Cylinder (light blue with black outline)

Page 8 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

then determining if the intersection point is within the
circle on the plane. Intersections between the segment
and the endcaps or between the segment and the torus
are returned as intervals where the segment is inside the
spindle.

findStartingCubes() is implemented by first generating
the segment between the centers of the endcaps. The lat-
tice cube containing one centroid is identified, and if it
is not a surface cube, the adjoining cube, through whose
face which the segment passes, is identified as the next
cube to examine. This process is repeated until either
the segment ends at the other centroid of a surface cube
has been found. In the case where the spindle is broken
(Fig. 5d), two segments are generated, starting at one
endcap centroid and moving towards the other endcap
centroid, but ending at the center.

Molecular solids
pClay generates molecular solids by positioning struc-
tural components with the power diagram [45]. This
approach follows the classic methods for generating
molecular surfaces, such as CASTp [37], MSMS [29],
GRASP2 [25], which also use power diagrams or similar
constructs. For this reason, we paraphrase our approach
here, expanding on points that differ from classic meth-
ods. As in the earlier methods, our approach represents
water molecules as solvent spheres, which can be of any
given radius. By calling basic functions from simpler
primitives, pClay achieves an efficient implementation
of the basic functions for the entire molecular solid with-
out describing it as a CSG operation of many individual
primitives.

We begin with an input file from the Protein Data Bank
(PDB). Using atomic coordinates and Van der Waals radii

for each atom, we first compute a power diagram with
REGTET [46]. The power diagram divides three dimen-
sional space into cells corresponding to each atom of
the input. The size of a cell relates to the Van der Waals
radius of the atom, through the power function. Using
the power diagram, we construct a topologically dual
geometric graph (Fig. 6a), which has a vertex at the center
of each atom and an edge between any vertices that cor-
respond to adjacent cells. This dual graph defines the
location of the primitives that will comprise the molecu-
lar solid. In sequential stages, we generate all primitives
of the same type in parallel, starting with sphere primi-
tives, then spindles, tetrahedra, and so on.

At every vertex of the dual graph, we create sphere
primitives with the appropriate Van der Waals radius of
each atom (Fig. 6b). Next, we examine every edge on the
dual graph and generate a spindle between the atoms on
at the endpoint of each edge, except for overlong edges
that are longer than the sum of Van set Waals radius
of the endpoint atoms and the diameter of the solvent
sphere (Fig. 6c, d). Once all spindles are completed, we
identify all tetrahedra in the dual graph that lack an over-
long edge and we generate a tetrahedron primitive for
each one (Fig. 6e).

Next, we identify triangles on the dual graph that are
not between two tetrahedra (Fig. 6f). These triangles
define triplets of atoms that may be on the molecular
surface. To determine whether the atoms are on the
surface, we place a solvent sphere tangent to all three
atoms (Fig. 6g). If the solvent sphere does not collide
with any other atoms, we create a negsphere: a sphere
primitive in the tangent location in the same size as the
solvent that describes a region of the solvent outside
the molecular surface. We also generate a tetrahedron

Fig. 6  Molecular Surface Construction. a Dual graph of a power diagram on four atoms (graph edges shown with black lines, graph vertices
shown as corners). b Sphere primitives from atoms (teal) shown with dual graph. c Atoms (transparent yellow) with one spindle (teal). d Atoms
with spindles corresponding to all edges of the dual graph. e Tetrahedron primitive (teal) with atoms (yellow). f One triangle of the dual graph
(bold lines, black circles) that is not between tetrahedra. g Solvent sphere (yellow) tangent to three of the atoms (teal). h New tetrahedron (teal)
with corners in the center of the three atoms of the triangle and the solvent sphere (yellow). i Cup region inside the new tetrahedron and outside
the solvent sphere (teal) shown with three atoms of the triangle (yellow). j Cup, shown with three adjacent spindles (teal) and three atoms of the
triangle (yellow). k Finished molecular solid

Page 9 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

with corners on the triangle and at the center of the
negsphere (Fig. 6h). The region inside this tetrahe-
dron and outside the negsphere is both inside the sol-
vent excluded region and not occupied by spindles or
atoms or other tetrahedra. We call this concave subset
of a tetrahedron a cup (Fig. 6i), and describe cups as a
negsphere-tetrahedron pair. The concave surface of the
cup is continuous with the three adjacent spindles and
atoms (Fig. 6j). Once all triangles that are not between
two tetrahedra have been examined for the presence of
a cup, the combination of spheres, spindles, tetrahedra
and negspheres form a molecular solid (Fig. 6k).

To support the three basic functions, we store all of
these primitives in a data structure for rapid range-
based lookup. First, we generate a bounding box for
each primitive. Next, we generate a lattice of cubes,
where each cube is 2 angstroms on a side. Finally, we
associate each primitive with all lattice cubes that
intersect its bounding box. These associations act as a
hashing function that enables us to rapidly identify any
primitives nearby a given cube in the lattice. Since real
molecules have finite atomic density, and since primi-
tives are constructed from atoms and between atoms,
the number of primitives associated with any cube is
finite. As a result, a hashing function based on the lat-
tice achieves algorithmically constant time lookup of
nearby primitives.

A) containsPoint(p) Given a point p, if p is outside the
coarse lattice, then we immediately return false, because
p must be outside the molecular surface. If not, we deter-
mine which cube c of the coarse lattice contains p. Next,
we identify all primitives associated with c. We use the
containsPoint() function of each associated primitive
to determine if p is inside the primitive. If p is inside a
negSphere, then p is outside the molecular surface. if p
is inside any other primitives, then p is considered inside
the molecular surface. If p is not inside any primitives, it
is outside.

B) intersectSegment(s) Given a segment s, we generate
a list of cubes C that contain some interval of s. Next, we
generate a list of primitives P associated with the cubes
in C. We then query each primitive p in the list P for an
interval of intersection between p and s using the inter-
sectSegment() method of each primitive. The output
intervals generated are the union of the intervals in tetra-
hedra, spindles and spheres minus the union of intervals
inside negspheres.

C) findStartingCubes(l) During the construction of
the molecular solid, we record the points of tangency
between all negspheres and atom spheres. For each of
these points, we identify the lattice cubes of l that con-
tain them. We also generate starting cubes from all spin-
dles and isolated spheres in the protein structure, calling

findStartingCubes() on each of these primitives. From
these cubes, we return only cubes that exhibit one corner
inside and one outside the molecular solid.

Polyhedral meshes for electrostatic analysis
pClay performs CSG-based comparisons of electrostatic
isopotentials by representing them as polyhedral meshes
that are interpreted as geometric solids. Beginning with
a pdb file, we provide the atomic coordinates to DelPhi
[47], a widely used program for producing finite dif-
ference solutions to the Poisson-Boltzmann equation.
DelPhi produces an electrostatic potential field that esti-
mates the electrostatic potential at points within and sur-
rounding the provided structure. Next, we use VASP-E to
analyze the field and generate an isopotential surface at
a given threshold k. When k is positive, the surface sur-
rounds positively charged with electrostatic potential
equal to or larger than k. When k is negative, the surface
describes negatively charged regions with potential equal
to or less than k. When evaluating the electrostatic com-
plementarity of two interacting molecules, we evaluate
the CSG intersection of a positive isopotential from one
molecule and the negative isopotential from the other
molecule, and vice versa. As we showed in earlier work
[13], amino acid substitutions that cause large changes in
complementarity can identify residues that have a strong
electrostatic role in binding specificity.

The surface generated by VASP-E is a closed polyhe-
dral surface composed of triangles, which pClay inter-
prets as a geometric solid (Fig. 7a). To be able to perform
CSG operations on mesh primitives, we prepare it by,
first, constructing a cubic lattice surrounding the mesh
with cube size equal to the resolution (Fig. 7b). Second,
in parallel, each triangle of the mesh is associated with
any cube in the lattice it passes through, generating a
hash table for looking up triangles in a given cube. In this
process, all cubes in the lattice are classified as empty or
non-empty: Cubes containing triangles are called non-
empty, and the remaining cubes are empty (Fig. 7c).
Third, using a parallel breadth first search, the non-empty
cubes are categorized into connected components, where
non-empty cubes that share a face are considered part of
the same connected component (Fig. 7d). Through par-
allel breadth first search, we also categorize empty cubes
into connected components (Fig. 7e).

Next, we determine whether connected components
of empty cubes lie nested within each other, based on
adjacent non-empty cubes. This assessment is computed
from the outside inwards: The cubes at the edge of the
lattice are exterior by definition; the empty cubes on the
other side of the first set of nonempty cubes are always
interior, and so on. We apply this alternating assignment
process to each group of nested empty cubes, checking

Page 10 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

for topological abnormalities. An abnormality may
arise if a given triangle mesh has an internal void with
a boundary so close to the surface that they exist within
a single lattice cube, then empty cubes of the void could
be incorrectly assigned. We check for these cases by gen-
erating a line segment between sets of empty cubes and
counting the number of intersections that occur with
triangles in the mesh. An odd number of intersections
implies that the two sets of empty cubes have opposite
interior/exterior status, while an even number implies
that they are the same. The result is a categorization of all
connected components of empty cubes as either “empty-
interior” or “empty-exterior”.

ContainsPt(p) Beginning with an input point p, we
first find the lattice cube that contains it. If p is outside
the lattice, or inside an empty-exterior cube, then con-
tainsPt() returns false. If p is in an empty-interior cube,
then true is returned. Finally, if p is inside a non-empty
cube, 5 line segments are randomly generated between p
and the centers of nearby empty cubes. We then count
the intersections between these line segments and tri-
angles of the input mesh. For segments connecting to
empty-interior cubes, an even number of intersections
votes that p is interior; an odd number of intersections
votes that p is exterior. Segments connecting to empty-
exterior cubes generate opposite votes for interior and
exterior status. Once all segments are examined, votes
are counted, and the majority is used to determine if p is
interior or exterior.

intersectSegment(s) Beginning with a segment s
as input, we first determine all lattice cubes that inter-
sect the segment, and then retrieve all triangles associ-
ated with these cubes. Next, we find all the intersections
between s and the triangles. Using containsPt(), we deter-
mine the interior/exterior status of the first endpoint of
the segment, then use it’s status to determine the inte-
rior/exterior status of the intervals between intersections
along s.

findStartingCubes(l) Given an input lattice l that is
distinct from the lattice m constructed for the Polyhe-
dral Mesh primitive, we must identify starting cubes in
l. We perform this process by selecting cubes c from the
nonempty cubes in m, making sure that every connected
component of nonempty cubes yields at least one cube in
c. Taking the cubes in c, we find cubes in l that overlap
with those in c, and then use containsPt() to determine
if they have corners both inside and outside the mesh.
The cubes with corners inside and outside the mesh are
returned as starting cubes.

CSG operations: union, intersection, and difference
A CSG operation node represents the outcome of a CSG
operation on its operand nodes. Thus, it is responsible
for fulfilling the three basic functions as if it was a primi-
tive, and it implements those functions by calling on its
operand nodes. We refer to the operand nodes in the text
below as A and B.

ContainsPt(p) For a given point p, the CSG Union
returns true if containsPoint(p) returns true on at least
one operand, and false otherwise. The CSG Intersec-
tion returns true if containsPoint(p) returns true on
both operands, and false otherwise. The CSG differ-
ence between operands A and B returns true if A.
containsPoint(p) is true and B.containsPoint(p) is false,
and false otherwise.

intersectSegment(s) For a given segment s,
intersectSegment(s) on any CSG operation begins by
separately calling intersectSegment(s) on operands A and
B, which separately output intervals a and b. The output
of intersectSegment(s) on a CSG Union is the union of a
and b, the output on a CSG Intersection is the intersec-
tion of a and b, and the output on a CSG difference is the
subset of the a that is not in b.

getSurfaceCubes() Given a cubic lattice l, calling
getSurfaceCubes() on a CSG union, intersection, or dif-
ference returns the setwise union of cubes returned by

Fig. 7  Processing Polyhedral Meshes. a Polyhedral mesh (light green), with boundary triangles drawn as black segments. An internal void (white,
center) with boundary line segments. b A cubic lattice surrounding the mesh. c Non-empty cubes (gray squares) and empty cubes (transparent
squares). d Two distinct connected components of non-empty cubes (numbered). Two distinct connected components of empty cubes
(numbered)

Page 11 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

calling A.getSurfaceCubes() and B.getSurfaceCubes(). We
always return a union of cubes because examining the
union of cubes can avoid circumstances where a discon-
nected region in the final solid is lost. Performance pro-
filing reveals that considering the union of all cubes is a
minor aspect of overall performance, except in the case
of CSG operations that are artificially constructed to cre-
ate many irrelevant cubes.

Evaluating the correctness of molecular surfaces
We evaluate the accuracy of molecular surfaces pro-
duced with pClay by measuring their similarity to sur-
faces produced by the trollbase library, an established
tool for molecular surface generation in GRASP2 [25],
VASP-E [13], and MarkUs [48]. Surfaces generated with
the trollbase library have fixed resolution, while surfaces
generated with pClay were created at 0.25 Å resolution.
pClay is capable of substantially finer resolutions, but
0.25 Å was chosen to create surfaces with similar num-
bers of triangles. Evaluating whether the surfaces gener-
ated are similar in many places is a more stringent test
because the number of triangles is limited.

First, we compare the volume contained by the surfaces
using the Surveyor’s Formula [49]. To paraphrase this
method, the Surveyor’s formula divides any nonconvex
solid into positive and negative tetrahedra and computes
the total volume from those tetrahedra. Since compari-
sons of total volume do not strictly prove shape similar-
ity, we also measure the distance between every corner
of triangle meshes produced by pClay and the nearest
point on the surface produced with trollbase (Fig. 8). This
distance is measured even if the nearest point is in the
middle of a triangle, or on the edge or corner of a trian-
gle, and we call it the displacement distance. To evaluate
shape similarity, we compute minimum, maximum and
average displacement distances over whole surfaces.

Comparison of pClay with VASP
To our knowledge, VASP [13] is the only other algorithm
for comparing molecular and electrostatic solids. VASP
makes these comparisons by performing CSG operations
on polyhedral solids, without exact primitives or paral-
lelism. Nonetheless, VASP has demonstrated an ability
to identify important steric [16, 21, 50] and electrostatic
[13–15, 51] components of protein structure that control
specificity. For this reason, we compare both the perfor-
mance and the accuracy of pClay to VASP.

Solid representations of binding cavities
We describe binding cavities as geometric solids using
CSG operations (Fig. 1). We begin with a collection of
aligned protein structures and a ligand bound to one
structure (Fig. 1b). First, we compute the union of 5.0
Å spheres centered on the ligand atoms (Fig. 1c), to
describe the neighborhood of the ligand. Next, we gen-
erate a molecular solid from the protein structures with
a 1.4 Å radius probe sphere (Fig. 1d) to represent the
region that is inaccessible to solvent. A second molecu-
lar solid is generated with a 5.0 Å radius probe sphere
to represent the region that is inaccessible to molecular
fragments larger than 10 Å in diameter (Fig. 1e). This
envelope solid, developed originally for SCREEN [52],
defines the exterior boundary of the cavity. The CSG dif-
ference of the sphere union minus the molecular solid
(Fig. 1e, dotted outlines), intersected with the envelope
solid (Fig. 1f), produces the solid representation of the
binding cavity.

Implementation details
pClay is implemented in C and C++. A C wrapper sup-
ports REGTET [46], a fortran program for computing
power diagrams. Parallel communication and coordina-
tion was achieved in part with Intel’s Threading Building
Blocks template library (TBB) employs a work stealing
scheduler to balance computational loads across multiple

a
b c

Fig. 8  Computing displacement distances. Two similar but nonidentical polyhedral meshes are shown as orange and blue line segments ending
in circles. Line segments represent individual triangles, and circles represent triangle corners. At every point on both meshes, the displacement
distance is the minimum distance to the other mesh, as shown by thin lines with arrowheads at both ends (a, b, c)

Page 12 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

cores. Benchmarks were performed on a workstation
with two Xeon E5-2609 CPUs running at 2.5 GHZ, with
32 GB of ram, and on an attached Xeon Phi 7120P
coprocessor with 61 cores running at 1.24 GHZ and 16
GB ram. Xeon Phi and Xeon CPU benchmarks were
never run simultaneously.

Experimental results
We evaluated pClay by measuring correctness in molecu-
lar solid generation, runtime performance, and accuracy
of predictions made with pClay outputs. We measured
the correctness of molecular solids in the “Accuracy of
molecular solid generation” section, comparing outputs
from pClay to molecular surfaces generated by estab-
lished software. In the “Parallel Performance and Scaling”
section, runtime performance was compared to VASP, an
established software package that performs similar CSG
operations. Parallel scaling was measured on both Xeon
CPU and Xeon Phi hardware. Finally, we demonstrate the
added prediction accuracy yielded by statistical models
with data from pClay relative to VASP in the “Evaluat-
ing pClay on existing applications” section. Experimental
datasets used for this work are detailed in Appendix B.

Accuracy of molecular solid generation
While the generation of molecular surfaces is not the
primary purpose of pClay, accurate comparisons require
accurate molecular solids. To evaluate the molecular sol-
ids produced by pClay, we compared them to molecular
surfaces generated with the trollbase library, which gen-
erates surfaces for several widely used software tools,
including GRASP2 [25], MarkUs [48], and VASP [21].
The 100 sequentially diverse protein structures of Dataset
A were used for this comparison.

First, we compared the volume within surfaces gener-
ated by pClay to the volume within surfaces generated by
trollbase. Surfaces produced by pClay contained .00173%
greater volume, on average, than those generated with
trollbase. The largest volume difference was observed
between surfaces generated for yeast RPN14 (pdb: 3VL1,
chain A). That percentage difference was .02343%, and
it arose from many small variations, accumulating to a
total difference of 11.594Å3 . The pClay surface contained
49, 460Å3 and the trollbase surface contained 49, 471Å3.

Second, we measured displacement distances through-
out surfaces generated with pClay and those of the same
protein generated with the trollbase library. Molecular
surfaces approximated from solids produced with pClay
were polyhedral meshes with an average of 197,718.54
points. The average displacement distance over all sur-
face points, averaged over all proteins, was 0.00383 Å.
Average displacement distance varied only within a

narrow range, having a standard deviation of 0.0004 Å.
The smallest average displacement distance, observed
on a UVB resistance protein (pdb: 4DNU, chain A) was
0.00315 Å and the largest average displacement distance,
observed on a segment of an acetylcholine receptor (pdb:
1A11, chain A) was .00506 Å. Over the entire dataset,
the average maximum displacement distance was .13619
Å. The largest maximum displacement distance in the
entire dataset was .22024 Å, observed on proto-oncogene
C-FOS (pdb: 2WT7, chain A, shown in Fig. 9). In this
case and in others, the reason that maximum displace-
ment on any protein can even rise to these modest lev-
els stems from the fact that very thin spindles can occupy
volume inside a lattice cube without occupying any cor-
ner of the cube, preventing it from being part of the tri-
angular mesh output.

Overall, the volume within of molecular surfaces gen-
erated with pClay and trollbase are nearly identical and
the distances between the two surfaces, evaluated at
many points, are very close. These results demonstrate
the pClay produces very accurate solids.

Parallel performance and scaling
We evaluate the runtime performance of pClay by
measuring the time required to perform two categories
of CSG operations. We compared pClay performance
to that of VASP on the same CSG operations. For both
methods, runtimes included the time necessary to gener-
ate triangulated meshes of the output, in addition to the
CSG operations themselves, even though pClay does not
require it. We distinguish Xeon CPU cores from Xeon
Phi cores by referring to them as CPU and PHI cores.

Fig. 9  Close-in comparison of a molecular surface from pClay (teal)
and trollbase (transparent yellow) generated from proto-oncogene
C-FOS, (pdb: 2WT7). The notch where the surfaces are most distant
yielded the largest displacement distance in Dataset A

Page 13 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

The first category of CSG operations was a set of
unions on the 30 randomly generated primitives of
Dataset B, with mesh outputs to be generated at resolu-
tions 1.0 Å, .5 Å, .25 Å and .125 Å. 30 primitives were
selected to evaluate the performance of pClay in sce-
narios at least as challenging as in existing applications,
which used approximately 20 primitives (e.g. [21]). CSG
trees of these unions were balanced binary trees, but
imbalanced trees yielded essentially identical runtimes.
Since VASP does not use primitive representations,
triangle meshes nearly identical to the primitives of
Dataset B were provided as inputs to VASP. pClay and
VASP runtime data, on between 1 and 8 CPU cores,
are shown in Fig. 10a. On a single CPU core, pClay
required .113 s to compute the CSG union on the 30
primitives of Dataset B at 1.0 Å resolution, whereas
9.492 s were required for a single core to compute the
same union at .125 Å resolution. As the number of
CPU cores increased to 8, runtime rapidly diminished
to .03 s to compute the union at 1.0 Å resolution, and
1.465 s to at .125 Å. In contrast, single-threaded VASP
required 3 s to compute union on 30 primitives at 1.0 Å
resolution, and 64 s at .125 Å resolution. It is clear that
pClay outperforms VASP, the current state of the art,
on this union of geometric primitives.

We ran the same union operations on 8, 16, 32, and 60
Xeon Phi cores. Due to the slower speed of PHI cores
relative to CPU cores, runtimes were slower even though
the same number of computing threads were used in
some cases. As the number of utilized cores increased,
runtimes exhibited sublinear improvement (Fig. 10b),

because communication overhead increases with the
number of parallel threads. Runtimes for unions on
coarser resolutions improved less than for finer resolu-
tions. This difference in parallel speedup (Fig. 10c) arises
from the fact that the problem size for coarser resolutions
is already quite small and communications and setup
time outweigh the advantages of parallelism. In contrast,
finer resolutions create more computation to be divided,
justifying the costs of communications and setup.

The second category of CSG operations followed the
method illustrated in Fig. 1 to represent binding cavities
as geometric solids. This method, developed and tested
in earlier work [21], was applied to the serine proteases
in Dataset C at .25A resolution. This resolution was
selected because it is more detailed than resolutions used
in existing work while remaining practical for compari-
son against VASP. Figure 10d illustrates the runtimes for
generating the binding cavities. Cavity generation on a
single CPU core completed in between 493 seconds and
643 seconds. Scaling up to 8 CPU cores, the same process
required between 149 and 233 seconds. In comparison,
single threaded VASP required between 499 and 538 sec-
onds to perform the same work. While single threaded
pClay was slower than VASP on one case, it became
nearly two minutes faster in all cases by adding a second
thread of computation, and faster still when adding more
cores. Resources like this would be commonly available
in most computers today.

The cavity generation experiment was rerun on 8, 16,
32, and 60 Xeon Phi cores. Again, since individual PHI
cores are slower than individual CPU cores, runtimes for

a b c

d e f

Fig. 10  a Time to compute the union of 30 random primitives at varying resolutions and CPU cores. VASP performance (single threaded) is shown
in vertical bars. b Time spent to compute the unions on PHI cores. c Parallel speedup on PHI cores. d Time spent for pClay to produce several
binding cavities on CPU cores, compared to single-core VASP. e Time to produce the same cavities on PHI cores. f Parallel speedup of pClay in cavity
production on varying PHI cores

Page 14 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

the same number of threads were slower on PHI cores. As
the number of compute threads increased, we observed
that runtimes fell subtly (Fig. 10e). Substantial increases
in the number of PHI cores resulted in only modest
improvements in runtimes (Fig. 10f). Runtimes on PHI
cores contrasted from runtimes on CPU cores, where
performance improved substantially with increases in the
number of available cores. Since PHI performance scaled
well on Dataset B, and since the molecular solids and
spheres used to generate solid representations binding
cavities are simply large collections of primitives, these
results indicate that some aspects of the Xeon Phi archi-
tecture may be causing a bottleneck that does not exist in
the case of CPU cores.

Evaluating pClay on existing applications
The added precision of pClay enhances prediction
accuracy in existing applications. To evaluate accuracy
enhancement, we tested one such application by pro-
ducing training data for VASP-S, a statistical model for
detecting differences in ligand binding specificity with
steric causes [16]. VASP-S is trained on the volumes of
contiguous CSG differences, called fragments, that are
computed from cavities with the same ligand binding
preferences. This training enables VASP-S to estimate
the probability (the p-value) that two cavities have simi-
lar binding preferences. If, for a given pair of cavities, p
is lower than a threshold α , VASP-S rejects the possibil-
ity that two cavities have similar binding preferences and
predicts that they have different preferences. The VASP-S
method is paraphrased in Appendix A.

We hypothesize that training the VASP-S model with
data generated at finer resolutions, which is not possible
without pClay, will produce more accurate predictions

than a VASP-S model trained with coarser data. To evalu-
ate this hypothesis, we used cavities from the trypsins
in Dataset C, which all prefer to bind positively charged
amino acids. Fragments were computed at the highest
practical resolution for VASP, 0.25 Å, and at two new
resolutions, 0.125 Å and 0.0625 Å, that are now possible
with pClay. Fragments generated at each resolution were
used as separate training sets for VASP-S, producing
three separately trained versions of the VASP-S model
that differ in the resolution of their training data. Next,
we estimated the p-value of the largest CSG difference
between every trypsin and every non-trypsin in Dataset
C, using all versions of the VASP-S model (Fig. 11). Since
the non-trypsins prefer ligands that are very different
from those preferred by trypsin, we expect VASP-S to
produce estimates of p that are below α (0.02).

When trained with data generated at the standard
0.25 Å resolution, VASP-S predicts that 43 of the 81
CSG differences between trypsin and non-trypsin cavi-
ties had different binding preferences. There were thus
38 false negative predictions where VASP-S incorrectly
overlooked structural differences between cavities with
different binding preferences. When trained with data
generated at resolutions of 0.125 Å and 0.0625 Å, VASP-S
made none of the same false negative prediction errors:
This result is apparent in Fig. 11 where the yellow line,
representing the model trained at 0.25 Å resolution inter-
sects the α threshold of statistical significance near the
center of the figure. In contrast, the red and blue lines,
which plot p-values from models trained at 0.125 Å and
0.0625 Å, never cross the α threshold. Thus, statistical
models trained with data from pClay had a 0% false nega-
tive rate. These results demonstrate that pClay can pro-
vide precision sufficient to ensure that statistical models

Fig. 11  The p-value of the largest fragment between every trypsin-elastase and trypsin-chymotrypsin pair in Dataset C was estimated using
training data generated at .0625 Å (blue line), .125 Å (red line), and .250 Å (yellow line). The vertical axis plots p-value, fragments are sorted by
ascending p-value along the horizontal axis. The black line indicates the α threshold of 0.02. Fragments with p-values lower than 0.02 result in a
rejection of the null hypothesis and thus a prediction that the elastase or chymotrypsin in the pair has binding preferences that are different from
that of trypsin. p-values above the threshold do not result in a rejection of the null hypothesis and thus the incorrect presumption that an elastase
or chymotrypsin has binding preferences similar to trypsin. The finer resolution training data made possible with pClay yielded more accurate
predictions

Page 15 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

do not lose accuracy from imprecisely generated training
data.

Conclusions
We have presented pClay, the first parallel algorithm
for performing CSG analyses of protein structures
and electrostatic isopotentials at arbitrarily high reso-
lutions. Central to this capability is the use of math-
ematically exact primitives that can be assembled into
molecular solids and parallel algorithms for computing
CSG operations with multiple computing cores.

We have shown that the molecular solids produced
with pClay are nearly identical to molecular surfaces
generated by existing, widely used software. The vol-
umes of molecular solids were shown to be close to
those produced by an existing method within thou-
sandths of one percent. When compared at nearly two
hundred thousand positions, on average, surfaces pro-
duced with pClay differed from surfaces produced with
an existing method by thousandths of an angstrom on
average. Wheres the accuracy of earlier methods was
important for productive visualization, these detailed
validations, which, to our knowledge, have never been
performed for existing methods, are more impor-
tant for pClay because they ensure that pClay is mak-
ing accurate comparisons on the molecular surfaces it
generates.

We have also shown that pClay performs both artificial
and practical CSG operations efficiently, and that per-
formance scales with more processor cores. Our perfor-
mance evaluation used both Xeon CPUs and a Xeon Phi
coprocessor. We observed scalable performance on all
tests, though performance scaled more modestly in the
case of the Xeon Phi on cavity generation. These results
show that parallelism can be used to drive both efficiency
and precision, which can be crucial for applications that
require a large amount of precise structural analysis.

The combination of parallelism and precision enables
existing applications of CSG-based comparison to be
enhanced with greater prediction accuracy. We dem-
onstrated one such enhancement in our results, where
we used data from pClay to train a statistical classifier
to predict elements of protein structures that sterically
cause differences in binding specificity. In comparison to
training data produced with earlier methods, the training
data produced with pClay was generated with superior
geometric precision, leading to more accurate estima-
tion of statistical significance. As a result, false negative
predictions were eliminated from models using the more
precise training data. By enhancing precision, pClay ena-
bles existing methods to avoid overlooking elements of
protein structure that affect specificity.

These capabilities point to applications where steric or
electrostatic influences on binding specificity need to be
detected. As high throughput technologies increasingly
reveal how disease proteins might vary between or within
individuals, pClay offers the opportunity to examine that
data and explain how specific elements of protein mod-
els could alter binding, thereby generating individualized
insights into how drug therapies might be evaded, how
molecular interactions might change, and how protein
therapies can be redesigned for improved specificity.

Acknowledgements
Special Issue—Selected papers from WABI2019.

Authors’ contributions
The algorithm was parallelized by BYC. The method for generating an exact
molecular surface and for performing exact CSG on multiple abstractly
defined objects was developed by KFD and BYC. The method for represent-
ing exact general polyhedra was developed by GDG. Benchmarking was
performed by GDG and BYC. The manuscript was written by BYC. All authors
read and approved the final manuscript.

Funding
This work was funded by in part by NIH Grant R01GM123131 to Brian Chen.

Availability of data and materials
All data is publicly available and reference in Appendix.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Appendix A: VASP‑S: a statistical model of steric
variation in ligand binding cavities
When examining the molecular surfaces that define the
geometry of binding cavities, small differences between
cavity shapes correspond to variations in the pattern of
steric hindrance in the two cavities. In two binding cavi-
ties, these steric variations can occur in several loca-
tions, where each location has individual potential to
accommodate or hinder a potential ligand. We refer to
these variations as fragments, and define each of them
as a contiguous region of a CSG difference between two
binding cavities. Where fragments are large (e.g. C–D in
Fig. 12d), there are large variations in steric hindrance
that may cause differences in binding specificity, and
where fragments are small (e.g. A–B in Fig. 12b), the
variations may be too subtle to hinder binding through a
steric mechanism.

VASP-S is a statistical model of fragment volume. It is
trained on the volumes of fragments from cavities that
have the same binding preferences. It estimates the prob-
ability p that the volume of a given fragment could have

Page 16 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

arisen from cavities with binding preferences identical
to those of the training set. If p is close to 1.0, then the
probability is high that the fragment could have arisen
from the training set, so we predict that the cavities that
yielded the fragment exhibit binding preferences similar
to those of cavities in the training set. If p is less than a
threshold value α , then the probability is so low as to sug-
gest that the cavities that yielded the fragment are atypi-
cal of the training set. In such cases, we reject the null
hypothesis that the given pair of cavities have identical
binding preferences, and predict that they have different
binding preferences. To paraphrase the VASP-S method
[16], we will explain how VASP-S works in two stages:
First, we document how VASP-S is trained, and then we
explain how VASP-S is used to estimate p-values.

To train VASP-S, we begin with a collection of bind-
ing cavities with identical binding preferences (Fig. 12a).
All cavities are aligned using the appropriate structure
alignment software. Whole-structure alignment algo-
rithms like ska [53] can be used for remotely homolo-
gous proteins, or cavity-based alignment software like
MASH [4] can be used to align only cavities, when pro-
tein folds are totally dissimilar.[4]. This work performed
alignments with ska. Next, a solid representation of
every cavity is produced using the method described in
the “solid representations of binding cavities” section.
Then, for every pair of cavities A, B in the training set, the

CSG differences A–B and B–A are computed (Fig. 12b),
and we separate individual fragments from each CSG
difference.

Figure 12c diagrams how fragments can result from
CSG differences. For example, the CSG difference A–B
results in three disconnected semicircular regions shown
in red with heavy black outlines. These differences rep-
resent the many small variations that can occur between
proteins with identical binding preferences. Even though
they prefer the same ligand, substitutions in the amino
acids adjacent to the cavity, differences in rotamer con-
formation or differences from protein breathing can
create subtle differences that could be observed even
between two crystal structures of the same protein. In
practice there can be many dozens of such fragments,
most of which are too small to have a steric influence
on specificity. Using a graph method detailed in [17], we
isolate individual fragments fi and record their volume
v(fi) . Once we have recorded all v(fi) , we fit a log-normal
distribution to these volumes to model the range of indi-
vidual differences that could be observed between cavi-
ties with this binding specificity. We scale the height of
the distribution so that the total area under the curve is
equal to 1.

To make a prediction on the binding preferences of a
given cavity D, we first select at random a cavity from the
training set. In the example in Fig. 12, we select cavity C.

fragment
volume

a b c d

e

f

A

B

C

A-B

A-C

C-B

B-A

C-A

B-C

A-B

A-C

C-B

B-A

C-A

B-C

D C-D C

C-D

Fig. 12  a Cavities A, B and C have the same binding preferences with subtle steric differences. b To produce training data, all symmetric CSG
differences are computed between the training set cavities. c Individual fragments (semicircles) are separated from each CSG difference, and
their volumes are computed. A log-normal probability density function is fitted to the volume data. d To estimate the probability that a given
cavity D has similar or different binding preferences, a solid representation of the cavity is first generated (yellow) and symmetric CSG differences
are computed between D and a randomly selected training set protein C. e The largest fragment found in the CSG differences C − D and D − C ,
is shown in blue. f The log normal distribution enables the p-value to be estimated resulting in high probabilities for small fragments and low
probabilities for large fragments

Page 17 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

We then generate a solid representation of the cavity in
D, as before, and align the cavity to that of C in using the
same alignment method. Next, we compute the CSG dif-
ferences C–D and D–C, and identify the largest fragment
k (Fig. 12e). D–C also produces small fragments, which
are not shown in Fig. 12d for brevity. Next, we measure
the area underneath the log-normal distribution to the
right of v(k). This area represents the proportion of indi-
vidual differences from the training set that had volume
larger than k, and thus the probability p of observing an
individual difference from the training set with volume
equal to or larger than v(k). Note that even though cavity
C is part of the training set it does not affect the inde-
pendence of the fragments in D–C because D is com-
pletely independent of the training set; it arises from a
different protein. If p is large, as in the case of the small
semicircles (Fig. 12f), then k would be typical of the
training set, so we would maintain the null hypothesis
that cavity D has binding preferences similar to those of
the training set. However, if p is smaller than a threshold
of tolerable improbability α , such as 2%, we would predict
that cavity D is too atypical of the training set, and there-
fore that D has binding preferences that differ from the
training set.

Appendix B: Data sets used in this study
Dataset A
Three data sets were used to benchmark and demonstrate
the capabilities of pClay. To test the accuracy of molecu-
lar solids generated by pClay, Dataset A is a diverse
selection of protein structures. This selection was made
by using the VAST server [54] to produce sequentially
nonredundant protein structures with a BLAST p-value
cutoff of 10e−7. 100 proteins, listed in Table 1 were arbi-
trarily selected from this set.

Dataset B
To demonstrate the parallel scalability of pClay, Dataset
B was composed of 10 sphere, 5 spindles, and 15 tetra-
hedron primitives. 30 primitives were selected to make
the CSG operation at least as computationally complex as
in earlier applications, which used 20 spheres [21]. The
spheres were defined with a 5 Å radius and centered at
atom coordinates. While the atoms overlapped very lit-
tle, they were close enough that many overlaps existed
between the spheres. To produce a scenario at least as
complex, Dataset B contains randomly selected primi-
tives of different types that are generated inside a 10Å3
cube.

The positions or corners of each primitive were ran-
domly assigned integer values within specific ranges to
ensure a large degree of overlap between primitives, as in
[21]. In addition to reflecting existing applications, large
degrees of overlap require the basic functions to be run
up and down the CSG tree, thereby throughly testing
pClay, whereas a scenario with few overlaps would be less
challenging.

Spheres were generated with radius between 1 Å and
3.5 Å. Spindles were generated between spheres that
were at least 5 Å apart, with radius between 1 Å and 2.5
Å, and a probe radius between 5 Å and 10 Å. These crite-
ria generate both whole and broken spindles. Tetrahedra
were generated with between 2.5 Å and 5.0 Å between
two corners. These ranges created randomized primi-
tives that inevitably overlapped with a convoluted overall
shape.

These primitives are detailed in Tables 2 and 3.

Dataset C
Finally, to demonstrate the accuracy of predictions made
with pClay, Dataset C was created as a set of binding
cavities from a sequentially nonredundant representative

Table 1  Dataset A: PDB codes of 100 sequentially non-redundant protein structures

1914A 1DX5I 1LKKA 1V6SA 2CSHA 2QHLC 3F6CA 4DGMA

19HCA 1EAYD 1LUGA​ 1WMDA 2DBAA 2TRCG​ 3F8VA 4DNUA

1A11A 1EFYA 1M2RA 1YPQB 2E3WA 2TRCP 3G46A 4DVCA

1A2OA 1FCYA​ 1MC2A 1ZHNA 2ED0A 2VB1A 3JXBC 4ESPA

1AF6A 1G2BA 1MUWA​ 1ZK4A 2ETZA 2W72B 3KLOA 4FAYA​

1AG4A 1GCIA 1NA0A 1ZLMA 2GF5A 2WT7A 3KQNA 4FYYA​

1AIEA 1GVPA 1OSDA 2A3VB 2J7ZA 2YUQA 3O79B 4G9SA

1AMMA 1HQSA 1P47A 2ADRA 2JXBA 3A10A 3QM9A 4GCNA

1AY7B 1I2KA 1PN9A 2ANVA 2K0XA 3D9AL 3U25A 4HVWA

1B0BA 1IT2A 1QHQA 2APFA 2NLLB 3DJ9A 3U8OL

1CKAA 1JBEA 1R1PB 2BNUA 2OQ1A 3EG3A 3UBUB

1CL7I 1K3YA 1R64A 2BZZA 2P49B 3ERXA 3VL1A

1DEMA 1K5NB 1S9KE 2C4FU 2Q20B 3F00A 4AJ8A

Page 18 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

subset of the trypsins, chymotrypsins, and elastases.
These three families of proteins were selected because
they perform the same catalytic function, the hydroly-
sis of peptide bonds, and because each family prefers to
hydrolyze peptide bonds following a different kind of
amino acid. Trypsins prefer to hydrolyze peptide bonds
after positively charged amino acids, chymotrypsins
prefer to hydrolyze peptide bonds after large hydropho-
bic amino acids, and elastases prefer to hydrolyze pep-
tide bonds after small hydrophobic amino acids. These

distinctions represent a useful test set for evaluating the
accuracy of pClay at distinguishing their active sites.

Beginning with 582 possible structures in the PDB,
we eliminated one member of any pair of proteins with
greater than 90% sequence identity, resulting in a selec-
tion of proteins with 47% average sequence identity. This
process resulted in the structures specified in Table 4.
Solid representations of the S1 cavity in each protein
were generated using the method described in Fig. 1f.

Received: 27 October 2019 Accepted: 15 April 2020

References
	1.	 Stark A, Sunyaev S, Russell RB. A model for statistical significance of local

similarities in structure. J Mol Biol. 2003;326(5):1307–16.
	2.	 Binkowski TA, Adamian L, Liang J. Inferring functional relationships of

proteins from local sequence and spatial surface patterns. J Mol Biol.
2003;332(2):505–26.

Table 2  Spindles in dataset B

Dataset B has 5 spindles. The torus describing the spindle is centered at {cx , cy , cz} . The vector perpendicular to the plane of the torus is oriented in the direction of
{px , py , pz} . The distance between the torus center and the center of the probe is rmaj , and rmin is the radius of the probe. Endcap1 and endcap2 indicate the distance
of the endcaps of the spindle from the center along the perpendicular vector

cx cy cz px py pz rmaj rmin endcap1 endcap2

2.9283 3.9283 6.2286 − 0.6804 − 0.6804 0.2725 4.9158 4.6742 − 3.1616 2.3346

5.9856 6.1531 5.2775 0.7379 − 0.5270 0.4216 4.0370 4.7434 − 3.7995 3.3740

3.0000 4.0000 8.5000 − 0.9863 0.0000 − 0.1644 4.0206 3.0414 − 1.8348 1.8348

4.8566 6.6324 5.7757 0.8137 0.4650 − 0.3487 5.2327 5.3012 − 2.9534 3.6970

4.0000 7.0000 6.5000 − 0.5963 0.2981 0.7454 4.1733 4.3541 − 2.7276 2.7276

Table 3  Tetrahedra and Spheres in Dataset B

The 15 tetrahedra in Dataset B have corners indicated by three dimensional coordinates at a, b, c, and d. The 10 spheres in Dataset B have centers at x, y, z, with radius r

Tetrahedra in dataset B Spheres in dataset B

ax ay∗ az bx by bz cx cy cz dx dy dz x y z r

6 0 6 2 6 1 2 0 2 9 2 2 9 7 3 1

0 3 6 3 2 0 6 1 5 4 9 2 6 8 9 1

1 7 7 2 7 2 1 1 5 6 5 6 5 4 8 2

1 2 9 9 4 8 3 8 5 6 1 1 4 0 6 1

8 1 0 9 8 4 3 0 4 2 4 7 5 4 4 2

8 9 3 5 1 1 0 8 5 8 4 7 6 8 3 1

1 0 3 9 0 8 5 6 6 6 0 2 3 3 8 1

9 9 1 6 1 3 4 9 1 1 9 6 7 6 8 2

5 0 2 3 6 0 9 4 3 5 1 7 3 0 1 2

3 1 4 6 9 4 8 8 9 2 8 8 9 1 5 1

9 0 3 6 8 7 3 3 7 9 6 0

1 0 4 8 6 2 4 7 9 3 9 2

9 7 8 5 7 0 4 8 5 8 2 6

1 3 7 0 1 0 7 2 6 4 5 2

9 9 4 2 9 0 5 1 0 8 6 0

Table 4  PDB Codes of dataset C structures

Chymotrypsins Trypsins

1EQ9 8GCH 1A0J 1AKS 1ANE 1AQ7

Elastases 1BZX 1FN8 1HRW 1TRN

1B0E 1ELT 2EEK 2F91

Page 19 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11 	

	3.	 Ferre F, Ausiello G, Zanzoni A, Helmer-Citterich M. Functional annotation
by identification of local surface similarities: a novel tool for structural
genomics. BMC Bioinform. 2005;6(1):194.

	4.	 Chen BY, Fofanov VY, Bryant DH, Dodson BD, Kristensen DM, Lisewski AM,
Kimmel M, Lichtarge O, Kavraki LE. The mash pipeline for protein function
prediction and an algorithm for the geometric refinement of 3D motifs. J
Comput Biol. 2007;14(6):791–816.

	5.	 Brylinski M, Skolnick J. A threading-based method (findsite) for ligand-
binding site prediction and functional annotation. Proc Natl Acad Sci.
2008;105(1):129–34.

	6.	 Meng EC, Polacco BJ, Babbitt PC. 3D motifs. In: From protein structure to
function with bioinformatics. Berlin: Springer; 2009. p. 187–216.

	7.	 Moll M, Bryant DH, Kavraki LE. The labelhash algorithm for substructure
matching. BMC bioinformatics. 2010;11(1):555.

	8.	 Venkateswaran J, Song B, Kahveci T, Jermaine C. Trial: a tool for finding
distant structural similarities. IEEE/ACM Trans Comput Biol Bioinform.
2011;8(3):819–31.

	9.	 Ellingson L, Zhang J. Protein surface matching by combining local and
global geometric information. PloS ONE. 2012;7(7):40540.

	10.	 He L, Vandin F, Pandurangan G, Bailey-Kellogg C. Ballast: a ball-based
algorithm for structural motifs. J Comput Biol. 2013;20(2):137–51.

	11.	 Kaiser F, Eisold A, Labudde D. A novel algorithm for enhanced structural
motif matching in proteins. J Comput Biol. 2015;22(7):698–713.

	12.	 Kinoshita K, Murakami Y, Nakamura H. ef-seek: prediction of the func-
tional sites of proteins by searching for similar electrostatic potential and
molecular surface shape. Nucleic Acids Res. 2007;35(suppl–2):398–402.

	13.	 Chen BY. Vasp-e: specificity annotation with a volumetric analysis of
electrostatic isopotentials. PLoS Comput Biol. 2014;10(8):1003792.

	14.	 Nolan BE, Levenson E, Chen BY. Influential mutations in the smad4 trimer
complex can be detected from disruptions of electrostatic complemen-
tarity. J Comput Biol. 2017;24(1):68–78.

	15.	 Zhou Y, Li X-P, Chen BY, Tumer NE. Ricin uses arginine 235 as an
anchor residue to bind to p-proteins of the ribosomal stalk. Sci Rep.
2017;7:42912.

	16.	 Chen BY, Bandyopadhyay S. Vasp-s: a volumetric analysis and statisti-
cal model for predicting steric influences on protein-ligand binding
specificity. In: 2011 IEEE international conference on bioinformatics and
biomedicine (BIBM). New York: IEEE; 2011. p. 22–9.

	17.	 Chen BY, Bandyopadhyay S. Modeling regionalized volumetric differ-
ences in protein-ligand binding cavities. Proteome Sci. 2012;10:6 BioMed
Central.

	18.	 Chen BY, Bandyopadhyay S. A statistical model of overlapping volume in
ligand binding cavities. In: 2011 IEEE international conference on bioin-
formatics and biomedicine workshops (BIBMW). New York: IEEE; 2011. p.
424–31.

	19.	 Chen BY, Bandyopadhyay S. A regionalizable statistical model of intersect-
ing regions in protein-ligand binding cavities. J Bioinform Comput Biol.
2012;10(03):1242004.

	20.	 Okun RY, Chen BY. A statistical model of electrostatic isopotential varia-
tion in serine protease binding cavities. In: 2015 IEEE international confer-
ence on bioinformatics and biomedicine (BIBM). New York: IEEE; 2015. p.
1246–52.

	21.	 Chen BY, Honig B. Vasp: a volumetric analysis of surface properties
yields insights into protein-ligand binding specificity. PLoS Comput Biol.
2010;6(8):1000881.

	22.	 Liu Y, Shah K, Yang F, Witucki L, Shokat K. A molecular gate which controls
unnatural atp analogue recognition by the tyrosine kinase v-src. Bioorg
Med Chem. 1998;6(8):1219–26.

	23.	 Lee B, Richards FM. The interpretation of protein structures: estimation of
static accessibility. J Mol Biol. 1971;55(3):379–84.

	24.	 Connolly ML. Analytical molecular surface calculation. J Appl Crystallogr.
1983;16(5):548–58.

	25.	 Petrey D, Honig B. Grasp2: visualization, surface properties, and elec-
trostatics of macromolecular structures and sequences. In: Methods in
enzymology vol. 374. Amsterdam: Elsevier; 2003. p. 492–509.

	26.	 Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface
construction algorithm. In: ACM Siggraph Computer Graphics, ACM.
1987;21:163–9.

	27.	 Ju T, Losasso F, Schaefer S, Warren J. Dual contouring of hermite data. In:
ACM Transactions on Graphics (TOG), ACM. 2002;21:339–46.

	28.	 Shrake A, Rupley J. Environment and exposure to solvent of protein
atoms. Lysozyme and insulin. J Mol Biol. 1973;79(2):351–71.

	29.	 Sanner MF, Olson AJ, Spehner J-C. Reduced surface: an efficient way to
compute molecular surfaces. Biopolymers. 1996;38(3):305–20.

	30.	 Chan SL, Purisima EO. Molecular surface generation using marching
tetrahedra. J Comput Chem. 1998;19(11):1268–77.

	31.	 Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B.
Rapid grid-based construction of the molecular surface and the use of
induced surface charge to calculate reaction field energies: Applica-
tions to the molecular systems and geometric objects. J Comput Chem.
2002;23(1):128–37.

	32.	 Lu T, Chen F. Quantitative analysis of molecular surface based on
improved marching tetrahedra algorithm. J Mol Graph Model.
2012;38:314–23.

	33.	 DeLano WL. The pymol molecular graphics system. 2002. http://pymol​
.org.

	34.	 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC,
Ferrin TE. Ucsf chimera—a visualization system for exploratory research
and analysis. J Comput Chem. 2004;25(13):1605–12.

	35.	 Edelsbrunner H, Facello M, Liang J. On the definition and the construction
of pockets in macromolecules. Discrete Appl Math. 1998;88(1–3):83–102.

	36.	 Bajaj CL, Pascucci V, Shamir A, Holt RJ, Netravali AN. Dynamic main-
tenance and visualization of molecular surfaces. Discrete Appl Math.
2003;127(1):23–51.

	37.	 Tian W, Chen C, Liang J. Castp 3.0: computed atlas of surface topography
of proteins and beyond. Biophys J. 2018;114(3):50.

	38.	 Max NL, Getzoff ED. Spherical harmonic molecular surfaces. IEEE Comput
Graph Appl. 1988;8(4):42–50.

	39.	 Morris RJ, Najmanovich RJ, Kahraman A, Thornton JM. Real spherical har-
monic expansion coefficients as 3D shape descriptors for protein binding
pocket and ligand comparisons. Bioinformatics. 2005;21(10):2347–55.

	40.	 Konc J, Depolli M, Trobec R, Rozman K, Janežič D. Parallel-probis: fast
parallel algorithm for local structural comparison of protein structures
and binding sites. J Comput Chem. 2012;33(27):2199–203.

	41.	 Hung C-L, Lin Y-L. Implementation of a parallel protein structure align-
ment service on cloud. Int Jo Genomics. 2013;2013.

	42.	 Goldfeather J, Monar S, Turk G, Fuchs H. Near real-time CSG rendering
using tree normalization and geometric pruning. IEEE Comput Graph
Appl. 1989;9(3):20–8.

	43.	 Banerjee RP, Goel V, Mukherjee A. Efficient parallel evaluation of CSG tree
using fixed number of processors. In: Proceedings on the second ACM
symposium on solid modeling and applications. New York: ACM; 1993. p.
137–46.

	44.	 Martin WA, Fateman RJ. The macsyma system. In: Proceedings of the
second ACM symposium on symbolic and algebraic manipulation. New
York: ACM; 1971. p. 59–75.

	45.	 Aurenhammer F. Power diagrams: properties, algorithms and applica-
tions. SIAM J Comput. 1987;16(1):78–96.

	46.	 Bernal J. Regtet: A program for computing regular tetrahedralizations.
In: International conference on computational science. Berlin: Springer;
2001. p. 629–32.

	47.	 Li L, Li C, Sarkar S, Zhang J, Witham S, Zhang Z, Wang L, Smith N, Petukh
M, Alexov E. Delphi: a comprehensive suite for delphi software and asso-
ciated resources. BMC Biophys. 2012;5(1):9.

	48.	 Fischer M, Zhang QC, Dey F, Chen BY, Honig B, Petrey D. Markus: a server
to navigate sequence-structure-function space. Nucleic Acids Res.
2011;39(suppl–2):357–61.

	49.	 Schaer J, Stone M. Face traverses and a volume algorithm for polyhedra.
In: New results and new trends in computer science. Berlin: Springer;
1991. p. 290–97.

	50.	 Godshall BG, Chen BY. Improving accuracy in binding site comparison
with homology modeling. In: IEEE international conference on bioinfor-
matics and biomedicine workshops (BIBMW), 2012. New York: IEEE;2012.
p. 662–9.

	51.	 Blumenthal S, Tang Y, Yang W, Chen BY. Isolating influential regions of
electrostatic focusing in protein and DNA structure. IEEE/ACM Trans
Comput Biol Bioinform. 2013;10(5):1188–98.

	52.	 Nayal M, Honig B. On the nature of cavities on protein surfaces: applica-
tion to the identification of drug-binding sites. Proteins: Struct Funct
Bioinform. 2006;63(4):892–906.

http://pymol.org
http://pymol.org

Page 20 of 20Georgiev et al. Algorithms Mol Biol (2020) 15:11

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	53.	 Yang A-S, Honig B. An integrated approach to the analysis and modeling
of protein sequences and structures. I. Protein structural alignment
and a quantitative measure for protein structural distance1. J Mol Biol.
2000;301(3):665–78.

	54.	 Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer
A, Bryant SH. Mmdb and vast+: tracking structural similarities between
macromolecular complexes. Nucleic Acids Res. 2013;42(D1):297–303.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Precise parallel volumetric comparison of molecular surfaces and electrostatic isopotentials
	Abstract
	Background
	Related work
	Methods
	Parallel marching cubes
	Finding all surface cubes
	Input solids (leaf nodes)
	Spheres
	Tetrahedra
	Spindles
	Molecular solids
	Polyhedral meshes for electrostatic analysis
	CSG operations: union, intersection, and difference

	Evaluating the correctness of molecular surfaces
	Comparison of pClay with VASP
	Solid representations of binding cavities
	Implementation details

	Experimental results
	Accuracy of molecular solid generation
	Parallel performance and scaling
	Evaluating pClay on existing applications

	Conclusions
	Acknowledgements
	References

