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Abstract 

Background:  In computational structural biology, structure comparison is fundamental for our understanding 
of proteins. Structure comparison is, e.g., algorithmically the starting point for computational studies of structural 
evolution and it guides our efforts to predict protein structures from their amino acid sequences. Most methods for 
structural alignment of protein structures optimize the distances between aligned and superimposed residue pairs, 
i.e., the distances traveled by the aligned and superimposed residues during linear interpolation. Considering such a 
linear interpolation, these methods do not differentiate if there is room for the interpolation, if it causes steric clashes, 
or more severely, if it changes the topology of the compared protein backbone curves.

Results:  To distinguish such cases, we analyze the linear interpolation between two aligned and superimposed 
backbones. We quantify the amount of steric clashes and find all self-intersections in a linear backbone interpolation. 
To determine if the self-intersections alter the protein’s backbone curve significantly or not, we present a path-finding 
algorithm that checks if there exists a self-avoiding path in a neighborhood of the linear interpolation. A new path is 
constructed by altering the linear interpolation using a novel interpretation of Reidemeister moves from knot theory 
working on three-dimensional curves rather than on knot diagrams. Either the algorithm finds a self-avoiding path 
or it returns a smallest set of essential self-intersections. Each of these indicates a significant difference between the 
folds of the aligned protein structures. As expected, we find at least one essential self-intersection separating most 
unknotted structures from a knotted structure, and we find even larger motions in proteins connected by obstruction 
free linear interpolations. We also find examples of homologous proteins that are differently threaded, and we find 
many distinct folds connected by longer but simple deformations. TM-align is one of the most restrictive alignment 
programs. With standard parameters, it only aligns residues superimposed within 5 Ångström distance. We find 42165 
topological obstructions between aligned parts in 142068 TM-alignments. Thus, this restrictive alignment procedure 
still allows topological dissimilarity of the aligned parts.

Conclusions:  Based on the data we conclude that our program ProteinAlignmentObstruction provides 
significant additional information to alignment scores based solely on distances between aligned and superimposed 
residue pairs.
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Background
Proteins are essential cellular tools and as macroscopic 
tools, some shapes are preferential for fulfilling specific 
functions. Protein shapes are known to be more pre-
served than their sequences of amino acids: structural 
comparison of proteins is therefore an important and 
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active area of research with new structural alignment 
methods reported to double every five years for three 
decades [1]. Aside from the rapid growth of the number 
of known protein structures, protein structure com-
parison is challenging for several reasons. One is that 
even for a fixed sequence of amino acids, some proteins 
are highly flexible [2]. Another is that mutations cause 
plastic deformation that comparison methods should 
also take into account [1]. On the other hand, proteins 
reuse the same types of folds, but with the growing 
number of known protein structures, the global view 
is changing from discrete folds into considering larger 
parts of fold space as a continuum [3].

In protein structure comparison either the shapes 
of proteins’ solvent accessible surfaces [4, 5] or their 
folded backbones are compared. Surface comparison 
mainly address how a protein is seen from and possibly 
interacts with its exterior. Chain or curve comparison 
mainly address how a protein is folded upon itself and 
is typically used when searching structural evolutionary 
evidence [6] and when judging efforts to predict pro-
tein structures [7]. One exception to this general trend 
is that surfaces of protein models generally can be dis-
criminated from surfaces of native proteins [8]. It is 
not hard to imagine two long protein chains sharing a 
surface but being folded differently inside the surface. 
Here, we therefore only consider structural comparison 
based on curve comparison.

Most methods for pairwise curve comparison of pro-
tein structures combine methods for searching alignment 
and optimal superposition of subsets of two proteins 
with a score function assessing the quality of this align-
ment. See [1] for an overview of the most used methods. 
All these score functions are based on distances, and it is 
our hypothesis that in practice they are blind to topologi-
cal changes even in the aligned parts as we now explain. 
Each score function is based on the distances that aligned 
residues are moved when the structures are in opti-
mal superposition. But its not taken into account if the 
motion may be performed by a continuous deformation 
or if it will lead to self-intersections of the protein that 
may change its fold or even tie a knot in it. Mathemati-
cally that is, the score functions of most alignment and 
superposition methods report similarity or distances in 
the space of immersions of proteins. Theoretically, we 
will argue, a pair of topologically distinct embeddings 
of a protein may have a similarity score typically found 
between highly similar protein structures. This is appar-
ently also found in practice as [9] states “These classic 
structure comparison metrics” (Root Mean Square Devi-
ation (RMSD) [10], Global Distance Test-Total Score 
(GDT-TS) [7], and TM-score [11]) “need to be supple-
mented by more sophisticated measures, which quantify 

topographical differences in chain progression in 3D 
space”.

Superposition free alignment methods based on 
changes in internal distances such as DALI [12], FlexE 
[13] and lDDT [14] also do not check for topological 
changes. Mathematically they cannot tell a structure 
from its mirror image. More interestingly, local chiral-
ity changes can occur under minor changes to internal 
distances. And the same is true for the type of apparent 
topological incorrectness reported in [9] among their top 
400 distance constrained models, “with the polypeptide 
chain passing through loops in a way that is, according to 
visual intuition, atypical of fully correct structures”.

There are methods for protein structure compari-
son that do take topological features of proteins into 
account. Except for [15], none of these are alignment 
methods. Each of these methods first produces a global 
description of each protein chain in the form of a set of 
descriptor values. Protein chains are subsequently com-
pared by comparing their descriptor values. The num-
ber of proteins and not the number of protein pairs 
dominate the calculation time. Hence, descriptor-based 
methods are very fast on large data sets as they neither 
need nor provide a structural alignment of sub struc-
tures. The first method to distinguish different thread-
ing of protein models was by calculating the writhe of 
each model [16]. The writhe is a signed measure of how 
coiled a space curve is and jumps discontinuously by ± 2 
when a curve passes through itself once. In [16] Michael 
Levitt reported a writhe separation between differently 
threaded models. However, two self-intersections may 
have canceling writhe jumps, and also continuous defor-
mations change the writhe; thus, the writhe cannot sep-
arate folds by itself. The four distinct points involved in 
two self-intersections on an open directed curve form 
one of four orderings. Similarly, three self-intersections 
define 15 orderings. Generalizations of the writhe called 
Generalized Gauss integrals used in [17] are constructed 
such that at least one of these descriptors jumps discon-
tinuously [18] in each of these 1 + 4 + 15 cases. The set 
of descriptors introduced in [19] also has this property. 
The generalized Gauss integrals are powerful enough to 
tell all fold classes in the protein classification CATH ver-
sion 2.4 [17] apart, and they can be normalized to have 
desired metric properties [18]. However, as in the case of 
writhe, these types of descriptors are mathematically not 
powerful enough to tell any two configurations apart due 
to the dimension reduction taking place. As they appar-
ently manage to separate protein folds, it is here more 
interesting that such global descriptors do not point out 
where along the backbone two structures are topologi-
cally different—the descriptor values are just significantly 
different. A similar remark holds for the topological 
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descriptors based on fat graphs [20, 21], alpha shape [22] 
and on the average occurrences of all patterns of 3 cross-
ings in planar projections of a protein backbone [19]. Not 
all descriptor-based methods are directly sensitive to 
topology. Examples are the method with the most accu-
rate re-classification of protein structures reported, Frag-
Bag [23], and the distance excess-based descriptors [24]. 
The later method however presents an elegant solution to 
the problem of detecting (plastic) deformation as caused 
by mutations. The exact differential form underlying the 
descriptors makes them path independent such that they 
e.g. are invariant under any deformation of a loop in a 
protein that preserves the loops terminal points.

The effort put into detecting special topological fea-
tures in a single protein structure illustrates the difficulty 
in detecting topological changes between pairs of protein 
structures. Knots in proteins [25, 26] have been studied 
for two decades [27, 28]. And lately also lassos [29] and 
links [30] in proteins have been investigated. The dis-
crete nature of Monte Carlo sampling allows the protein 
backbone to pass through itself between samples, but in 
protein configuration space such a jump corresponds to a 
long and unlikely motion. Thus, in protein structure pre-
diction, Monte Carlo sampling produces more knotted 
models than found in real proteins. The reader is encour-
aged to read the well told story [31] about the efforts 
taken both by modelers and assessors in the series of 
Critical Assessment of techniques for protein Structures 
Prediction (CASP) to avoid knotted and slip-knotted 
structures that in some cases have been the first model. 
The algorithm Pokefind [31] detects if a disk spanned by 
a shorter closed loop in a protein structure is penetrated 
by another part of the chain. In a protein model, this 
local non-protein like topological feature is likely to be a 
modeling error caused by the backbone passing through 
itself. Such topological model errors are apparently not 
detected by current structural alignment methods as [31] 
reports that neither the presence of knots nor of pokes 
in protein models show any significant correlation to 
the native-model distance measured by Global Distance 
Test (GDT). [31] concludes by suggesting adding Poke-
find and Knotfind to the current metric. Their suggested 
method will tell if the number of knots and pokes differs 
between two protein structures. Hence, one would know 
that there is at least one topological obstruction between 
a knotted and an unknotted protein and at least one 
obstruction between a poked and a poke free structure. 
But topological obstructions separating differently folded 
structures will not be detected as long as knots and pokes 
are unchanged; most likely, by being absent in both struc-
tures. We conclude that no current algorithm can guar-
antee to find topological obstructions to a structural 
alignment and superposition of one protein structure 

onto another and present novel algorithms Protein-
AlignmentObstruction for finding such obstruc-
tions and for evaluating how severe they are.

All protein backbones form open curves and are pro-
duced by extrusion. We here ignore the covalent links 
found when including disulfide bridges [30]. Hence, 
combining a complete unfolding of the first structure 
with a folding of the second from its complete unfolded 
stage gives a continuous self-avoiding path between 
two arbitrary protein structures. Thus, mathemati-
cally all protein chains share topology class and any 
sub-division of protein configuration space into folds 
depend on human judgement and is likely to depend 
on the specific structural biological context. Consider 
a pair of shoes with almost identical shoelaces except 
that the one contains a left-handed trefoil knot and 
the other a right-handed trefoil knot. In the space of 
immersions, they are very close, and any structural 
alignment program will find that, but in the space of 
embeddings, they are not close meaning no short self-
avoiding morph between them exists. In structural 
biology terms, these two shoelaces share architecture, 
as the overall building blocks are very similar. They may 
or may not belong to different folds, also referred to as 
topology classes, depending if their different threading 
is recognized and considered important. But the folding 
paths have to be very different which may not be recog-
nized. To address the difference between immersed and 
self-avoiding path-length ProteinAlignmentOb-
struction starts from the alignment and superposi-
tion provided by an alignment program and considers 
the linear interpolation between the two protein struc-
tures implied by the alignment score. First, it provides 
a novel measure of the amount of steric overlap caused 
by the morph. Next, it detects all self-intersections that 
occur during the interpolation and determines which 
are avoidable by moves similar to knot theory’s Reide-
meister moves within a user defined tubular neighbor-
hood of the original linear morph. Next, it solves the 
problem of avoiding the maximal number of self-inter-
sections at the shortest additional morph-length. Either 
it finds a self-avoiding morph close to the original linear 
interpolation or it labels the remaining self-intersec-
tions essential, as they cannot be resolved sufficiently 
close to the original interpolation. Finally if wanted, 
the length of a self-avoiding morph that resolves these 
essential self-intersections but gets far from the origi-
nal alignment is found. In this work, the focus is to 
make a fast algorithm that can detect steric and topo-
logical obstruction to a structural alignment and super-
position of two protein structures at a calculation time 
compatible to that of a structural alignment program. 
The length of the self-avoiding morph provided here is 
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at best a crude approximate of a shortest self-avoiding 
morph-length; a calculation that lies outside the scope 
of this paper as this author expect it to be too slow for 
practical application in pairwise protein structure com-
parison. Also it is not the aim to find geometrically or 
energetically plausible paths as e.g. considered in [32]. 
Conceptually, the main aim is to introduce homotopy 
of curve embeddings and Reidemeister moves to the 
field of computational structural biology as spoken for 
in [33].

The description of algorithms presented in the fol-
lowing section assumes no prior knowledge of knot 
theory and homotopy theory. It is somewhat lengthy, 
occasionally involved and may be skipped by readers 
not interested in the method development. Such read-
ers should read the motivating example below and from 
there jump to the results section.

Methods
We start by estimating how similar two differently 
threaded tube structures fulfilling typical distance ine-
qualities of alpha carbon atoms in proteins can be when 
measured by Root Mean Square Deviation (RMSD) 
[10], Global Distance Test - Total Score (GDT-TS) [7], 
and TM-score [11].

A motivating example
Alpha carbon atom neighbors along the backbone are 
usually 3.8Å (Ångström) apart. Otherwise, alpha car-
bon pairs are rarely less than 4.5Å apart. Imagine a 

symmetrical crossing in the xy-plane where the over-
crossing part of a chain has heights (measured on the 
z-axis) 0, 0, 1.25, 2.5, 2.5, 1.25, 0, 0Å. Similarly, the 
under-crossing part follows the y-axis at heights 0, 0, 
– 1.25, – 2.5, – 2.5, – 1.25, 0, 0Å. Consider two larger 
structures that are identical except that the above over- 
and under-crossings are interchanged. The Euclidean 
motion of the optimal superposition of two structures 
is close to the identity, which we assume for simplic-
ity. The total motion is thus given by 4 residues trave-
ling 5Å and 4 residues traveling 2.5Å . For an n-residue 
structure we find a topology change (tc) for

where d0 = 1.24(n− 15)1/3 − 1.8 . For n = 100 we 
find RMSDtc

100 = 1.2Å , GDT − TStc100 = 0.95 and 
TMtc

100 = 0.96 . These scores are typical for very similar 
structures despite the constructed topology change. The 
persistence length of native proteins may require longer 
deformations than used in this example; but in compu-
tational modeling when, e.g., trying to minimize the dis-
tance between a model and a native structure one may 
get close to this example. Figure 1 shows a similar cross-
ing change between two native 112 residue structures 
aligned with global RMSD 5.6Å and TM= 0.60. Before 
describing a method to detect such topological changes 
during a linear interpolation between structures we start 
with an algorithm for detecting steric clashes under a lin-
ear interpolation.

Measuring protein‑protein overlap under a linear 
interpolation
Let two protein chains be represented by the coor-
dinates of their alpha carbon atoms P0 =

[

p10 . . . p
n
0

]

 
and P1 =

[

p11 . . . p
n
1

]

 each with index starting at the 
N-terminus. Assume they are placed in optimal super-
position by RMSD or any other alignment method. 
We study the linear interpolation where each point 
pi(t) = (1− t)pi0 + tpi1 traverses the straight line 
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Fig. 1  A self-intersection indicated by a black face in the morph 
between the alpha carbon curves of CATH2.4 domains 1csgA0 and 
1jli00. The two domains share the homology-class 1.20.120.200
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segment connecting the i’th alpha carbon in each of 
the two structures and the parameter t ∈

[

0, 1
]

 may 
be thought of as a time parameter. We want to check if 
typical protein distance constraints are violated dur-
ing the interpolation and quantify how much the pro-
tein overlaps itself. For this, we first find the minimal 
distance between pi and pj during the interpolation. 
Let pi,j0 = p

j
0 − pi0 , p

i,j
1 = p

j
1 − pi1 and denote 

∥

∥p
i,j
0

∥

∥= a , 
∥

∥p
i,j
1

∥

∥= b , and pi,j0 · pi,j1 = ab cos θ . For all t we have

The global minimum of d2i,j is found for t∗ = a2−ab cos θ
a2+b2−2ab cos θ

 
and equals

The last equation shows that the fraction is bounded by 
∥

∥p
i,j
0

∥

∥

2
2 and by symmetry also by 

∥

∥p
i,j
1

∥

∥

2
2 . Setting t̃ =

{

0 , 
if t∗ < 0 ; t∗ , if 0 ≤ t∗ ≤ 1 ; and 1, if 1 < t∗

}

 , the mini-
mum of d2i,j for t ∈ [0, 1] denoted d2,interpolationi,j = d2i,j(t̃) . 
If 

∥

∥p
i,j
1 − p

i,j
0

∥

∥

2
2 is vanishing t∗ is ill-defined; but then 

d2i,j is constant and this value is returned. From a set 
of native protein structures, we estimate the short-
est possible distances between alpha carbons i and 
j to be dmin(|i − j|) = 2.8, 4.5, 3.86, 3.47, 3.52, 3.48, 
3.6Å for |i − j| = 1, . . . , 7 and dmin(|i − j|) = 3.7Å for 
|i − j| > 7 . The overlap, overlapi,j , is thus the max of 

dmin(|i − j|)− d
interpolation
i,j  and 0(zero). The mean over-

lap is given by MeanOverlap
(

P1,P2
)

= 1
n

∑

i<j overlapi,j . 
Especially in α-helices the distance between neighbour-
ing alpha carbon atoms may be shortened substantially 
during the interpolation. Therefore dmin(1) = 2.8 is cho-
sen small to avoid large contributions from local defor-
mations. If both protein structure P0 and P1 are overlap 
free, overlapi,j is given by the max of dmin(|i − j|)−

√
m 

and 0(zero) if 0 < t∗ < 1 and 0(zero) otherwise. To be 
able to handle models not fulfilling basic distance con-
straints, we do not make this assumption.

It is a priory not clear how to penalize protein-protein 
overlap. Here, we have chosen to penalize pairwise over-
lap linearly.

Topology check of a protein under a linear interpolation
We now leave the volumetric point of view and turn to a 
purely topological point of view. Given two superimposed 
protein structures, we consider the linear interpolation 

d2i,j(t) =
∥
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∥

∥

2
2=

∥
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∥

∥
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.

of the piecewise linear curve connecting the alpha car-
bons. Let P denote the piecewise linear curve through all 
points pi , i = 1, . . . , n . That is Pa = pi for a = 1, . . . , n , 
but Pa is defined for all a ∈ [1, n] . The linear interpolation 
between two piecewise linear curves P0 and P1 is given by 
Pa(t) = (1− t)P0

a + tP1
a for t ∈ [0, 1] and a ∈ [1, n].

We want to detect all self-intersections of the backbone 
curve during the linear interpolation. Furthermore, we want 
to identify all self-intersections we can avoid by changing the 
initial morph locally by rearranging at most a user defined 
number of residues. The remaining self-intersections are 
expected to do essential changes to the fold, e.g., as avoid-
ing them require larger rearrangements than allowed by the 
user. To do this, we borrow some notation from knot theory 
concerning knots on closed curves in 3-space. For a knot in 
3-space a planar projection with over and under crossings 
indicated is called a knot diagram if all crossings are iso-
lated. Hence, at most two points on the knot are allowed to 
be projected to the same point. When changing the plane 
of projection the crossings will move, crossings may disap-
pear, new crossings may appear, and in the planar projec-
tion existing crossings may pass through each other. The 
same happens to the planar projection when deforming the 
knot through a self-avoiding morph. A fundamental result 
found in any text book on knot theory states that two closed 
curves share knot type, i.e., the one may be morphed into 
the other through imbeddings by a ambient isotopy if and 
only if their knot diagrams are connected by a finite series 
of Reidemeister moves, shown in Fig. 2, plus deformations 
not changing crossings. Crossings of a knot may be associ-
ated with a sign using the usual right-hand rule explained in 
the same figure. Note, that changing the direction of travers-
ing a knot does not change the sign of the crossing. The sign 
of a crossing comes from the orientation of 3-space and is 
for line segments PiPi+1 and PjPj+1 given by the sign of the 
determinant detij = det

(

Pi+1 − Pi Pj+1 − Pj Pi − Pj
)

.

Detecting transversal self‑intersections
We consider only so-called transversal self-intersections 
where two line segments actually go through each other 
and consequently the sign of their crossing changes at 
the time of the self-intersection. Algorithmically, we thus 
first find isolated real roots t∗ ∈ [0, 1] for the 3’rd order 
polynomial

For each of these roots, t∗ ∈ [0, 1] , the line segments 
Pi(t

∗)Pi+1(t
∗) and Pj(t∗)Pj+1(t

∗) lie in a plane and inter-
sect only if the planar problem

detij
(

t
)

=
det

(

Pi+1(t)− Pi(t) Pj+1(t)− Pj(t)Pi(t)− Pj(t)
)

.
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has a solution with si, sj ∈ [0, 1] . If a self-intersection 
is found, we store the interpolation parameter t∗ , the 
curve parameters of the self-intersection a = i + si and 
b = j + sj , together with the crossings sign change given 
by the sign of the derivative of detij(t) at t∗ . By checking 
all pairs of line segments we get a list of self-intersections 
with data (ak , bk , signk , t∗k ) , where k is an arbitrary index.

A self-intersection between line segments PiPi+1 
and PjPj+1 requires that at least some of the spheres 
centered at Pi , Pi+1 , Pj and Pj+1 are overlapping dur-
ing the interpolation as calculated in the previous sec-
tion. The self-intersection check may be skipped if 
the alpha carbon neighbors are less than 4Å apart and 
overlapi,j + overlapi,j+1 + overlapi+1,j + overlapi+1,j+1 < 2.6Å . 
The pre-computed overlap gives an efficient filter before 
the self-intersection check, but one cannot tell a nearby 
passing from a self-intersection by the overlap values.

Locally avoidable self‑intersections
Some morph self-intersections make a significant change 
to a proteins fold, while others do not. In the mathemati-
cal notion of topology however all protein chains are top-
ologically equivalent as they all may be refolded e.g. into 
one long beta strand. Algorithmically such a morph may 
be constructed by a blow-up technique. A distinction 
between significant and insignificant fold changes can 
thus only be decided by human judgement and may dif-
fer depending on the application at hand. Here, we search 
for insignificant self-intersections that we can resolve 
by local changes of the morph and quantify how much 
longer the resulting morph is.

Imagine the left- and right-handed loops in Fig.  2 
aligned on top of each other. The linear interpolation 
between the two structures will have a self-intersection. 
Loops are the most flexible parts of proteins and such a 

(1− si)Pi(t
∗)+ siPi+1(t

∗)

= (1− sj)Pj(t
∗)+ sjPj+1(t

∗)

self-intersection is a minor structural change as we now 
explain. Mathematically this self-intersection can be 
removed from the morph as this structural change may 
be performed by two Reidemeister moves of type one, 
denoted �1 . We have used that the projection of the loop 
in Fig. 2 is isolated from the rest of the projected curve. 
In a projection of a globular protein structure, it is likely 
that the projection of other parts of the backbone pass 
through the projected loop. Hereby a longer series of 
Reidemeister moves may be needed to connect the pro-
jections of the two loops. To avoid this algorithmic com-
plexity we choose to make a 3-dimensional analogue of 
Reidemeister moves. We want to know if we can remove 
a self-intersection by just changing the morph of the arc 
forming the loop while leaving the rest of the curve and 
its morph unchanged. We therefore say that a self-inter-
section (ak , bk , signk , t∗k ) is locally �1-removable if the 
topological disk given by all the triangles connecting two 
consecutive points of the loop

to the center of mass of all these points is disjoint 
from all the other line segments of the t∗k-curve 
P1(t

∗
k ), . . . ,Pfloor(ak )(t

∗
k ) and Pciel(bk )(t

∗
k ), . . . ,Pn(t

∗
k ) . In 

this case, one can freely deform the loop in a neighbor-
hood of the topological disk without intersecting the rest 
of the curve. One possible morph that avoids the self-
intersection contracts the loop almost to its center of 
mass where there is room to throw one arc around the 
loop. However, for less complicated loops one would 
simply deform the loop by rotating it around the line 
through the point of self-intersection and the center 
of mass of the loop. We therefore penalize a locally �1

-removable self-intersection by a price P1 equal to twice 
the sum of the distances from the points of the loop to 
this line. The self-intersection shown in Fig.  1 may be 
removed by an �1 move involving a large part of the 
protein. We therefore let the user decide the maximal 

Pak
(

t∗k
)

,Pciel(ak )
(

t∗k
)

, . . . ,Pfloor(bk )
(

t∗k
)

,Pbk
(

t∗k
)

= Pak
(

t∗k
)

Fig. 2  Reidemeister moves of types 0, 1, 2, and 3, denoted �i , i = 0, . . . , 3 . �0 deforms one arc without changing crossings (not shown). Left, �1 
either adds one crossing to an isolated segment or deletes an isolated loop. In the middle, one of two parallel strands is slid either above or below 
the other by �2 . To the right: �3 moves an arc across a crossing between two other arcs. By the usual right hand rule, the left most crossing in 
the picture of �1 is negative and the other crossing in this picture is positive meaning that if you choose a direction of traversing of the curve the 
streamlines fulfill the right hand rule
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accepted backbone length, denoted MaxLength involved 
in the alternate morph. Only self-intersections with 
bk − ak ≤ MaxLength are tested for being �1 removable. 
In a planer projection into a knot diagram the curve seg-
ment from ak to bk need neither be simple nor isolated 
from the remainder of the projected curve. The con-
structed �1-move is operating on a 3-dimensional curve. 
It is therefore not a real Reidemeister move that acts on 
2-dimensional knot diagrams. The �1-move need not 
project to a Reidemeister 1 move for two main reasons. 
Firstly, the 3-dimensional loop need not project to a sim-
ple curve. For larger MaxLength the loop may even be 
knotted. Secondly, in the knot diagram the projection of 
the loop is not likely to be isolated from the remaining 
projection. Thus the 3-dimensional �1-move may involve 
many Reidemeister moves in a knot diagram and can be 
seen as a meta move in the context of knot diagrams.

If a closed double stranded DNA undergoes the self-
intersection considered here, it will change its writhe and 
hereby also the linking number between the two strands 
by plus or minus two [34]. To feel this coupling between 
writhe and twisting, hold a length of torsional stiff wire in 
the shape of a left-handed loop such that it is in self-con-
tact almost forming a self-intersection. By rotating both 
ends of the wire, you can force the wire to morph into 
a right-handed loop. That is, a morph avoiding the self-
intersection requires two full rotations around the back-
bone. Proteins are in principle free to do full rotations 
around the backbone. One may choose not to penalize 
the discontinuous writhing caused by �1 loops but we 
offer the possibility.

Most self-intersections are not �1-removable. A signifi-
cant speed up of the calculation time is obtained by: First, 
move the origin of the coordinate system to the center of 
mass of the loop, which then is a vertex in all the triangles 
of the topological disc. Then to sort all line segments by 
increasing distance from the origin to the center of the 
line-segments. Finally, to check all line-segment triangle 
pairs for intersection and stop either when an intersec-
tion is found or when the triangle inequality between 
the disk and line segments implies that an intersection is 
impossible.

The local zigzag shape of general alpha carbon curves 
often make self-intersections occur in pairs during a 
morph. Such a pair corresponds to interchanging over 
and under sliding in Reidemeister moves of type two, 
�2 , shown in the middle of Fig.  2. The two crossings, 
(aj , bj , signj , t∗j ) and (ak , bk , signk , t∗k ) , in an �2 move have 
opposite signs and both change sign during transver-
sal self-intersections. Without loss of generality, we may 
assume that t∗j ≤ t∗k . Consider first the case where t∗j = t∗k . 
At time t∗k the two arcs connecting the two points of 

self-intersection form a closed curve. If a topological disc 
spanned by this closed curve is disjoint from the remain-
ing parts of the curve then the two self-intersections can 
be removed essentially by performing two Reidemeister 
moves of type two close to this disc. You may construct 
this such that one of the moves occurs before the time t∗k 
and one after. In the general case where t∗j ≤ t∗k it is suf-
ficient that a topological disk whose boundary includes 
the two arcs is isolated for some t ∈

[

t∗j ; t∗k
]

 , see Fig.  3. 
To close the curve and to have room for a morph avoid-
ing the two self-intersections we have to add the line 
segments traversed by the self-intersection points in the 
time interval t∗j ≤ t ≤ t∗k . In practice we check if the topo-
logical disc connecting the loop for t∗average = (t∗j + t∗k )/2 
to its center of mass is disjoint from the remainder of the 
curves for t = t∗average and if the additional line segments 
traversed by the self-intersection points are disjoint 

Fig. 3  A space curve homotopy where the helical segment moves 
upwards and the straight segment moves inclined forward. The first 
intersection of the two segments is shown in blue and the second 
in green. Following the motion of the point of intersection on the 
blue helical segment between the two times of intersection, you get 
the black cylinder to the right-hand side. Inside this black cylinder 
the green helical segment can go down and around the intersection 
point of the two blue curve segments and back up to the green 
curve. Similarly, the gray cylinder to the right-hand side shows the 
motion of the first intersection point on the straight segment. Inside 
the gray cylinder, the green line segment may be altered to go back 
and around the intersection point. Hence, if the right hand side black 
and gray cylinders do not intersect other parts of the curve at a time 
between the two times of intersection, then we can alter all curves 
inside the two cylinders and postpone the intersection. Similarly, if 
the black and gray cylinders to the left-hand side do not intersect 
other parts of the curve between the times of the two intersections, 
then that intersection can be mover forward in time. Now move both 
intersections to happen at the mean of the two original intersection 
times (shown in red). The two red arcs combined with parts of the 
black and gray cylinders now form a closed loop. If a topological 
disc spanned by this loop avoids the remaining parts of the red 
curve, then two Reidemeister moves of type 2 can change the initial 
under-sliding of the helical segment to an over-sliding and avoid the 
two intersection points
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from the remainder of the curve in the time interval 
t∗j ≤ t ≤ t∗k . See Fig.  3. The first check is speeded up as 
in the case of the �1 move. If the backbone length of the 
loop is shorter than the user-defined MaxLength , i.e., if 
bj − aj + bk − ak ≤ MaxLength , and no obstructions are 
found we say that (aj , bj , signj , t∗j ) and (ak , bk , signk , t∗k ) 
form a locally �2-removeable loop and penalize it by 
price P2 twice the sum of the distances from the points of 
the loop to the line connecting the two points Paj (t∗average) 
and Pak (t

∗
average).

As in the case of �1 moves, an �2 move acts on space 
curves. When projected to a knot diagram, an �2 move 
may require several ordinary Reidemeister moves and 
may thus be thought of as a meta move of knot diagrams. 
The sum of the crossings signs is unchanged by an �2 
move and there is thus no net discontinuous contribu-
tion to the writhe of the curve. E.g., the linking num-
ber of double stranded DNA undergoing an �2 move is 
unchanged and there is therefore no torsional penalty 
involved.

Essential self‑intersections
Let {vi} denote all the self-intersections. Some are �1

-removable at price P1(vi) > 0 . Some pairs [vi, vj] are �2

-removable at price P2(vi, vj) > 0 . We want to remove 
as many self-intersections as possible at the lowest pos-
sible cost when being restricted to removing each vi at 
most once. These two problems may be solved simulta-
neously by one maximal weight matching problem as we 
now explain. We will denote the self-intersections left 
after this process a set of essential self-intersections of 
the morph. Consider the vi ’s as vertices in a graph and 
let �1 denote the �1-removable subset. Let the constant 
ε equal one over twice the sum of the prices of all �1 and 
�2 moves. Each vertex is associated a weight

We want to remove as many vertices as possible. Hence, 
each vertex in �1 will be removed by an �1 move unless 
it’s more favorable to let it take part in an �2 move. 
Hence, we only need to consider how to use the �2 
moves. For this, let each �2 move be represented by an 
edge, e, connecting vertices vi and vj and associate this 
edge with the weight

Finally, let K be the number of vertices not in �1 , denote 
the total cost of the �1 moves by P1all =

∑

vi∈�1
P1(vi) , 

and recall that a matching is a subset E′ of all the edges 
that uses each vertex at most once. Let N (E′) denote the 
number of vertices left after performing the �2 moves 

wv(vi) =
{

εP1(vi), if vi ∈ �1

1, else.

w(e) = wv(vi)+ wv(vj)− εP2(vi, vj).

specified by E′ followed by all the possible �1 moves and 
let P(E′) be the sum of the prices of all the �1 and �2 
moves used. We claim that for each matching E′

and denote this quantity by A
(

E′) . By this claim a maxi-
mal weighted matching E∗ maximizes 

∑

e∈E′ w(e) and 
thus minimizes the left-hand side. By construction 
0 ≤ εP(E′) ≤ 1

2
 and hereby N (E∗) is minimized and 

P(E∗) is minimized subject to the constraint that N (E∗) 
is minimal, solving both problems at once.

We find it most instructive to prove this claim by 
induction on the cardinality of E′ and start with the case 
E′ = ∅ where all �1 moves are performed and the claim 
is trivial. Consider a matching E′′ where ek ∈ E′′ and the 
induction claim is true for E′ = E′′ − {ek} . Then

where the last equality follows by induction. We use the 
shorthand P2(ek) for the price P2(vi, vj) of the edge ek 
between the two vertices vi and vj.

If vi, vj /∈ �1 then w(ek) = 2− εP2(ek) and 
A(E′′) = N (E′)− 2+ ε

(

P(E′)+P2(ek)
)

 . As two addi-
tional vertices are removed at the cost P 2(ek) we find 
A(E′′) = N (E′′)+ εP(E′′).

If vi ∈ �1 and vj /∈ �1 then w(ek) = εP1(vi)+ 1− εP2(ek) 
and A(E′′) = N (E′)− 1+ ε

(

P(E′)−P1(vi)+P2(ek)
)

 . 
Here one additional vertex, vj , is removed and the change 
of cost is P2(ek)−P1(i) as vi not is removed by a �1 move 
but by the �2 move ek . Thus A(E′′) = N (E′′)+ εP(E′′).

Finally, if vi, vj ∈ �1 then w(ek) = εP 1(vi)+ εP 1(vi) 
−εP 2(ek) and A(E′′) = N (E′)+ ε

(

P (E′)−P 1(vi)

−P 1(vj)+P 2(ek)
)

= N (E′′)+ εP (E′′) as no additional 
vertices are removed and the cost is changed by using the �2 
move ek instead of the two �1 moves. This completes the proof 
of the claim.

We use the Matlab implementation [35] based on [36]. 
In practice, this calculation uses only a small fraction of 
the computation time and may be considered efficient. 
We also implemented a greedy algorithm that searches for 
locally contractible �2 moves sorted by increasing back-
bone length between the two points of self-intersection and 
removes the ones found. Usually considerable fewer candi-
date �2 moves have to be checked. Hence, the greedy algo-
rithm is faster but in some cases it cannot remove as many 
self-intersections as the optimal method based on maxi-
mum weighted matching in graphs. There may be several 

N (E′)+ εP
(

E
′)= K + εP1all −

∑

e∈E′
w(e)

A
(

E
′′) = K + εP1all −

∑

e∈E′′
w(e)

= K + εP1all −
∑

e∈E′
w(e)− w(ek)

= N (E′)+ εP(E′)− w(ek),
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sets with a minimal number of essential self-intersections, 
but in most cases the real valued prices of �1 and �2 moves 
will result in a unique cheapest minimal set. However, for 
some morphs a slight change in these prices will change 
the selected minimal set. For more complicated morphs we 
therefore stress not to emphasise which self-intersections 
are denoted essential but solely to report their cardinality.

End‑contractions
When a self-intersection is not locally removable, we con-
struct a morph using a standard strategy for unknotting 
ropes or shoelaces namely: while keeping most of the rope 
fixed, pull the rope until a terminus gets free of the loop 
restraining it. That is, a self-intersection (aj , bj , signj , t∗j ) 
may be avoided by N- or C-terminus contraction. An N-ter-
minus contraction first moves all points upstream of Paj (0) 
to this point for interpolation parameter t = 0 , then uses 
the corresponding restriction of the original morph from 
t = 0 to t = 1 , and finally does a reversed end-contraction 
on the protein structure for t = 1 . If the end-contraction is 
restricted to be performed along the backbone path, P1(̇0) is 
moved a total distance of approximately aj3.8Å , P2 is moved 
approximately (aj − 1)3.8Å etc. The total morph length is 
therefore quadratic in the distance to the terminus. In gen-
eral, the following algorithm illustrated on an N-terminus 
contraction finds a much shorter end-contraction.

The end-contractions is performed on the original pro-
tein structures, and we omit writing the constant inter-
polation parameter t = 0 or 1. That is Paj is shorthand 
for either Paj (0) or Paj (1) . Let the first obstruction point 
be Po = Paj and let m = floor(aj) . We have to move the 

entire curve P1, . . . ,Pm to the point Paj . Pm may always 
be moved along the straight line to Paj . If the trian-
gle with corners Po,Pm,Pm−1 is disjoint from the curve 
downstream of P(aj) the shortcut from Pm−1 to Po may 
be used. Otherwise a new obstruction point Põ inside the 
triangle is chosen such that the length of the path Po to 
Põ to Pm−1 is minimized and all downstream line seg-
ments are avoided. See Fig.  4. The algorithm is greedy 
and accepts the path from Põ to Paj as the shortest found 
and all upstream points will use this as part of their path 
to Paj . The last encountered obstruction point is moved 
to Põ . Then this shortening of the end-contraction is 
continued for all the upstream line segments. The cost of 
avoiding the self-intersection (aj , bj , signj , t∗j ) is thus the 
total distance traveled by the points in the end-contrac-
tion both for t = 0 and for t = 1 together with m times 
the distance traveled by P(aj) in the original linear inter-
polation, because all the m contracted points travel this 
distance.

If a1 ≤ a2 ≤, . . . ,≤ an and b1, b2, . . . , bn are the param-
eter values of the essential self-intersections the com-
bined smallest N and C terminus end-contractions 
removing them all solve:

If no N-contraction is used a = 1 and 
b = min(b1, b2, . . . , bn, L) in order to remove 
all the self-intersections. If a = a1 the first self-
intersection is removed from the N-termi-
nus end and b = min(b2, . . . , bn, L) , removes the 

min
1 ≤ a < b ≤ L

N - Contraction(a)+ C - Contraction(b)

s.t. ai ≤ a or b ≤ bi for all i = 1, . . . , n.
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Fig. 4  Left: the dots indicate intersections between triangle Po, Pm , Pm−1 with the remaining structure. The obstruction point Põ is chosen to 
minimize the path length Po to Põ to Pm−1 . Right: the size of end-contraction morphs given as the sum of distance measured in Ångström traveled 
by all residues are shown as a function of the number of residues contracted. N- and C-terminus contraction seem similar, and their common 
estimate is explained in the text
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remaining self-intersections. Thus in general a = aj and 
b = min(bj+1, . . . , bn, L) fulfill the constraints and we 
only have to check n+ 1 cases to find this minimum. To 
speed this calculation up, we use an estimate of the end-
contraction based on the observation that the distance 
traveled by residues up to 17 residues away from the 
self-intersection point grow roughly linearly to 25Å and 
is fluctuating around 25Å when further apart along the 
backbone. This gives a reasonable estimate of the sizes 
of the chosen end-contractions as shown on Fig.  4. The 
end-contractions are the computationally most costly 
part of all the calculations. As they only serve to quan-
tify the distance between essentially different folds, we 
offer the possibility to omit this calculation and instead 
use the estimated size of the end-contractions. Finally, we 
offer the possibility to consider a self-intersection as �1

-removable if it is sufficiently close to a protein terminus. 
One natural choice is to set the longest allowed distance 
from the point of self-intersection to an end to half of the 
user-defined MaxLength . In case a self-intersection also 

is �1-removable the price is set to the minimum of the �1 
price and the end-contraction price. Figure  5 illustrates 
the full self-avoiding path that lies in a tubular neighbor-
hood of the original linear interpolation if essential self-
intersection are absent.

Treating alignments with gaps
Optimal structural superposition of two protein chains 
includes gaps in the alignments of the chains to compen-
sate for the naturally occurring insertions and deletions in 
homologous protein chains. A canonical example is that a 
loop may be longer in one structure than in the other; but 
such that the long loop can be contracted into the shorter 
loop without causing self-intersections of the entire struc-
ture. A sequence or structural alignment determines a par-
ing of only a part of the residues of the two proteins. We 
choose to fill out the alignment gaps using linear interpola-
tion as explained by the following example involving a 12 
residue long Chain 0 and a 10 residue long Chain 1 using 
the notation of the program TM-align:

Fig. 5  This figure illustrates the configuration space of a chain. The circles at the extreme left and right indicate the two aligned structures. The 
original linear interpolation is the black thin line segment between them. This line segment in the configuration space has six self-intersections 
where it crosses the thin red curves representing self-intersecting configurations. Each Reidemeister move may involve MaxLength residues and 
can at most deviate a fixed distance, roughly 1/4MaxLength2 , from the original linear interpolation. From left to right, the first self-intersection is 
avoidable by an �1 - move and the next two by an �2 - move. If the fourth self-intersection is removed by the short thick light colored �1 - move, 
then the fifth cannot be removed. Hence, the �2 - move is preferred. The last self-intersection involves too many residues to remove, is denoted 
essential, and the length of the dotted end-contraction avoiding it is calculated

 

Backbone 0 1 2 3 4 5 6 7 8 9 – – – 10 11 12

TM align . : : : : :

Backbone 1 1 2 – 3 4 – – 5 6 7 8 9 10
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The first aligned residue pairs between Chain 0 and 
Chain 1 are (3,  1), (4,  2) and (6,  3). We treat weakly 
aligned pairs, indicated with “.” by TM-align, as aligned 
pairs indicated by “:” . Residue 5 of Chain 0 is not 
aligned and we choose to align it with the midpoint 
P1
2.5 between Chain 1’s second and third residue. The 

next two aligned pairs (7,  4) and (10,  8) leave 3 inter-
vals open on Chain 0 and 4 intervals on Chain 1. By 
linear interpolation, Curve 0 needs to be traversed at 
3/4 of the speed Curve 1 is traversed resulting in the 
re-parameterizations:

New param. 1 2 3 4 5 6 7 8 9 10

Re-param. 0 3 4 5 6 7 7.75 8.5 9.25 10 11

IsAligned 1 1 0 1 1 0 0 0 1 1

Re-param. 1 1 2 2.5 3 4 5 6 7 8 9

The re-parameterized Curve 1 is the piecewise linear 
curve connecting the points:

P̃
1
1
= P

1
1

P̃
1
2
= P

1
2

P̃
1
3
= P

1
2.5

P̃
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. . . P̃
1
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= P
1
9

The re-parameterized Curve 0 connects the points: 
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 The piecewise linear curve connecting the P̃0
i  ’s differs 

slightly form the original curve as e.g. a corner around P0
8 

is cut when connecting P̃0
6 = P0

7.75 to P̃0
7 = P0

8.5 . However, 
it is trivial to morph the one curve into the other and the 
thickness of the protein backbone guaranties that no self-
intersections can occur when doing this. The structural 
alignment thus gives rise to studying the self-intersec-
tions of the linear interpolation

for t ∈ [0, 1] and a ∈ [1;m] , where m is determined 
by the alignment On each line segment the function 
IsAligned(a) is given by linear interpolation of the values 
zero (for not aligned) and one (for aligned) at the end-
points of the line segments. In particular, it is one on line 
segments connecting aligned residues and zero when 
connecting non-aligned residues.

A self-intersection for parameter values (ak , bk) gives the 
sum AlignedSum(k) = IsAligned(ak)+ IsAligned(bk) . 
We call the self-intersection aligned-aligned if 
AlignedSum(k) ≥ 1.5 , aligned-gap if 1.5 > AlignedSum(k) > 0.5 
and gap-gap if AlignedSum(k) ≤ 0.5 . The minimal 
allowed distance, dmin , between points along the back-
bone curve used to define the overlap are given by lin-
ear interpolation of the discrete dmin values after the 

P(t, a) = (1− t)P0
RePar0(a)

+ tP1
RePar1(a)

,

re-parametrization. E.g., dmin for two points 4.80 line 
segments apart along the backbone curve is set to 3.51Å 
found by interpolating dmin = 3.47Å and 3.52Å for points 
being 4 and 5 line segments apart respectively.

A loop-contraction combined with other deformation 
between two structures likely lead to a pair of self-inter-
sections of type �2 . If just one of these self-intersec-
tions involves the aligned parts and the other not, then 
the aligned-aligned self-intersection is probably essen-
tial when only considering aligned parts of the morph 
whereas it is removable if all self-intersections are con-
sidered. Beside the goal to tell if alignment gaps are topo-
logically similar, this is a reason not to restrict the morph 
to the aligned parts.

Applying curve smoothening
We represent each protein structure by either the posi-
tions of its alpha carbon atoms Cα

i  or by a smoothened 
curve. In the smoothening all alpha carbons, except for 
the first two and the last two are replaced by the fixed 
convex combination Pi =

Cα
i−2+aCα

i−1+bCα
i +aCα

i+1+Cα
i+2

2+2a+b  . The 
constants a = 2.4 and b = 2.1 are chosen to minimize the 
total curvature of a collection of protein structures [18]. 
All linear interpolations from an alpha carbon curve to 
its smoothened curve are self-intersection free for the 
protein structures used here. The smoothening straight-
ens both alpha helices and beta-strands, see Fig.  6. The 
smoothened representation resembles typical cartoon 
pictures of protein structures and has the advantage often 
to make it possible to follow an interpolation visually, 
see Fig. 6. Furthermore, it results in fewer interpolation 
self-intersections. For the smoothened representation, 
the overlap is based on the minimal distances 1.0, 2.1, 
3.0, 3.4, 3.6Å for residues with indices |i − j| = 1, . . . , 5 
apart and 3.7Å otherwise. A self-intersection check may 
be avoided if the line-segments are shorter than 3.5Å and 
the sum of the endpoints overlap is < 2.1Å.

Results
When performing linear interpolation between more and 
more distant structures, overlap will start to grow and 
eventually self-intersections that can be removed using �1 
and �2 moves will emerge. At first, each � move involves 
only a small part of the backbone. For a self-intersection 
with data (ak; bk; signk; tk) we defined the backbone 
length of the corresponding �1 move as bk − ak and for an 
�2 move it’s backbone length is also the (real) number of 
line segments it involves. When interpolating structures 
that are more distant these backbone lengths may grow 
and eventually obstructions to the �1 and �2 moves may 
occur. This we now illustrate with a few examples with 
high sequence identity. The ∗-marked examples have 100% 
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sequence identity and are taken from the Sequence-Simi-
lar, Structure-Dissimilar Protein Pairs in the PDB found by 
Kosloff and Kolodny [2].

Examples with high sequence identity
The A and B chains of the open and closed forms of ade-
nylate kinase, 4AKE and 1ANK, both have RMSD≈ 7Å . 
The interpolation cause no overlap of the alpha car-
bon curves, and next to no mean overlap of 10−3Å for 
the smooth curves and consequently self-intersection 
checks are not needed. We may conclude that both the 
A and B chain interpolations are easy to perform. We 
expect the same conclusion for a hinge-motion of rela-
tively ridged sub-domains since neighboring residues 
perform almost identical motions. The 5.3Å RMSD 

motion between the glutamine binding protein’s struc-
tures 1GGG and 1WDN with and without ligand is 
an example of this. The RMSD= 8Å interpolation of 
hepatitis C virus between the A chain configurations 
1A1Q and 1 JXP∗ has a mainly local overlap of mean 
0.11Å and only 5 self-intersection checks are needed 
for the alpha carbon curve interpolation. The alpha 
carbon curve interpolation is self-avoiding. The large, 
RMSD= 23Å motion between the (un-) and phospho-
rylated forms of Odhl∗ is shown in Fig. 7 left. The free 
arm performs a long motion and the remaining com-
pact domain rotates close to a third of a full rotation 
in the RMSD superposition. The linear interpolation of 
this large rotation contracts the structure and causes 
1.0Å mean overlap ( 0.6Å for the smooth curve). Only 

Fig. 6  Left: the alpha carbon trace of CATH domain 1emd01 and its self-intersection free interpolation with its smoothened black curve. 
Center and right: the interpolation between CATH domains 1csgA0 and 1jli00 alpha carbon and smoothened curves respectively. The two 
domains share the homology-class 1.20.120.200. Both interpolations have one self-intersection indicated by a black face. In both cases it may be 
circumvented by a large �1 move. If the user does not allow such large rearrangements, this self-intersection is called essential and the size of an 
end-contraction avoiding it is calculated. As the alpha carbon RMSD is 5.6Å this is an example that a change in topology that seems to demand 
quite different folding pathways may happen for a smaller RMSD and for homologous chains

Fig. 7  Left: the self-intersection free linear interpolation between the smooth backbones of the un- and phosphorylated forms of Odhl (NMR 
structures 2KB3 and 2KB4). Center: the interpolation between two configurations of the SH3 domain given by the A chains of 1AOJ and 1I0C∗ has 
a self-intersection between line segments approximately 10 and 25 residues from the C-terminal. Right: the interpolation between the 52 residue 
long helix 1IK7 A chain∗ and its aligned part of the 102 residue folded 1D2Z C chain is self-intersection free



Page 13 of 19Røgen ﻿Algorithms Mol Biol            (2021) 16:1 	

the interpolation of the alpha carbon curves has self-
intersections. Its 3 self-intersections may be removed 
by one �1 and one �2 , move each of backbone length 
less than 4 line segments. Note, that all interpolations 
considered so far are ‘easy to perform’ even if some of 
them involve larger motions.

The RMSD = 14Å linear interpolation between two con-
figurations of the 60 residue SH3 domain is shown in the 
middle of Fig.  7. The alpha carbon and smooth backbone 
interpolations both have one self-intersection, that in both 
cases may be resolved by an �1 move involving about 15 res-
idues or by an end-contraction of backbone length counted 
as twice the 10 residues it involves. Hence, this self-inter-
section is considered as non-essential if MaxLength e.g. is 
16 which may be larger than some users will allow. Finally 
the RMSD = 13Å interpolation from the folded 1D2Z C 
chain to the 52 residue long helix 1IK7 A chain∗ is shown to 
the right in Fig. 7. The folded structure is monotone in the 
direction of the helix and consequently no self-intersections 
occur even though most consider the topology changed.

TM-align seldom aligns the entire shorter chain and 
introduces generally more gaps than the global RMSD 
alignment. The resulting interpolations therefore are dif-
ferent from the RMSD based above. TM-align aligns 
181/183 of the 214 residues of the A/B chains of 4AKE 
and 1ANK and the re-parameterized curve has 220/220 
vertices covering the entire original chains. For the alpha 
carbon curves the gaps cause mainly local overlap of mean 
0.79/0.74Å and one �1 removable self-intersection. The 
same is found in the A chain interpolation between 1A1Q 
and 1 JXP∗ and between 1GGG’a A chain and 1WDN, 
where apart from the local overlap of the alpha carbon 
interpolation, both the alpha carbon and smooth curve 
interpolations have non-local overlap. The situation is 
quite different in the case of Odhl where TM-align aligns 
only the compact and almost unchanged part of the struc-
ture. For the SH3 domain, 35 of the first 36 residues are 
aligned by TM-align together with the weakly aligned 
47’th residue. The one self-intersection is again present; 
this time in the alignment gap and its presence is thus due 
to the weak alignment of residue 47. In the 1IK7-1D2Z C 
chain example TM-align aligns only 18 almost consecutive 
residues identifying two helical segments. These exam-
ples fall in two main cases. In the first, the TM-alignment 
covers most of the aligned chains. Here the gaps in the 
TM-alignment, that are not taken into account in the TM-
superposition, cause more overlap especially for the alpha 
carbon curve interpolations of which some have a local �1 
removable self-intersection. The other main case is when 
TM-align identifies a structurally conserved region whose 
interpolation is trivial but where the global RMSD align-
ment shows that the full structures are connected by rela-
tively long but obstruction free interpolations.

Detecting knottedness
The D chain of 2FG6 contains a right handed trefoil knot 
located in the interval from the 171th to the 238th resi-
due [26]. We align the 83 residues 162 to 244 of 2FG6’s 
D chain that contain the knot to 408 sequence class rep-
resentatives of CATH 2.4 domains of compatible lengths 
from 75 to 100 residues. Using global RMSD super-
position, all these interpolations have at least 1 self-
intersection with and average of 8.4 intersections (3.6 
for the smooth representation). In the following n(m) is 
short hand for n for the alpha carbon curve and m for 
the smooth representation. Depending on MaxLength 
almost all morphs have at least one essential self-inter-
section. E.g. for MaxLength = 10 only 3(1) domains of 
topologies 3.40.30 and 3.66.20 are morphed into the tre-
foil knot without causing essential self-intersections. For 
MaxLength = 20 there are 11(11) such cases. We have cut 
2FG6’s D chain relatively close to its trefoil knot, and it 
may become unknotted by a similar size end-contraction. 
This effect is very pronounced as self-avoiding morphs 
are found in 6(5), 34(25), 109(81), 177(151), 325(318) of 
the 408 cases for MaxLength = 5, 10, 14, 16, 20 respec-
tively when end-contractions up to backbone-length 
MaxLength/2 are allowed. Without end-contractions, 
a self-avoiding morph is found only in cases that firstly, 
are unknotted by the original interpolation by moving 
an end through an enclosing loop, and that secondly also 
have a sufficiently large MaxLength to avoid other self-
intersections locally. For MaxLength = 20 and with end-
contraction of at most 10 residues, the end-contraction 
may unknot the knot and hereafter the 20 residue long 
Reidemeister moves are powerful enough to find a self-
avoiding morph to most of the other folds. Hence, to cap-
ture the characteristics or topology of a fold; one has to 
set the maximal allowed end-contraction in concordance 
with how tightly the representative domain is cut. Simi-
larly, many TM-alignment windows are too short to con-
tain the knot, in which case fewer morph obstructions 
are found.

Data
We pick a representative set of protein structures by 
taking the sequence family representative CATH2.4 
domains [37] restricting to cases where it is gap free and 
has between 75 and 150 residues. These are clustered at 
60% sequence homology and give 1034 domains repre-
senting 1034 sequence families, 521 homology families 
(H-classes), 281 topologies T-classes, 23 architectures 
and the 4 main classes. If the longest of a pair of domains 
is at most 10% longer than the shorter domain, we find 
the alignment of the entire shorter domain with mini-
mal RMSD allowing one inner gap in this alignment. The 
choice of limited differences in domain lengths together 
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with shorter but frequent domains is done to make 
global alignment in the best possible agreement with the 
structural classification. The global RMSD alignment 
use exhaustive search and is time consuming. Hence, 
the choice of domain pairs is also necessary to make 
the global alignment practical. For each of these 142068 
alignments we calculate the RMSD together with overlap 
and topological obstructions found in the correspond-
ing linear interpolations. We do the same based on the 
TM-alignments using its standard parameters. We find 
135698 inter T-class pairs, 6370 intra T-class pairs, and 
1304 intra H-class pairs giving 5066 intra T-class pairs 
that are not inter H-class pairs. All data from these align-
ments are provided as Additional files 1, 2, 3, 4 that gen-
erate the figures on CATH alignments below.

On inter and intra fold class morphs
This section concerns the 142,068 structural align-
ments of CATH domain pairs of similar chain length. 
For the alpha carbon curves 29% of the total overlap is 
local caused by residues with indices |i − j| ≤ 4 . Rela-
tively large local metric changes when alpha helices are 
involved is the main contributor to the local overlap. For 
comparison, only 7% of the total overlap is local for the 
smooth curves. The non-local contributions coming from 
aligned regions are highly correlated (0.97) between the 
alpha carbon and smoothened curves.

Self‑intersections and alignment gaps
A structure with n+ 1 alpha carbons has n line seg-
ments and n(n− 1)/2 line segment pairs. If a self-inter-
section has AlignedSum ≥ 1.5 then we say it is between 
two aligned parts of the structure. Otherwise, a least 
one alignment gap is involved. Our global RMSD align-
ment allows one gap that usually is too short to make 
intersections with itself in the linear interpolation. 
One thousand aligned line segment pairs on average 
cause 2.2 self-intersections and gap-involving line-
segment pairs cause 1.6. The smooth representation 
generally cause fewer self-intersections and the cor-
responding numbers are 0.81 and 0.52 respectively. 
When using TM-align we connect all inner gaps in the 
alignments to check if they cause topological changes. 
We use the Aligned Window Fraction (AWF) given 
by the shorter aligned window length divided by the 
shorter chain length to characterize the coverage of the 
aligned windows. On average 55% of the residues in 
the shorter chain are aligned and AWF is 0.8 on aver-
age. From allowing similar size end-contractions on 
the knotted example above, one hereby expects and 
finds significantly fewer self-intersections. One thou-
sand aligned line segment pairs on average cause 0.17 
(0.048 smooth) self-intersection where gap-involving 

line-segment pairs cause 0.73 (0.22 smooth). TM-align 
aligns pairs of alpha carbons that in the final superpo-
sition are at distance at most 5Å. This short distance 
does not prevent self-intersections when interpolating 
the superimposed structures. In 142068 TM-aligned 
domain pairs, we find 42165 (12103 smooth) self-inter-
sections of aligned parts. For both alignment methods, 
the alpha carbon curves cause almost 3 times as many 
self-intersections as the smooth curves.

Essential self‑intersections
Figure  8a shows the average number of essential self-
intersections as function of the maximal allowed 
backbone length, MaxLength , of �1 and �2 moves. 
The original number of self-intersection is found for 
MaxLength = 0 . There are clearly more self-intersections 
for the alpha carbon representation, e.g. on average 13 
between fold classes compared to the 4.9 for the smooth 
representation, and there is a relatively low correlation of 
0.68 between the numbers of self-intersections in the two 
representations. However, the essential self-intersection 
numbers of the two representations are closely related for 
MaxLength at least four. See Fig. 8a, b. Their correlation 
is 0.92 for 4 ≤ MaxLength ≤ 6 and drops slowly down to 
0.79 for MaxLength = 20.

The shorter TM-alignments give fewer essential self-
intersections than the global RMSD alignments as 
expected. For the TM-alignments MaxLength needs to be 
larger to remove the additional self-intersections of the 
alpha carbon curves. See Fig.  8d, e. For both alignment 
methods, an essential self-intersection for smooth curves 
generally implies one for the alpha carbon curves and 
the notion of essential self-intersections therefore seems 
robust when restricted to one alignment method. Both 
the alignments and superpositions provided by the two 
alignment methods may be very different. One should 
thus not expect essential self-intersections to agree 
between them. However, if there is an essential self-inter-
section in the TM-aligned window, then it is more likely 
than average to find one in the RMSD alignment, Fig. 8b. 
If the TM-aligned window covers most of the structure 
also the opposite tendency is found, Fig. 8e.

Figure  8c shows the average number of essential 
self-intersections as function of the aligned window 
length and Fig. 8f shows the ratio between them. TM-
align can avoid self-intersections by choosing a shorter 
aligned window. But also in cases where the TM-
alignment window is almost global, it results in fewer 
essential self-intersection. See Fig.  8f. Possibly both 
TM-aligns freedom to optimize the alignment using 
multiple gaps and its choice of superposition result in 
fewer essential self-intersections. Figure  8f shows that 
for larger values of MaxLength the local Reidemeister 
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moves manage to compensate for many of these addi-
tional self-intersections caused by the lack of gaps in 
the global alignments.

Morphability and fold classification
Interpolations between pairs of homological structures 
have essential self-intersections relatively often. Fig-
ure 6 shows an example where the sole self-intersection 
may be removed by an �1 move involving half of the 
chain or by a relatively large movement of one of the 
long ends. This author finds it debatable if these two 
domains should share fold class. For MaxLength = 10 
as many as 13% of all H-pair morphs have essential 
self-intersections, but usually for greater RMSD than 
this example as seen from Fig. 9. The fraction of H-pair 
morphs with essential self-intersections varies between 
the classes. E.g., 5 out of the 14 alignments in class 
1.20.120.200 self-intersects as seen on Fig.  6. In total 
47 of the 512 H-classes with intra H-class morphs have 

essential self-intersections for MaxLength = 10 , but 
most classes require more data to be studied in detail. 
See the included supplementary data. Due to the large 
global RMSD values of interpolations with essential 
self-intersections, TM-align typically aligns too few 
residues to capture the eventual topological dissimilar-
ity. The most striking finding is not that more than half 
of all intra T-class global RMSD morphs have essential 
self-intersections, but that many inter T-pair morphs do 
not. For smooth representation and MaxLength = 10 , 
868 of 879 H-pairs, 1189 of 1295 non-H but T-pairs 
and 1831 of 3852 inter T-pairs with RMSD ≤ 10 do not 
cause essential self-intersections. Hence, under this 
RMSD restriction, most intra T-pairs, in total 2057 of 
2174, are morphable, but there is a compatible number 
of self-avoiding morphs of similar length into other fold 
classes emphasizing the continuous nature of protein 
folds. An example is the 7.1Å global RMSD interpola-
tion between the 6 helix domain 2ygsA0 and the 2 helix 
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Fig. 8  a: the average number of essential self-intersections found in the global RMSD alignment for pairs of CATH2.4 domains sharing homology 
class (H-pairs), sharing topology class but not homology class (T/H-pairs), or from distinct topology classes (non T-pairs). b: the fraction of pairs 
with essential morph self-intersections based on the global RMSD alignments. The plus signs show the fraction of the pairs with an essential 
self-intersection for the smooth curves that also have one for the alpha carbon curves. The circles show for the smooth curves the fraction of pairs 
with an essential self-intersection for the TM-alignment that also have one for the global RMSD alignment. c: the average number of essential 
self-intersections for smooth curves shown as function of the length of the largest aligned window and for MaxLength-values given in the legend. 
The graphs are smoothened by averaging over alignment windows of length between i – 2 and i + 2. Global RMSD alignments are dashed and 
TM-alignments in solid lines. d , e: as (a, b) but for the TM-alignment. In (e) the circles show the fraction of pairs with an essential self-intersection 
for the global RMSD alignment that also have one for the TM-alignment restricted to the 5% cases where AWF ≥ 0.9725 . f: the average number of 
essential self-intersections for the RMSD alignment divided by the same number for the TM-alignment and shown as function of the largest aligned 
window length. MaxLength is color-coded as in (c). Dashed curves are for all alignments and solid curves for the 5% cases where AWF ≥ 0.9725
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and 4 beta-strand domain 1ha101 which is self-intersec-
tion free both in the alpha carbon and smooth represen-
tation. The 0.49Å(0.03Å smooth curve) mean overlap 
has very little 0.03Å(0.001Å) non-local contribution. 
Hence, even if their local geometry and hydrogen bond-
ing patterns are very different, their full backbones are 
of typical H-pair distance in our data set, and the linear 
interpolation causes only minor local steric problems.

Morph lengths
In case no essential self-intersection is found, the original 
L1 morph length plus the price of the �1 and �2 moves is 
an estimate of the length of a self-avoiding morph for the 
piecewise linear backbone curve not taking into account 
the thickness of a protein chain. The shortest overlap 
free distance is d = 3.7Å . Hence, each point on the back 
bonecurve has to traverse half the circumference of a cir-
cle with radius d/2 to go from over sliding to under sliding 
and staying at an overlap free distance. One may there-
fore add the penalty π ∗ d/2 ∗ |bk − ak + 1| for �1 moves 
and π ∗ d/2 ∗ |bj − aj + bk − ak + 2| for �2 moves. The 
total overlap is the sum of the distances each pair of 
amino acids need to get further apart during the morph 
in order to get an overlap free morph. One may there-
fore wish to add and possibly weight the AverageOverlap 
to the morph-length estimate. Similarly, one may intro-
duce a weight for the end-contraction length and for 
the penalty for net torsional effects. Figure  9 shows the 
average contribution from one residue to morph lengths 
on intra T-morphs as function of MaxLength for the 
smoothened backbone curves. Clearly shorter morphs 
are found for larger MaxLength as end-contractions 

are longer than local Reidemeister moves. Inter T-class 
morphs are on average 26Å for MaxLength = 3 and 21Å 
for MaxLength = 20 , that is only slightly longer than the 
intra T-class morphs. The global RMSD alignment thus 
do not find a drastic difference in the lengths of inter and 
intra fold class self-avoiding morphs. TM aligns approxi-
mately half of the residues, namely those superimposed 
within 5Å distance. The morphs lengths of the aligned 
windows are therefore considerably shorter than those 
obtained using the global RMSD alignment. The TM-
alignment based morph lengths increase mainly due to 
the gaps in the alignment and to the topological obstruc-
tions of the morph. For MaxLength = 3 the average 
morph lengths are 3.2, 6.4 and 13.2Å per residue for intra 
H, inter H but intra T, and inter T class morphs respec-
tively. For MaxLength = 20 the similar numbers drop to 
3.0, 5.5 and 11.0Å.

Discussion
We are handling a paradox by trying to establish a “topo-
logical” distinction in the path connected space of pro-
tein structures, and we emphasize that the set of essential 
self-intersections we find are only local obstructions in 
the non-convex but connected space of protein embed-
dings. If a current alignment score function shows high 
similarity then the two configurations are close, at least, 
in the space of immersions, which allows self-intersec-
tions. We offer to test if the linear interpolation between 
the two structures is self-avoiding and if not then we offer 
an algorithmic search for alternative morphs through 
embeddings in a neighborhood of the linear interpola-
tion. We divide the self-intersections into two sets. The 
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set of non-essential self-intersections contains the maxi-
mal number of self-intersections that can be avoided 
using a sequence of  �1 and �2 moves. The remaining 
self-intersections are called essential. There are three 
possible reasons why a given self-intersection is marked 
essential. The first is that a needed � move involves 
larger parts of the protein chain than permitted by the 
user. The second is that there is a “topological” obstruc-
tion to a needed � move. The third is that the self-inter-
section can be avoided but it is cheaper to avoid other 
self-intersections. The ”topological” obstruction is a case 
where the constructed � move will cause at least one new 
self-intersection and is technically found as an intersec-
tion between a constructed disk-surface and the pro-
tein structure. However considering protein structures 
as open curves any such intersection can be avoided by 
deforming the disk-surface. In most cases these intersec-
tions need to be pushed past at least one chain terminal, 
and this results in a large move that is more efficiently 
resolved by an end-contraction. In some cases two back-
bone-surface intersections lie close along the backbone 
and a smaller alteration of the surface may avoid them 
both - think of untying a slip-knot. In this study, there has 
most often been only one backbone-surface intersection. 
Hence, its a relatively rare situation that the obstructions 
to an � move can be avoided locally and this lies outside 
the scope of this work, but it may become more impor-
tant if longer MaxLength are wanted. Algorithmically 
we have decided to keep our untying moves local along 
the backbone to ensure they can be treated in one-pass. 
Mathematically, our novel notion of essential self-inter-
section is hereby not a topological but a geometric notion 
saying that any self-avoiding morph between the two 
configurations has to go further than a given threshold 
away from the linear morph path. It is our hope and main 
aim that this tunable threshold reflects a general percep-
tion of when two structures have different folding paths.

In the example shown on Fig.  1 1csgA0 is resolved by 
x-ray diffraction and 1jli00 by NMR. From the alignment 
its clear that the two structures have similar distance matrices 
and residue contacts leaving the possibility that the morph self-
intersection points to a modeling error in one of the two struc-
tures. The smoothened representation makes visual inspection 
of morphs significantly easier. The speedup of calculations 
due to fewer self-intersections in this representation was how-
ever neutralized as the filtering of potential self-intersections 
by overlap is less efficient. The overlap is the sum of the steric 
clashes during an imagined linear interpolation between two 
aligned and superimposed structures. It is important algorith-
mically and may be interesting structural biologically. Even in 

a case where the backbone curve morph is self-avoiding, the 
overlap holds information in addition to the morph length. We 
saw examples of long overlap free morphs between sequence 
identical highly flexible structures. In these morphs, a neigh-
borhood of most residues undergo a motion close to a rigid 
motion. This cause both little overlap and that the shorter 
internal distances are subject to only smaller changes. Hence, 
a structural comparison based on local internal distances as 
FlexE will also detect that neighboring residues perform similar 
motions. Thus, the combined information of RMSD and over-
lap may be similar that of RMSD and FlexE in such cases.

Conclusion and future work
We present a number of measures that quantify obstacles 
to deform a protein structure to an aligned and superim-
posed structure and show they give significant additional 
information to the distances usually used in protein struc-
ture alignment score functions. We study the linear inter-
polation between two superimposed structures. First, we 
quantify the steric problems of this linear interpolation 
by finding the shortest distance between each amino acid 
pair during the interpolation and compare it to distance 
constraints found in native protein structures. Larger 
deformations between sequence similar native struc-
tures cause little overlap and are recognized as longer but 
simple morphs. Next, we find all self-intersections of the 
protein backbone during linear interpolation between 
two aligned structures. We introduce 3-dimensional ver-
sions of Reidemeister moves each capable of avoiding 
one or two self-intersections by altering the original lin-
ear morph. Near a protein terminal an end-contraction 
can also be used to avoid a self-intersection. We calculate 
the length of each of these morph alterations and solve 
the optimization problem to avoid the maximal num-
ber of self-intersections at the lowest additional morph 
length. If this results in a self-avoiding morph the struc-
tural similarity found by the alignment program is verified 
for the entire aligned windows including all inner align-
ment gaps. Otherwise we find a smallest set of essential 
self-intersections that cannot be avoided. We demonstrate 
that this novel notion of essential self-intersections is rela-
tively robust, e.g., under a change in the representation of 
protein chains. The user may input the maximal allowed 
chain length of Reidemeister moves and of end-contrac-
tions. We hope this allows users to tailor an appropriate 
notion of when two structures have different threading for 
the application at hand.

We find as expected that morphs from unknotted proteins 
to a given knotted protein have essential self-intersections 
except for a few cases where the morphs actually untie the 
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knot. Using a global RMSD alignment and a set of sequence 
representative CATH domains, we find a significant frac-
tion of all homologous protein structure pairs separated by 
at least one essential self-intersection and give examples 
of homologous pairs that most will considered as different 
threaded despite having lower RMSD. Our perhaps most 
interesting finding is that many representatives of distinct 
folds may be morphed into each other using only smaller 
alterations of the direct linear interpolation. This supports 
the continuous view on parts of protein fold space.

The residues that are aligned by TM-align are super-
imposed within 5Å . We find 42165 (12103 smooth 
curve) self-intersections between aligned parts in 142068 
TM-alignments. Thus this close distance still allows 
topological dissimilarity of the aligned parts. In the TM-
alignments performed in this work approximately half of 
the residues are aligned on average. The TM-alignments 
result in fewer topological obstructions than expected 
alone from their shorter alignment length. An interesting 
subject for future research is therefor to develop methods 
that combine the superior structural alignment search 
of e.g. TM-align with the restriction to local topologi-
cal similarity defined by the absence of essential morph 
self-intersections. The current algorithm is in Matlab and 
requires two superimposed structures and the alignment 
in TM-align format as input. It is available on request to 
the author. When a matching alignment method is devel-
oped, the software can stand-alone and will be release.

With fixed sequence alignment, protein structure predic-
tion is a natural application of our present method as struc-
tural comparison is done for the entire structure. Capable of 
detecting differences in threading and pointing out where in 
the structure these problems occur, we expect our method to 
give an interesting supplement to the distance measures used 
to assess protein models as e.g. done in the Critical Assess-
ment of protein Structure Prediction (CASP) experiments.

When combined with TM-align, our method can detect 
cases where structurally similar proteins have different 
folding pathways, which is important for understand-
ing protein folding. In addition, alternate threading of a 
similar core structure may change dynamical and thereby 
functional properties. Further, we hope our focus on self-
avoiding morphing may contribute to the development 
of alignment methods and to a more detailed picture of 
sequence to structure relationship for proteins and RNA.
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