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Abstract 

Genome wide optical maps are high resolution restriction maps that give a unique numeric representation to a 
genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called 
Rmaps. Unfortunately, there are very few choices for assembling Rmap data. There exists only one publicly-available 
non-proprietary method for assembly and one proprietary software that is available via an executable. Furthermore, 
the publicly-available method, by Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006), follows the 
overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algo-
rithm behind the proprietary method, Bionano Genomics’ Solve, is largely unknown. In this paper, we extend the 
definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de 
Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as rmapper, and com-
pare its performance against the assembler of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) and 
Solve by Bionano Genomics on data from three genomes: E. coli, human, and climbing perch fish (Anabas Testudineus). 
Our method was able to successfully run on all three genomes. The method of Valouev et al. (Proc Natl Acad Sci USA 
103(43):15770–15775, 2006) only successfully ran on E. coli. Moreover, on the human genome rmapper was at least 130 
times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero 
mis-assemblies. Our software, rmapper is written in C++ and is publicly available under GNU General Public License at 
https://​github.​com/​kingu​fl/​Rmapp​er.
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Introduction
In 1993 Schwartz et al. developed optical mapping [1], a 
system for creating an ordered, genome wide high reso-
lution restriction map of a given organism’s genome. 
Since this initial development, genome wide optical maps 
have found numerous applications including discover-
ing structural variations [2, 3], scaffolding and validating 
contigs for several large sequencing projects [4, 5], and 
detecting mis-assembled regions in draft genomes [6–8]. 

Thus, optical mapping has assisted in the assembly of a 
variety of species – including various prokaryotic species 
[9–11], rice [12], maize [13], mouse [14], goat [15], parrot 
[4], and amborella trichopoda [5]. Bionano Genomics has 
enabled the automated generation of the data, enabling 
the data to become more wide-spread. For example, Bio-
nano data was generated for 133 species sequenced for 
the Vertebrate Genomes Project.

Similar to sequencing, the protocol for producing opti-
cal mapping data, begins with many fragmented copies 
of the genome of interest. This redundancy allows over-
lap between the raw data and assembly into longer con-
tiguous regions corresponding to the genome. With a 
selected enzyme, the genomic DNA fragments are nicked 
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at each restriction site recognized by the enzyme. These 
cleaved fragments are then photographed and analyzed 
in order to determine the length (in kbp) of the regions 
between nick sites. The result of this process are opti-
cal maps for all the fragments, which are referred to as 
Rmaps. For example, given a genome fragment TTT​TAA​
CTG​GGG​GGG​AAC​TTT​TTT​TTA​ACT​TTTT​ and an enzyme 
that recognizes the site AACT​ and cleaves in the mid-
dle, the resulting Rmap would be [6, 11, 11, 6]. Rmaps 
by themselves are not traditionally used for analysis—
although, they can be [2, 3, 16]—and instead have to 
be assembled into longer contiguous optical maps cor-
responding to the genome. Hence, assembly of Rmaps 
refers to the problem of generating a consensus genome 
wide optical map from overlapping Rmaps.

Although optical mapping has been around for several 
decades, the problem of efficiently assembling the data 
largely remains open as there has been little work in this 
area—which is largely due to the challenges posed by the 
data itself. We should note that several related problems, 
such as alignment of optical mapping data [16–22], have 
been more thoroughly explored. Rmap data has a num-
ber of errors that make it difficult to assemble—namely, 
there exists added and deleted cut sites and sizing error, 
resulting in extra fragments, merges in neighboring frag-
ments and under or over-estimates of the length of a 
fragment. In the running example, the error free Rmap of 
[6, 11, 11, 6] could occur as [6, 22, 6] with error. Nonethe-
less, there exists two Rmap assembly methods: Gentig by 
Anantharaman et  al. [23] and the assembler of Valouev 
et  al. [24]. Developed in 1998, Gentig is the first Rmap 
assembly algorithm. It is based on a Bayesian model that 
seeks to maximize the a posteriori estimate of the con-
sensus optical map produced by the assembly of Rmaps. 
It first computes the overlap between all pairs of Rmaps 
using dynamic programming, and then builds contigs by 
greedily merging the Rmaps based on alignment score. 
This process of merging contigs continues until all align-
ments above a certain score are merged. Valouev et  al. 
[24] implemented an overlap-layout-consensus (OLC) 
assembly algorithm using their alignment algorithm 
[25], which also starts by calculating alignment between 
all pairs of Rmaps, and identifying all alignments that 
have score above a specified threshold. A graph is built, 
where Rmaps are represented as nodes, and the non-fil-
tered alignments are represented as edges. The graph is 
refined by eliminating paths in the graph that are weakly 
supported. In other words, if two connected regions 
in the graph are joined by only a single path—or with 
multiple paths, but having one or more common inter-
mediate nodes—then the graph is disconnected at these 
nodes. Further, an edge is removed if it is inconsistent 
with a higher scoring edge. Contigs are then generated 

by traversing this graph in a depth first manner. Bio-
nano Genomics Inc. provides a proprietary assembly 
method, called Bionano Solve, however the source code 
is not publicly available and the algorithmic details are 
unknown due to the proprietary nature of the software.

The alternative to an OLC approach for assembly is a 
de Bruijn graph approach that relies on building and tra-
versing a de Bruijn graph constructed on the sequence 
data. For simplicity, we give a constructive definition of 
the de Bruijn graph in the context of genome assembly. 
Given a set of sequences R = {r1, . . . , rn} and an integer k, 
the de Bruijn graph is constructed by creating a directed 
edge for each unique k length substring (k-mer) with the 
nodes labeled as the k − 1 length prefix and k − 1 length 
suffix of the k-mer, and then all nodes that have the same 
label are merged. The important aspect of the de Bruijn 
graph assembly approach is that it avoids having to find 
alignments between any pair of sequences, leading to 
an O(n) run-time. Since its introduction by Idury et  al. 
[26] and Pevzner et  al. [27], this approach has become 
the most common paradigm for assembling short read 
sequencing data because it led to huge gains in perfor-
mance over OLC approaches. Hence, applying a de Bruijn 
graph approach to Rmap assembly would likely lead to 
similar improvements by removing the burden of find-
ing all pairwise alignments between Rmaps. This assem-
bly works on the premise that a k-mer will occur exactly 
without error frequently in the data. Hence, the biggest 
challenge we face is constructing a de Bruijn graph with 
added and deleted cut-sites and sizing error. Even with-
out the occurrence of added and deleted cut-sites, k-mers 
created from Rmap data are unlikely to be exact repli-
cas due to sizing error. For example, [6, 11, 11, 6] and [5, 
10, 11, 7] should likely be recognized as instances of the 
same k-mers in Rmap data. Thus, to overcome this chal-
lenge the de Bruijn graph has to be redefined to account 
for the inexactness of the data.

In this paper, we formulate and describe a de Bruijn 
graph approach for de novo Rmap assembly, which heav-
ily relies on redefining the de Bruijn graph to make it 
suitable for Rmap data. We accomplish this by extend-
ing the definition of a bi-label in the context of the paired 
de Bruijn graph that was introduced by Medvedev et al. 
[28]. We refer to our modified de Bruijn graph as bi-
labelled de Bruijn graph. Next, we demonstrate how to 
efficiently build and store the de Bruijn graph using a two 
tier orthogonal-range search data structure. We imple-
ment this approach, leading to a novel Rmap assembler 
that we call rmapper . We compare the performance of 
our method with the assembler of Valouev et  al., and 
Bionano Solve on three genomes of varying size: E. coli, 
human, climbing perch (a fish species from the Verte-
brate Genomes Project). Our comparison demonstrates 
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that rmapper was more than 130 times faster and used 
less than five times less memory than Solve, and was 
more than 2,000 times faster than Valouev et  al. Also, 
rmapper successfully assembled the 3.1 million Rmaps 
of the climbing perch genome into contigs that covered 
over 95% of the draft genome with zero mis-assemblies.

Background and definitions
Rmap data and genome wide optical maps
From a computer science perspective, we can view an 
Rmap R = [r1, r2, . . . , r|R|] as an ordered list of integers. 
Each number represents the length of the respective frag-
ment. The size of an Rmap R denotes the number of frag-
ments in R, which we denote as |R|. For example, say we 
have an enzyme that cleaves the DNA at the middle posi-
tion of AACT​ and a genomic sequence TTT​TAA​CTG​GGG​
GGG​AAC​TTT​TTT​TTA​ACT​TTTT​, then the Rmap will be 
R = [6, 11, 11, 6] corresponding to the cleaved sequences 
[TTT​TAA​, CTG​GGG​GGGAA, CTT​TTT​TTTAA, CTT​
TTT​].

Error profile of Rmap data
There are three types of errors that can occur in optical 
mapping: (1) missing cut sites which are caused by an 
enzyme not cleaving at a specific site, (2) additional cut 
sites which can occur due to random DNA breakage and 
(3) inaccuracy in the fragment size due to the inability 
of the system to accurately estimate the fragment size. 
Continuing again with the example above, an example 
of an additional cut site would be when the second frag-
ment of R is split into two, e.g., R′ = [6, 5, 6, 11, 6] , and 
an example of a missing cut site would be when the last 
two fragments of R are joined into a single fragment, e.g., 
R′ = [6, 11, 17] . Lastly, an example of a sizing error would 
be if the size of the first fragment is estimated to be 7 
rather than 6.

Several different probabilistic models have been pro-
posed for describing the sizing error, and the frequency 
of added and missed cut-sites, including the models of 
Valouev et al. [25], Li et al. [29], and Chen et al. [30]. We 
briefly describe these models here but refer to the origi-
nal papers for a full description. Both Valouev et al. and 
Chen et  al. describe the observed fragment lengths as 
normal distribution with the mean being equal to the 
true length of the fragment and the standard deviation 
being a function of the true length, i.e. longer fragments 
exhibit larger standard deviation. In the model by Li et al. 
the sizing error uses a Laplace distribution as follows: if 
the observed and actual size of a fragment are oi and ri , 
respectively, then the sizing error, oi ∼ ri × Laplace(µ,β) 
where µ and β are parameters of the Laplace distribution 
and are functions of ri . All studies model the probability 
of having a missed cut-site as a Bernoulli trial. Valouev 

et al. and Chen et al. predict a fixed probability for diges-
tion of a cut-site while Li et al. model the probability 
of digestion as a function of lengths of the fragments 
flanking the cut-site. The likelihood of a missed cut-site 
decreases with the length of the fragment. All three mod-
els postulate additional or false cut-sites result from ran-
dom breaks of the DNA molecule and hence model the 
number of false cuts per unit length of DNA as a Poisson 
distribution. Li et al. observed that false cuts occurred 
less frequently at the two ends of an Rmap.

Rmap segments and k‑mers
We define a segment sp,q of an Rmap starting at position 
p and ending at position q, as the q − p+ 1 consecutive 
fragments starting from rp , i.e., [rp, rp+1, .., rq] . We define 
the length of a segment as the summation of all of its 
constituent fragments, i.e., rp + · · · + rq . We denote the 
length of a segment sp,q as ℓ(sp,q) . We note that the length 
of the Rmap R should not be confused with the number 
of fragments, which we denote as its size |R|.

In this paper, we extend the definition of a k-mer to the 
context of Rmap data as follows. Given an integer k, we 
define a k-mer as a segment of exactly k fragments, i.e., a 
sequence of k successive fragments of an Rmap. Follow-
ing the example from above, the following two 3-mers 
exist in R = [6, 11, 11, 6] : [6, 11, 11] and [11, 11, 6].

Prefixes and suffixes of Rmaps
Given an Rmap R = [r1, r2, . . . , r|R|] , we define the x-size 
prefix of R as R = [r1, r2, . . . , rx] , where x is at most 
|R| − 1 . Conversely, we define the x-size suffix of R as 
R = [r|R|−x+1, . . . , r|R|] , where x is at most |R| − 1.

The Bi‑labelled de Bruijn graph
In this section, we modify the traditional definition of the 
de Bruijn graph for Rmap data by first redefining the con-
cept of a bi-label for Rmap data. The term bi-label was 
first introduced by Medvedev et al. [28] in the context of 
short read assembly to incorporate mate-pair data into 
assembly of paired-end reads. There the term bi-label 
refers to two k-mers separated by a specified genomic 
distance. The redefinition of the de Bruijn graph with 
this extra information was shown to de-tangle the result-
ing graph, making traversal more efficient and accurate. 
Here, we demonstrate that an equivalent paradigm can 
be effective for Rmap assembly.

Bi‑labels
Given integers k and D, and Rmap R, we define a bi-label 
from an Rmap R, as a segment of R containing a pair of 
k-mers separated by the shortest segment that has a 
length of at least D. The following is a formal definition.
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Definition 1  Given an Rmap 
R = [r1, r2, ..., ri, ri+1, .., r|R|] , integers k and D, and a 
position i, we define the bi-label at position i to be 
[s1k , rp, . . . , rq , s

2
k ] , where p = i + k and q is an index such 

that ℓ(sp,q−1) < D ≤ ℓ(sp,q)

and s1k and s2k are the k-mers starting at positions i and 
q + 1 , respectively.

Next, we refer to segment sp,q between s1k and s2k as the 
skip segment, and note that, unlike s1k and s2k which both 
have k fragments, this segment is only bounded by its 
length and can have any number of fragments. Thus, this 
accounts for added and deleted cut-sites since these 
errors do not impact the length of a segment. Figure  2 
demonstrates how the skip-segment tolerates a deleted 
cut-site. For example, given k = 3 , D = 25 , and 
R = [7, 18, 13, 3, 15, 12, 4, 3, 6, 5, 13, 2] , the bi-labels of R 
are 

(

[7, 18, 13]
∣

∣

∣
[3, 15, 12]

∣

∣

∣
[4, 3, 6]

)

 , 
(

[18, 13, 3]
∣

∣

∣
[15, 12]

∣

∣

∣
[4, 3, 6]

)

 and 
(

[13, 3, 15]
∣

∣

∣
[12, 4, 3, 6] 

∣

∣

∣
[5, 13, 2]

)

 . We are now going to define the prefix and suf-
fix bi-labels.

Definition 2  Given integers D and k and bi-label b with 
k-mers b1 = [b11, ..b

1
k ] and b2 = [b21, .., b

2
k ] and skip seg-

ment bs , we define the prefix bi-label of b as the bi-label 
with (k − 1)-mers and skip-segment length at least D, 
where the first (k − 1)-mer is the (k − 1)-size prefix of b1 
i.e. [b11, ..b

1
k−1].

Note that the second (k − 1)-mer of the prefix bi-label 
is not necessarily the (k − 1)-size prefix of b2 . We also 
require an equivalent definition for the suffix of a bi-label.

Definition 3  Given integers D and k and bi-label b with 
k-mers b1 = [b11, ..b

1
k ] and b2 = [b21, .., b

2
k ] and skip seg-

ment bs , we define the suffix bi-label of b as the bi-label 
with (k − 1)-mers and skip-segment length at least D, 
where the first (k − 1)-mer is the (k − 1)-size suffix of b1 
i.e. [b12, ..b

1
k ].

Figure  1 illustrates this concept of prefix and suffix 
bi-labels. Note that for two successive bi-labels from an 
Rmap, the prefix bi-label of the latter is the same as the 
suffix bi-label of the former as shown in Fig. 1. This is a 
vital property that allows the de Bruijn graph constructed 
over bi-labels to be connected.

Bi‑label proximity
One of the challenges with Rmap data is the fact that the 
fragments correspond to genomic distances and due to 
experimental error, the measured estimates for the same 
genomic fragment are different across different Rmaps 
representing the same genomic location. For example, 
R = [5, 6, 7, 11, 5] and R′ = [6, 5, 6, 11, 6] likely correspond 
to the same k-mer but the numerical nature makes it such 
that they are not exactly equal. Thus, we need to define a 
criteria such that two bi-labels drawn from different Rmaps 
but corresponding to the same genomic locations can be 
identified and merged for the construction of the de Bruijn 
graph. Thus, to make the definition of a bi-label robust to 
sizing errors, we define conditions on both the difference 
of the individuals fragments of two bi-labels and the dif-
ference in the total lengths. Hence, we have the following 
definitions.

Definition 4  Given integers tf  , k and D, and two 
bi-labels a and b, we let the k-mers of a and b be 
a1 = [a11, .., a

1
k ] and a2 = [a21, .., a

2
k ] and b1 = [b11, .., b

1
k ] 

and b2 = [b21, .., b
2
k ] , respectively. We define a and b to 

be fragment proximal if and only if |a1i − b1i | ≤ tf  and 
|a2i − b2i | ≤ tf  for all i = 1, .., k.

Here tf  is an error-tolerance parameter that handles siz-
ing errors on the fragments of the bi-label.

Definition 5  Given integers tℓ , k and D, and two bi-
labels a and b, we let the k-mers of a and b be a1 and 
a2 and b1 and b2 , respectively, and the skip segment of 
a and b be as and bs , respectively. We define a and b to 
be length proximal if and only if |ℓ(a1)− ℓ(b1)| ≤ tℓ , 
|ℓ(a2)− ℓ(b2)| ≤ tℓ and |ℓ(as)− ℓ(bs)| ≤ tℓ.

Here tℓ is another error-tolerance parameter that handles 
sizing errors on the segment lengths of the bi-label. These 
two definitions lead to our final definition that defines 
whether two bi-labels should be defined as equivalent in 
the de Bruijn graph.

Definition 6  Given integers k and D and two bi-labels 
a and b, we define them to be proximal if and only if they 
are fragment proximal and length proximal.

This leads to our final definition, which is the set of bi-
labels in which the bi-labelled de Bruijn graph is defined 
on.

Definition 7  Given a set of Rmaps {R1, ..,Rn} and inte-
gers k and D, let B be the set of bi-labels from R. We 
define the proximal reduced set of bi-labels as the set 
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B′ , where for each b in B there is a bi-label in B′ that it is 
proximal to.

Definition of the bi‑labelled de Bruijn graph
Given the above definitions, we are now ready to define 
the bi-labelled de Bruijn graph built on a set of proxi-
mal bi-labels extracted from Rmaps.

Definition 8  Given integers k and D and set of Rmaps 
{R1, ..,Rn} , let B be the proximal reduced set of bi-labels 
extracted from R. We create a directed edge e for each bi-
label b in B and label the incoming and outgoing nodes of 
e as the prefix bi-label of b and suffix bi-label of b, respec-
tively. After all edges are formed, the graph undergoes a 

gluing operation. A pair of node bi-labels are glued into 
a single node if and only if they are proximal. We define 
the final graph obtained after gluing of nodes as the bi-
labelled de Bruijn graph.

Methods
In this section, we describe our method for building and 
traversing the bi-labelled de Bruijn graph from an Rmap 
dataset. Our method, which we refer to as rmapper , can 
be summarized into the following steps: extract and store 
bi-labels, find proximal bi-labels, build the bi-labelled de 
Bruijn graph, resolve tips and bubbles, and traverse the 
graph to build the contigs. We now describe each of these 
steps in detail.

Fig. 1  All bi-labels for k = 3 and D = 25 of an Rmap R. On each bi-label the fragments from the k-mers and the length of the skip segment are 
shown in white while the fragments of the skip segment are shown in blue. For each bi-label we show the prefix and suffix bi-labels built with k = 2 
and D = 25
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Extract and store all Bi‑labels
We first error correct the Rmap data using cOMet [31] 
and then extract and store all bi-labels from the error 
corrected Rmaps. We recall from Definition 6 that two 
bi-labels are proximal if they are both fragment proximal 
as well as length proximal for error-tolerance param-
eters tf  and tℓ . Therefore, we must store all the bi-labels 
in a manner that allows finding all proximal bi-labels of 
a given bi-label efficiently. To accomplish this, we store 
all the bi-labels in a disjoint set of k-d trees [32] such that 
each pair of bi-labels in the same k-d tree is length proxi-
mal. For each bi-label, the 2k fragments of the k-mers of it 
are stored in the corresponding k-d tree, which will allow 
for efficiently finding all fragment proximal bi-labels of a 
given bi-label. Hence, the dimension of each k-d tree is 
2k.

More formally, we identify each k-d tree Ka1,a2,a3 by 
three positive integers a1 , a2 , and a3 , and insert a given bi-
label b into Ka1,a2,a3 if the length of its two k-mers ℓ(b1) and 
ℓ(b2) are within the range [a1 × tℓ, . . . , (a1 + 1)× tℓ − 1] 
and [a2 × tℓ, . . . , (a2 + 1)× tℓ − 1] respectively and the 
length of the skip segment ℓ(bs) is also within the range 
[a3 × tℓ, . . . , (a3 + 1)× tℓ − 1] . If such a tree does not 
exist then we create a new one with Ka1,a2,a3 , where 
a1 = ⌊ℓ(b1)/tℓ⌋ , a2 = ⌊ℓ(b2)/tℓ⌋ and a3 = ⌊ℓ(bs)/tℓ⌋.

Next, for each bi-label in our set of k-d trees, we find 
and store pointers to all proximal bi-labels by performing 
an orthogonal range query. Given a bi-label b in Ka1,a2,a3 , 
we let the k-mers of the bi-label b be b1 = [b11, .., b

1
k ] 

and b2 = [b21, .., b
2
k ] . We perform a range query with 

([b11 ± tf ], . . . , [b
1
k ± tf ], [b

2
1 ± tf ], . . . , [b

2
k ± tf ]) in the 

disjoint set of k-d trees to find all bi-labels whose first k-
mer is equal to [b11 ± tf ], . . . , [b

1
k ± tf ] and whose second 

k-mer is equal to [b21 ± tf ], . . . , [b
2
k ± tf ] . We add a pointer 

from b to each of these bi-labels. We repeat this for each 
bi-label. In particular, we perform the range query in 
all k-d trees where the proximal bi-labels can be found, 
i.e., all k-d trees Ka′1,a

′
2,a3

 where for m = min(ktf , tℓ) we 
have, ⌊(ℓ(b1)−m)/tℓ⌋ ≤ a′1 ≤ ⌊(ℓ(b1)+m)/tℓ⌋ and 
⌊(ℓ(b2)−m)/tℓ⌋ ≤ a′2 ≤ ⌊(ℓ(b2)+m)/tℓ⌋.

We note that k-d trees support multi-dimensional 
orthogonal range-search queries in O(n(2k−1)/2k + occ) 
time and O(n) space where n is the number of bi-labels 
in the tree, k is the k-mer value, and occ is the number of 
bi-labels that satisfy the constraints of the range-search 
query.

Graph construction
We first filter all low frequency bi-labels, i.e., bi-labels 
that have a low number of proximal bi-labels. As illus-
trated in Fig.  4, bi-labels that have low frequency typi-
cally arise from Rmap data that is highly erroneous. After 
filtering low frequency bi-labels, we build the bi-labelled 
de Bruijn graph by first building a proximal reduced set 
from the unfiltered bi-labels, then building all directed 
edges with labelled nodes from the reduced set, and 
finally merging nodes that have the same label. Using 

Fig. 2  Skip segment overcomes missed cut-site. All bi-labels for k = 3 and D = 25 of two Rmaps R and R′ , {b1, b2, b3} and {b′1, b
′
2} respectively. Both 

Rmaps cover the same genomic location but R′ has a missed cut-site in position 5 (shown in red). On each bi-label the fragments from the k-mers 
and the length of the skip segment are shown in white while the fragments of the skip segment are shown in blue. Despite the missed cut-site on 
R′ bi-labels b1 and b2 are merged to b′1 and b′2 respectively according to our merge function
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an efficient heuristic, we first greedily find the proximal 
reduced set of bi-labels by sorting the unfiltered bi-labels 
in descending order based on the number of proximal bi-
labels found for them. From this sorted list of bi-labels 
B, we iteratively insert bi-labels into the reduced set B′ 
unless the bi-label is proximal to a bi-label already in B′.

Next, we build a bi-labelled de Bruijn graph by creating 
a directed edge for each bi-label b′ in B′ and labeling the 
incoming and outgoing nodes as the prefix bi-label and suf-
fix bi-label of b′ . We store all the nodes and edges in a mod-
ified adjacency list format that contains three arrays: one 
array stores all node bi-labels, one array containing a list of 
pointers of the incoming nodes for each node, and lastly, 
one array containing a list of pointers of the outgoing nodes 
for each node. Thus, to insert b′ into the graph, we first 
determine if the prefix and suffix bi-labels are contained in 
the node array and insert them if they are not contained in 
the list, and then insert an entry into the incoming and out-
going arrays with lists containing pointers to the prefix and 
suffix bi-labels. This graph representation will allow for the 

adjacency lists of two nodes to be efficiently merged if the 
bi-labels they represent are found to be proximal.

Lastly, we merge all nodes in the graph whose bi-
labels are proximal to obtain the final bi-labelled de 
Bruijn graph. For merging the nodes, we again use a set 
of disjoint k-d trees as we did before for finding proxi-
mal bi-labels for the edge bi-labels. Hence, we extract 
all the node bi-labels and construct a set of k-d trees as 
before. Then for each node v in the node array, we query 
the corresponding k-d trees to find all nodes that are 
proximal to it using the same error tolerance param-
eters tf  and tℓ . Any node u that is found to be proximal 
to v is merged to v by removing u from the graph by 
updating the two adjacency lists such that the incom-
ing and outgoing array entries storing pointers to u are 
updated to store pointers to v. This can be achieved 
in linear time. We repeat this until all proximal nodes 
have been merged. Figure 3 illustrates the construction 
of the bi-labelled de Bruijn graph for a pair of Rmaps.

Fig. 3  The construction of the bi-labelled de Bruijn Graph. a Two Rmaps R1 and R2 and the bi-labels extracted from them—{b1, b2, b3} from R1 and 
{b3, b4} from R2 for k = 3 and D = 25 . b Edges {e1, e2, e3} depict the proximal reduced set of bi-labels. Bi-labels {b1, b4} are represented by e1 , bi-labels 
{b2, b5} are represented by e2 and bi-label {b3} forms e3 . We note that in this example no bi-labels are filtered for finding the proximal reduced set. 
c Nodes introduced into the graph. Each edge breaks into two nodes—one denoted by the prefix bi-label and the other by suffix bi-label of the 
edge. A directed edge is drawn from the former to the latter. d The final graph is formed by merging nodes v12 with v21 and merging v22 with v32
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Graph cleaning and traversal
Before traversing the graph, we first pre-process the bi-
labelled de Bruijn graph to remove tips and bubbles, 
which are common in de Bruijn graphs. Since they limit 
the size of unary paths (i.e. paths in the graph that con-
tain nodes with only a single outgoing edge) and do not 
affect the accuracy of the assembly, it is common prac-
tice in short read assembly to resolve or remove these 
structures [33–36]. Tips are produced when errors cause 
an otherwise unary path to branch at a node and create 
a short unary path that ends in a terminal node. Bubbles 
are created when bi-labels from the same genomic loca-
tion are not merged and included in the graph as sepa-
rate edges. This generates short unary paths that have the 
same starting node and the same ending node and are 
close in length.

Similar to existing short read assemblers, we identify 
all tips and bubbles that have length of at most a speci-
fied threshold by performing depth first search starting 
at each node with out-degree greater than one. Hence, 
if there exists a tip starting at a given node as well as a 
path of length longer than the specified threshold, then 
the tip is removed by deleting all of its edges starting at 
the branching node. Furthermore, if there exists a bubble 
starting at a given node, we remove one of the edges adja-
cent to the branching node. We note we do not remove 

an entire path from the graph to resolve a bubble—rather, 
we only disconnect them at the branching node. Follow-
ing the work of Simpson et al. [35], we fix the maximum 
length of the paths in a bubble to twice the size of the 
bi-label.

After cleaning, our traversal algorithm extracts unit-
igs (i.e. contigs corresponding to unary paths) from the 
graph by performing a simple depth first traversal start-
ing from each node with zero incoming edges. We termi-
nate the traversal of a given path if a cycle is reached or a 
node with out-degree greater than one is reached.

Experiments
In this section, we compare the performance of rmapper , 
the assembler of Valouev et  al. and Bionano Solve. We 
used the most recent version of Bionano Solve that is 
publicly available (version 3.5.1.). We performed all 
experiments on Intel E5-2698v3 processors with 192 GB 
of RAM running 64-bit Linux. Valouev and rmapper were 
ran on error corrected data, which is analogous to assem-
bly of sequence reads. Bionano Solve was not because the 
input is required to be specified in their proprietary for-
mat. In addition, for larger genomes, we also ran rmapper 
by extracting bi-labels from both directions in an Rmap. 
We refer to this as rmapper2.0.

For all experiments we report the run time (CPU time), 
peak memory, maximum and mean contig size, genome 
fraction and number of mis-assembled contigs. We note 
that genome assembly evaluation tools such as QUAST 
[37] cannot be used on optical maps—hence, we design 
our own evaluation setup. To compute the genome 
fraction, we align all assembled contigs to the optical 
map reference genome using the alignment method of 
Valouev et  al. [25]. The optical map reference genome 
is produced by in silico digesting the reference genome 
using the same restriction enzyme as used for producing 
the Rmaps. For all contigs that were successfully aligned, 
we designate their alignment locations on the reference 
genome as covered and report the percentage of the 
genome covered by at least one contig as the genome 
fraction. Any contig which is unable to be aligned by 
Valouev et  al. is verified to be mis-assembled by align-
ing it to the reference genome using a second alignment 
software—Bionano’s RefAligner. The Valouev method 
aligns an assembled contig to a contiguous stretch of the 
reference optical map that optimizes its alignment score 
and does not tolerate mis-assembled regions, whereas 
RefAligner allows split alignments. Hence, if the align-
ment outputted from RefAligner is uncontiguous then it 
is counted as a mis-assembly.

rmapper takes as input four parameters, namely the 
size k of the k-mers, the minimum distance D between 
the two k-mers in the bi-label, and the error tolerance 

Fig. 4  Histogram showing the precision of finding proximal bi-labels. 
For simulated human Rmap data, we found proximal bi-labels for 
all extracted bi-labels. We designate a proximal bi-label found to be 
a true positive if its true location in the genome is the same as the 
location of the bi-label to which it is proximal—and false positive 
otherwise. Next, we plotted a histogram showing the distribution of 
true positives and false positive proximal bi-labels for each bi-label. 
We show that high frequency bi-labels i.e. bi-labels for which we find 
more proximal bi-labels produce more precise proximal bi-labels. This 
justifies filtering low frequency bi-labels
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parameter setting tf  and tℓ . The k-mer size depends on 
the rate of added and missed cut-sites in the Rmap data. 
When the frequency of added and missed cut-sites is 
high, the k-mer size needs to be set low so that a good 
percentage of k-mers are error-free. We note that the 
average error-rate of optical-map data typically lies 
around 17% [30]. Considering that error-correction of 
the Rmaps is likely to bring the average error-rate below 
10% [31], the k-mer size of 6 is the largest value such that 
the probability that an extracted k-mer will be error-free 
is at least 50% . Hence we use 6 as the default k-mer size in 
our experiments. The best combination of coverage, aver-
age length of contigs and run-time is achieved by fixing 
tℓ = 2000 . We experimented with the following values 
of D = {15000, 20000, 25000, 30000} and the following 
values of tf = {500, 1000, 1500} and for each experiment, 
we choose the parameter setting that gives the best per-
formance. A higher value of tf  is needed when the Rmap 
data still has significant sizing errors after error cor-
rection. A lower value of D is needed when the average 
Rmap size is small so that we can extract an adequate 
number of bi-labels from each Rmap. We show the 
impact of varying the parameters on the E. coli genome 
in Section Impact of parameters.

Datasets
We performed experiments on both simulated and 
real Bionano data. We simulated data from both E. 

coli K-12 substr. MG1655 genome and the human ref-
erence genome GRCh38 (NCBI accession number 
GCF_000001405.26) with OMSim [38]. We used enzyme 
BspQI — a standard, commonly used restriction enzyme 
for optical mapping — and used the default error rate of 
OMSim, which is a 15% rate of deleted cut sites, and 1 
added cut site per 100kbp. The resulting E. coli dataset 
contains 23450 Rmaps with a mean of 42 fragments per 
Rmap. The human dataset contains 377894 Rmaps with a 
mean of 61 fragments per Rmap.

Lastly, we performed experiments using the Rmap 
dataset of the climbing perch (Anabas testudineus) 
genome generated for the Vertebrate Genomes Project, 
which consists of 3121480 Rmaps with mean of 28 frag-
ments. A draft assembly of the genome is provided from 
the same source which was used to obtain the reference 
genome optical map.

Impact of parameters
We investigated the impact of parameters on assem-
bly results of E. coli by varying the k-mer size, the 
parameter D (which denotes the length of the skip 
segment, the parameter tf  , and the parameter tl . 
We considered the following set of values for these 
parameters: k = {5, 6, 7} , D = {10000, 15000, 20000} , 
tf = {250, 500, 1000, 1500} , and tl = {1500, 2000, 3000} . 
We show the impact of varying k, D and tf  in Fig.  5. 
The detailed statistics of this experiment are found in 

Fig. 5  Impact of varying parameters k, D, and tf  on the assembly of E. coli. For all possible combination of these parameters, we calculated and 
reported the mean contig size. The blue lines depict a k-mer size 5, the red lines depict a k-mer size 6, and the magenta lines depict a k-mer size 7
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Additional file  1: Table  S1. For this experiment, tl was 
fixed at 2,000. In Table 1, we show the impact of varing 
tf  and tl together. For all experiments, contigs longer 
than 250 fragments are reported. The experiments 
show that for tf = 250 the assembly quality is poor. This 
is justified since the average sizing error exceeds 250. 
Similarly, for increasing values of D, we see a drop in 
the quality. This is because larger values of D create 
fewer number of bi-labels from an Rmap which reduces 
the effective coverage of the data. Among the three k-
mer sizes used, best assembly quality is achieved with 
k = 6 . This is set as our default k-mer value for all 
experiments.

Performance on E. coli
For the E. coli Rmap dataset, error correction took 
2.66 hours of CPU time. The assembly results are sum-
marized in Table  2. For this experiment we extracted 
bi-labels with k = 6 and D = 15000 and used error 
tolerance parameter setting tf = 500 and tℓ = 2000 . 
rmapper took 342 seconds and peak memory of 274 
Mb to assemble the data. The assembler produced two 

unitigs longer than 500 fragments, that are 529 and 522 
fragments in length, both of which covered the refer-
ence from start to finish.

The Valouev assembler [24] took 204.8 hours to com-
pute pairwise alignments between all pairs of Rmaps 
and an additional 30 minutes to assemble them into 
contigs. It produced 5 contigs with the longest con-
tig of length 102 fragments (corresponding to a 1Mbp 
genomic span). We aligned the assembled contigs back 
to the reference and found the total genome coverage to 
be 48%. Bionano solve produced a high quality assem-
bly, i.e., one contig that spanned 100% of the genome. 
The assembly took 48.14 hours of CPU time (59.75 
minutes of wall time using 60 CPUs in parallel) and 
peak memory of 1.18 GB. The Valouev aligner reported 
alignments for all contigs, hence we report zero mis-
assembled contigs for all three methods.

In summary, the quality of Bionano Solve and 
rmapper were comparable, yet rmapper was 480 times 
faster (6 minutes versus 2889 minutes) and used less 
than 500 Mb of memory.

Table 1  Impact of varying the values of tf  and tl on the assembly results for E. coli data

In this Table, the value of k was fixed to 6, and the value of D was fixed to 15,000. The contig with maximum length (Max) is reported in the number of fragments 
and the total genomic length in mega base pairs (Mbp). Similarly, the mean contig length (Mean) is also reported in the number of fragments and the total genomic 
length in mega base pairs

tf tl Run time(s) Peak Memory(Mb) No. of contigs Max Mean

250 1500 179 305 4 272 (2.420 Mbp) 267 (2.326 Mbp)

250 2000 200 305 3 271 (2.418 Mbp) 270 (2.351 Mbp)

250 3000 232 305 3 271 (2.419 Mbp) 267 (2.333 Mbp)

500 1500 403 459 10 336 (3.072 Mbp) 295 (2.625 Mbp)

500 2000 445 459 23 529 (4.701 Mbp) 371 (3.252 Mbp)

500 3000 509 459 49 529 (4.711 Mbp) 430 (3.793 Mbp)

1,000 1500 476 628 33 531 (4.745 Mbp) 427 (3.792 Mbp)

1,000 2000 533 629 29 529 (4.746 Mbp) 422 (4.746 Mbp)

1,000 3000 629 630 35 530 (4.742 Mbp) 412 (3.662 Mbp)

1,500 1500 537 705 11 424 (3.732 Mbp) 347 (3.028 Mbp)

1,500 2000 616 709 28 533 (4.778 Mbp) 424 (3.760 Mbp)

1,500 3000 748 711 22 535 (4.764 Mbp) 440 (3.887 Mbp)

Table 2  Assembly results for E. coli Rmap data simulated by OMSim using enzyme BspQI

The dataset has 23,450 Rmaps of mean size of 42 fragments and coverage of 900x. The peak memory is given in gigabytes (GB). The run time is reported in second (s) 
minutes (m), hours (h) and days (d). rmapperwas run with k = 6 , D = 15000 and error tolerance parameter setting tf = 500 and tℓ = 2000 . The contig with maximum 
length (Max) is reported in the number of fragments and the total genomic length in mega base pairs (Mbp). Similarly, the mean contig length (Mean) is also reported 
in the number of fragments and the total genomic length in mega base pairs. The genome fraction (GF) is the percentage of the genome that is covered by at least 
one contig. Lastly, the number of mis-assembled contigs (MA) is given

Assembler Run time Peak Memory No. of contigs Max Mean GF(%) MA

Valouev 8.5 d 0.48 5 102 (1.0 Mbp) 56 (0.5 Mbp) 48 0

Solve 48.1 h 1.18 1 631 (4.9 Mbp) 631 (4.9 Mbp) 100 0

rmapper 6 m 0.46 2 529 (4.6 Mbp) 526 (4.5 Mbp) 100 0
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Performance on human
For the human Rmap dataset, error correction took 
1339.31 seconds of wall time running cOMet in parallel 
on 2000 CPUs (corresponding to 524 hours of CPU time). 
The assembly results are shown in Table 3. For this exper-
iment we extracted bi-labels with k = 6 and D = 25000 
and used error tolerance parameter setting tf = 1500 and 
tℓ = 2000 . rmapper took 12.1 hours and peak memory 
of 7.9 GB to assemble the data whereas rmapper 2.0 took 
22.2 hours and 18.8 GB of peak memory. rmapper pro-
duced 3134 contigs whereas rmapper 2.0 produced 2867 
contigs. The maximum size unitig produced by rmapper 
and rmapper2.0 was 1380 and 1752 fragments in length, 
respectively. Lastly, rmapper achieved a net coverage of 
95.8% while rmapper2.0 was able to cover 96.7% of the 
genome—both with zero mis-assembled contigs.

The Valouev assembler did not produce any output 
after 360 CPU days so n/a is reported in Table 3. Bionano 
Solve produced comparably fewer but longer contigs to 
rmapper but had 4 mis-assembled contigs. In addition, 
it took approximately 2937 CPU hours (55 hours of wall 
time using 60 CPUs in parallel) and peak memory of 94.8 
GB. It is also worth noting that Bionano Solve performs 
an elaborate scaffolding and stitching of contigs, which 
explains the relatively few number of contigs but higher 
mis-assembly rate. The scaffolding and stitching cannot 
be decoupled from the assembly since Bionano only dis-
tributed a single executable that runs both. The source 
code is not publicly available.

In summary, the Valouev assembler did not scale to 
the human genome, rmapper2.0 produced slightly longer 

contigs than rmapper , Bionano Solve produced the long-
est contigs but covered 93.8% of the genome and had 4 
mis-assembled contigs. In addition, rmapper2.0 has the 
highest genome fraction, which is 96.7%. Lastly, rmapper 
and rmapper2.0 was 242 and 132 times faster than Solve, 
respectively, and used 5 times less memory.

Performance on climbing perch
Error correction of the the climbing perch (Anabas Tes-
tudineus) Rmap dataset took 1.84 hours of wall time 
running cOMet in parallel on 3000 CPUs (correspond-
ing to 2042 hours of CPU time). The assembly results 
are shown in Table  4. For this experiment we extracted 
bi-labels with k = 6 and D = 15000 and used error tol-
erance parameter setting tf = 1500 and tℓ = 2000 . 
rmapper took 7.5 hours and peak memory of 9.7 GB to 
assemble the data whereas rmapper 2.0 took 14.9 hours 
and 18.77 GB of peak memory. rmapper produced 4573 
contigs whereas rmapper 2.0 produced 4972 contigs. The 
maximum size unitig produced by rmapper and rmapper 
2.0 was 217 and 294 fragments in length, respectively. 
Lastly, rmapper achieved a genome fraction of 92.07%, 
while rmapper 2.0 was able to cover 95.05% of the 
genome. Both rmapper and rmapper2.0 produced zero 
mis-assemblies.

The Valouev assembler did not halt on this dataset 
after 360 CPU days so we do not report any results. Solve 
halted with a fatal error message in its final scaffolding 
step after 156 CPU days (93 hours of wall time using 60 
CPUs in parallel) and using a peak memory of 16 GB. We 
used the latest assembly result produced by the software 

Table 3  Assembly results for human Rmap data simulated by OMSim using enzyme BspQI

The dataset has 377894 Rmaps of mean size of 61 fragments and coverage 80x. See Table 2 for a description of the assembly statistics and notation. As described in 
the text, rmapper2.0 extracts bi-labels from Rmaps in both forward and reverse directions

Assembler Run time Peak Memory No. of contigs Max Mean GF(%) MA

Valouev > 360 d n/a n/a n/a n/a n/a n/a

Solve 122.4 d 94.8 169 14,133 (124.6 Mbp) 2,036 (16.4 Mbp) 93.8 4

rmapper 12.1 h 7.9 3865 1,380 (14.4 Mbp) 144 (1.4 Mbp) 95.8 0

rmapper 2.0 22.2 h 18.8 3524 1,752 (18.5 Mbp) 203 (2.0 Mbp) 96.7 0

Table 4  Assembly results for the Rmap dataset of the climbing perch genome

The data was generated for the Vertebrate Genomes Project and it consists of 3121480 Rmaps with mean size of 28 fragments. The restriction enzyme used in the 
experiment is BspQI. See Table 2 for a description of the assembly statistics and notation. As described in the text, rmapper2.0 extracts bi-labels from Rmaps in both 
forward and reverse directions. Bionano Solve halted with a fatal error message in its final scaffolding step. We used the latest assembly result produced by the Solve 
in order to compare their assembly quality

Assembler Run time Peak Memory No. of contigs Max Mean GF(%) MA

Solve 156 d 16 Gb 907 1032 (8.4 Mbp) 104 (7.9 Mbp) 97.6 5

rmapper 7.5 h 9.7 4573 217 (1.6 Mbp) 32 (0.28 Mbp) 92.07 0

rmapper2.0 14.9 h 18.8 4972 294 (2.4 Mbp) 42 (0.4 Mbp) 95.05 0
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in order to compare their assembly quality. Similar to the 
human assembly, Bionano Solve produced comparably 
fewer and longer contigs to rmapper and had a genome 
coverage of 97.8%—but had 5 mis-assembled contigs. 
In summary, the Valouev assembler did not scale to the 
human genome, rmapper2.0 produced slightly longer 
contigs than rmapper , Bionano Solve produced the long-
est contigs and covered 97.6% of the draft genome but 
had 5 mis-assembled contigs. rmapper2.0 has compara-
ble genome coverage to Solve, which is 95.05% — while 
running 251 times faster.

Discussion and future work
We implement our approach and show its performance 
on multiple simulated and real datasets. Our experimen-
tal results show the only non-proprietary method (i.e. by 
Valouev et al. [24]) is unable to scale to the human and 
fish genomes, and that our method is at least 130 times 
faster than Bionano Solve and its memory usage is less 
than 20% of the memory usage of Bionano Solve. We 
point out that there is a trade-off between the length of 
the contigs, the genome fraction, and number of mis-
assemblies. Analogous to assembly of short reads, ideally 
an assembler should return a small number of contigs 
or scaffolds which cover the entire genome and have no 
mis-assembled regions. In the case of the human and fish 
data, Solve was able to produce fewer and longer scaf-
folds than rmapper but produced more mis-assemblies 
than rmapper . Conversely, for the human data, rmapper 
produced contigs that covered a larger fraction of the 
genome with no mis-assembled regions. This highlights 
one trade-off in Rmap assembly. Hence, there is an 
opportunity to improve Rmap assemblers so that this gap 
between Solve and rmapper is closed. Another impor-
tant note about the comparison between the assemblers 
is that rmapper has a very simple traversal algorithm and 
does not use any sort of scaffolding. This is due to the fact 
that the main contribution of this work is formulating 
and solving the problem of assembly of Rmaps. Bionano 
Solve has a scaffolding algorithm that cannot be decou-
pled from the assembly step since only an executable is 
available. Thus, the results really compare rmapper ’s unit-
igs with Solve’s scaffolds, and rmapper is still comparable.

This work presents the first non-proprietary Rmap 
assembler developed in the past decade, and thus, opens 
the door for improving Rmap assembly. Thus, there are 
many related problems and possible improvements that 
warrant future research. First, the main contribution of 
our work was adapting the de Bruijn graph to Rmap data. 
For completeness, we perform depth first search to trav-
erse the bi-labelled de Bruijn graph and extract contigs. 
Our traversal does not attempt to reconcile complicated 

regions in the graph, however, we believe that there is a 
great opportunity to improve the length of the assem-
bled optical maps by devising an algorithm to extend the 
traversal. Next, we hypothesize that by adapting meth-
ods designed for scaffolding and stitching optical map-
ping data [39, 40], the length of the assembled optical 
maps can be improved. Lastly, we note that there does 
not exist a method to evaluate optical map assembles like 
there does for genome assemblies—QUAST [37] being 
the well-known genome assembly evaluation method. 
Furthermore, although some of the metrics of genome 
assembly evaluation tools (e.g., mean contig length and 
length of the longest contig) trivially extend to optical 
map assemblies, metrics that require sequence alignment 
to a reference genome (e.g., number of mis-assemblies) 
do not extend and need redevelopment.

Conclusion
Assembly of Rmap data is a fundamental problem in 
optical mapping that still remains in a nascent stage—
as prior to this work, there was only a single other non-
proprietary assembler. In this paper, we formulate and 
describe the first de Bruijn graph approach for Rmap 
assembly by redefining the de Brujn graph to adapt it to 
Rmap data. We accomplish this by extending the defini-
tion of a bi-label introduced in the context of the paired-
end de Bruijn graph by Medvedev et  al. [28]. We refer 
to our modified de Bruijn graph as the bi-labelled de 
Bruijn graph and demonstrate how to efficiently build 
and store it using a two-tiered orthogonal range search 
data-structure.

We implement this approach, leading to a novel Rmap 
assembler that we call rmapper . We compare the per-
formance of our method with the assembler of Valouev 
et  al., and Bionano Solve on three genomes of varying 
size: E. coli, human, climbing perch (a fish species from 
the Vertebrate Genomes Project). Our comparison dem-
onstrates that rmapper was more than 130 times faster 
and used less than five times less memory than Solve, 
and was more than 2,000 times faster than Valouev et al.. 
Consequently, rmapper successfully assembled the 3.1 
million Rmaps of the climbing perch genome into con-
tigs that covered over 95% of the draft genome with zero 
mis-assemblies.
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