
Mukherjee et al. Algorithms Mol Biol (2021) 16:6
https://doi.org/10.1186/s13015-021-00182-9

RESEARCH

Fast and efficient Rmap assembly using
the Bi‑labelled de Bruijn graph
Kingshuk Mukherjee1*  , Massimiliano Rossi1, Leena Salmela2 and Christina Boucher1 

Abstract 

Genome wide optical maps are high resolution restriction maps that give a unique numeric representation to a
genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called
Rmaps. Unfortunately, there are very few choices for assembling Rmap data. There exists only one publicly-available
non-proprietary method for assembly and one proprietary software that is available via an executable. Furthermore,
the publicly-available method, by Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006), follows the
overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algo-
rithm behind the proprietary method, Bionano Genomics’ Solve, is largely unknown. In this paper, we extend the
definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de
Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as rmapper, and com-
pare its performance against the assembler of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) and
Solve by Bionano Genomics on data from three genomes: E. coli, human, and climbing perch fish (Anabas Testudineus).
Our method was able to successfully run on all three genomes. The method of Valouev et al. (Proc Natl Acad Sci USA
103(43):15770–15775, 2006) only successfully ran on E. coli. Moreover, on the human genome rmapper was at least 130
times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero
mis-assemblies. Our software, rmapper is written in C++ and is publicly available under GNU General Public License at
https://​github.​com/​kingu​fl/​Rmapp​er.

Keywords:  Optical mapping, Single molecule maps, de Bruijn graph, Overlap-layout-consensus, Genome assembly,
Mis-assemblies

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
In 1993 Schwartz et al. developed optical mapping [1], a
system for creating an ordered, genome wide high reso-
lution restriction map of a given organism’s genome.
Since this initial development, genome wide optical maps
have found numerous applications including discover-
ing structural variations [2, 3], scaffolding and validating
contigs for several large sequencing projects [4, 5], and
detecting mis-assembled regions in draft genomes [6–8].

Thus, optical mapping has assisted in the assembly of a
variety of species – including various prokaryotic species
[9–11], rice [12], maize [13], mouse [14], goat [15], parrot
[4], and amborella trichopoda [5]. Bionano Genomics has
enabled the automated generation of the data, enabling
the data to become more wide-spread. For example, Bio-
nano data was generated for 133 species sequenced for
the Vertebrate Genomes Project.

Similar to sequencing, the protocol for producing opti-
cal mapping data, begins with many fragmented copies
of the genome of interest. This redundancy allows over-
lap between the raw data and assembly into longer con-
tiguous regions corresponding to the genome. With a
selected enzyme, the genomic DNA fragments are nicked

Open Access

Algorithms for
Molecular Biology

*Correspondence: kingdgp@ufl.edu
1 Department of Computer and Information Science and Engineering,
Herbert Wertheim College of Engineering, University of Florida,
Gainesville, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1647-8741
https://github.com/kingufl/Rmapper
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00182-9&domain=pdf

Page 2 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6

at each restriction site recognized by the enzyme. These
cleaved fragments are then photographed and analyzed
in order to determine the length (in kbp) of the regions
between nick sites. The result of this process are opti-
cal maps for all the fragments, which are referred to as
Rmaps. For example, given a genome fragment TTT​TAA​
CTG​GGG​GGG​AAC​TTT​TTT​TTA​ACT​TTTT​ and an enzyme
that recognizes the site AACT​ and cleaves in the mid-
dle, the resulting Rmap would be [6, 11, 11, 6]. Rmaps
by themselves are not traditionally used for analysis—
although, they can be [2, 3, 16]—and instead have to
be assembled into longer contiguous optical maps cor-
responding to the genome. Hence, assembly of Rmaps
refers to the problem of generating a consensus genome
wide optical map from overlapping Rmaps.

Although optical mapping has been around for several
decades, the problem of efficiently assembling the data
largely remains open as there has been little work in this
area—which is largely due to the challenges posed by the
data itself. We should note that several related problems,
such as alignment of optical mapping data [16–22], have
been more thoroughly explored. Rmap data has a num-
ber of errors that make it difficult to assemble—namely,
there exists added and deleted cut sites and sizing error,
resulting in extra fragments, merges in neighboring frag-
ments and under or over-estimates of the length of a
fragment. In the running example, the error free Rmap of
[6, 11, 11, 6] could occur as [6, 22, 6] with error. Nonethe-
less, there exists two Rmap assembly methods: Gentig by
Anantharaman et al. [23] and the assembler of Valouev
et al. [24]. Developed in 1998, Gentig is the first Rmap
assembly algorithm. It is based on a Bayesian model that
seeks to maximize the a posteriori estimate of the con-
sensus optical map produced by the assembly of Rmaps.
It first computes the overlap between all pairs of Rmaps
using dynamic programming, and then builds contigs by
greedily merging the Rmaps based on alignment score.
This process of merging contigs continues until all align-
ments above a certain score are merged. Valouev et al.
[24] implemented an overlap-layout-consensus (OLC)
assembly algorithm using their alignment algorithm
[25], which also starts by calculating alignment between
all pairs of Rmaps, and identifying all alignments that
have score above a specified threshold. A graph is built,
where Rmaps are represented as nodes, and the non-fil-
tered alignments are represented as edges. The graph is
refined by eliminating paths in the graph that are weakly
supported. In other words, if two connected regions
in the graph are joined by only a single path—or with
multiple paths, but having one or more common inter-
mediate nodes—then the graph is disconnected at these
nodes. Further, an edge is removed if it is inconsistent
with a higher scoring edge. Contigs are then generated

by traversing this graph in a depth first manner. Bio-
nano Genomics Inc. provides a proprietary assembly
method, called Bionano Solve, however the source code
is not publicly available and the algorithmic details are
unknown due to the proprietary nature of the software.

The alternative to an OLC approach for assembly is a
de Bruijn graph approach that relies on building and tra-
versing a de Bruijn graph constructed on the sequence
data. For simplicity, we give a constructive definition of
the de Bruijn graph in the context of genome assembly.
Given a set of sequences R = {r1, . . . , rn} and an integer k,
the de Bruijn graph is constructed by creating a directed
edge for each unique k length substring (k-mer) with the
nodes labeled as the k − 1 length prefix and k − 1 length
suffix of the k-mer, and then all nodes that have the same
label are merged. The important aspect of the de Bruijn
graph assembly approach is that it avoids having to find
alignments between any pair of sequences, leading to
an O(n) run-time. Since its introduction by Idury et al.
[26] and Pevzner et al. [27], this approach has become
the most common paradigm for assembling short read
sequencing data because it led to huge gains in perfor-
mance over OLC approaches. Hence, applying a de Bruijn
graph approach to Rmap assembly would likely lead to
similar improvements by removing the burden of find-
ing all pairwise alignments between Rmaps. This assem-
bly works on the premise that a k-mer will occur exactly
without error frequently in the data. Hence, the biggest
challenge we face is constructing a de Bruijn graph with
added and deleted cut-sites and sizing error. Even with-
out the occurrence of added and deleted cut-sites, k-mers
created from Rmap data are unlikely to be exact repli-
cas due to sizing error. For example, [6, 11, 11, 6] and [5,
10, 11, 7] should likely be recognized as instances of the
same k-mers in Rmap data. Thus, to overcome this chal-
lenge the de Bruijn graph has to be redefined to account
for the inexactness of the data.

In this paper, we formulate and describe a de Bruijn
graph approach for de novo Rmap assembly, which heav-
ily relies on redefining the de Bruijn graph to make it
suitable for Rmap data. We accomplish this by extend-
ing the definition of a bi-label in the context of the paired
de Bruijn graph that was introduced by Medvedev et al.
[28]. We refer to our modified de Bruijn graph as bi-
labelled de Bruijn graph. Next, we demonstrate how to
efficiently build and store the de Bruijn graph using a two
tier orthogonal-range search data structure. We imple-
ment this approach, leading to a novel Rmap assembler
that we call rmapper . We compare the performance of
our method with the assembler of Valouev et al., and
Bionano Solve on three genomes of varying size: E. coli,
human, climbing perch (a fish species from the Verte-
brate Genomes Project). Our comparison demonstrates

Page 3 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6 	

that rmapper was more than 130 times faster and used
less than five times less memory than Solve, and was
more than 2,000 times faster than Valouev et al. Also,
rmapper successfully assembled the 3.1 million Rmaps
of the climbing perch genome into contigs that covered
over 95% of the draft genome with zero mis-assemblies.

Background and definitions
Rmap data and genome wide optical maps
From a computer science perspective, we can view an
Rmap R = [r1, r2, . . . , r|R|] as an ordered list of integers.
Each number represents the length of the respective frag-
ment. The size of an Rmap R denotes the number of frag-
ments in R, which we denote as |R|. For example, say we
have an enzyme that cleaves the DNA at the middle posi-
tion of AACT​ and a genomic sequence TTT​TAA​CTG​GGG​
GGG​AAC​TTT​TTT​TTA​ACT​TTTT​, then the Rmap will be
R = [6, 11, 11, 6] corresponding to the cleaved sequences
[TTT​TAA​, CTG​GGG​GGGAA, CTT​TTT​TTTAA, CTT​
TTT​].

Error profile of Rmap data
There are three types of errors that can occur in optical
mapping: (1) missing cut sites which are caused by an
enzyme not cleaving at a specific site, (2) additional cut
sites which can occur due to random DNA breakage and
(3) inaccuracy in the fragment size due to the inability
of the system to accurately estimate the fragment size.
Continuing again with the example above, an example
of an additional cut site would be when the second frag-
ment of R is split into two, e.g., R′ = [6, 5, 6, 11, 6] , and
an example of a missing cut site would be when the last
two fragments of R are joined into a single fragment, e.g.,
R′ = [6, 11, 17] . Lastly, an example of a sizing error would
be if the size of the first fragment is estimated to be 7
rather than 6.

Several different probabilistic models have been pro-
posed for describing the sizing error, and the frequency
of added and missed cut-sites, including the models of
Valouev et al. [25], Li et al. [29], and Chen et al. [30]. We
briefly describe these models here but refer to the origi-
nal papers for a full description. Both Valouev et al. and
Chen et al. describe the observed fragment lengths as
normal distribution with the mean being equal to the
true length of the fragment and the standard deviation
being a function of the true length, i.e. longer fragments
exhibit larger standard deviation. In the model by Li et al.
the sizing error uses a Laplace distribution as follows: if
the observed and actual size of a fragment are oi and ri ,
respectively, then the sizing error, oi ∼ ri × Laplace(µ,β)
where µ and β are parameters of the Laplace distribution
and are functions of ri . All studies model the probability
of having a missed cut-site as a Bernoulli trial. Valouev

et al. and Chen et al. predict a fixed probability for diges-
tion of a cut-site while Li et al. model the probability
of digestion as a function of lengths of the fragments
flanking the cut-site. The likelihood of a missed cut-site
decreases with the length of the fragment. All three mod-
els postulate additional or false cut-sites result from ran-
dom breaks of the DNA molecule and hence model the
number of false cuts per unit length of DNA as a Poisson
distribution. Li et al. observed that false cuts occurred
less frequently at the two ends of an Rmap.

Rmap segments and k‑mers
We define a segment sp,q of an Rmap starting at position
p and ending at position q, as the q − p+ 1 consecutive
fragments starting from rp , i.e., [rp, rp+1, .., rq] . We define
the length of a segment as the summation of all of its
constituent fragments, i.e., rp + · · · + rq . We denote the
length of a segment sp,q as ℓ(sp,q) . We note that the length
of the Rmap R should not be confused with the number
of fragments, which we denote as its size |R|.

In this paper, we extend the definition of a k-mer to the
context of Rmap data as follows. Given an integer k, we
define a k-mer as a segment of exactly k fragments, i.e., a
sequence of k successive fragments of an Rmap. Follow-
ing the example from above, the following two 3-mers
exist in R = [6, 11, 11, 6] : [6, 11, 11] and [11, 11, 6].

Prefixes and suffixes of Rmaps
Given an Rmap R = [r1, r2, . . . , r|R|] , we define the x-size
prefix of R as R = [r1, r2, . . . , rx] , where x is at most
|R| − 1 . Conversely, we define the x-size suffix of R as
R = [r|R|−x+1, . . . , r|R|] , where x is at most |R| − 1.

The Bi‑labelled de Bruijn graph
In this section, we modify the traditional definition of the
de Bruijn graph for Rmap data by first redefining the con-
cept of a bi-label for Rmap data. The term bi-label was
first introduced by Medvedev et al. [28] in the context of
short read assembly to incorporate mate-pair data into
assembly of paired-end reads. There the term bi-label
refers to two k-mers separated by a specified genomic
distance. The redefinition of the de Bruijn graph with
this extra information was shown to de-tangle the result-
ing graph, making traversal more efficient and accurate.
Here, we demonstrate that an equivalent paradigm can
be effective for Rmap assembly.

Bi‑labels
Given integers k and D, and Rmap R, we define a bi-label
from an Rmap R, as a segment of R containing a pair of
k-mers separated by the shortest segment that has a
length of at least D. The following is a formal definition.

Page 4 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6

Definition 1  Given an Rmap
R = [r1, r2, ..., ri, ri+1, .., r|R|] , integers k and D, and a
position i, we define the bi-label at position i to be
[s1k , rp, . . . , rq , s

2
k] , where p = i + k and q is an index such

that ℓ(sp,q−1) < D ≤ ℓ(sp,q)

and s1k and s2k are the k-mers starting at positions i and
q + 1 , respectively.

Next, we refer to segment sp,q between s1k and s2k as the
skip segment, and note that, unlike s1k and s2k which both
have k fragments, this segment is only bounded by its
length and can have any number of fragments. Thus, this
accounts for added and deleted cut-sites since these
errors do not impact the length of a segment. Figure 2
demonstrates how the skip-segment tolerates a deleted
cut-site. For example, given k = 3 , D = 25 , and
R = [7, 18, 13, 3, 15, 12, 4, 3, 6, 5, 13, 2] , the bi-labels of R
are

(

[7, 18, 13]
∣

∣

∣
[3, 15, 12]

∣

∣

∣
[4, 3, 6]

)

 ,
(

[18, 13, 3]
∣

∣

∣
[15, 12]

∣

∣

∣
[4, 3, 6]

)

 and
(

[13, 3, 15]
∣

∣

∣
[12, 4, 3, 6]

∣

∣

∣
[5, 13, 2]

)

 . We are now going to define the prefix and suf-
fix bi-labels.

Definition 2  Given integers D and k and bi-label b with
k-mers b1 = [b11, ..b

1
k] and b2 = [b21, .., b

2
k] and skip seg-

ment bs , we define the prefix bi-label of b as the bi-label
with (k − 1)-mers and skip-segment length at least D,
where the first (k − 1)-mer is the (k − 1)-size prefix of b1
i.e. [b11, ..b

1
k−1].

Note that the second (k − 1)-mer of the prefix bi-label
is not necessarily the (k − 1)-size prefix of b2 . We also
require an equivalent definition for the suffix of a bi-label.

Definition 3  Given integers D and k and bi-label b with
k-mers b1 = [b11, ..b

1
k] and b2 = [b21, .., b

2
k] and skip seg-

ment bs , we define the suffix bi-label of b as the bi-label
with (k − 1)-mers and skip-segment length at least D,
where the first (k − 1)-mer is the (k − 1)-size suffix of b1
i.e. [b12, ..b

1
k].

Figure 1 illustrates this concept of prefix and suffix
bi-labels. Note that for two successive bi-labels from an
Rmap, the prefix bi-label of the latter is the same as the
suffix bi-label of the former as shown in Fig. 1. This is a
vital property that allows the de Bruijn graph constructed
over bi-labels to be connected.

Bi‑label proximity
One of the challenges with Rmap data is the fact that the
fragments correspond to genomic distances and due to
experimental error, the measured estimates for the same
genomic fragment are different across different Rmaps
representing the same genomic location. For example,
R = [5, 6, 7, 11, 5] and R′ = [6, 5, 6, 11, 6] likely correspond
to the same k-mer but the numerical nature makes it such
that they are not exactly equal. Thus, we need to define a
criteria such that two bi-labels drawn from different Rmaps
but corresponding to the same genomic locations can be
identified and merged for the construction of the de Bruijn
graph. Thus, to make the definition of a bi-label robust to
sizing errors, we define conditions on both the difference
of the individuals fragments of two bi-labels and the dif-
ference in the total lengths. Hence, we have the following
definitions.

Definition 4  Given integers tf  , k and D, and two
bi-labels a and b, we let the k-mers of a and b be
a1 = [a11, .., a

1
k] and a2 = [a21, .., a

2
k] and b1 = [b11, .., b

1
k]

and b2 = [b21, .., b
2
k] , respectively. We define a and b to

be fragment proximal if and only if |a1i − b1i | ≤ tf and
|a2i − b2i | ≤ tf for all i = 1, .., k.

Here tf is an error-tolerance parameter that handles siz-
ing errors on the fragments of the bi-label.

Definition 5  Given integers tℓ , k and D, and two bi-
labels a and b, we let the k-mers of a and b be a1 and
a2 and b1 and b2 , respectively, and the skip segment of
a and b be as and bs , respectively. We define a and b to
be length proximal if and only if |ℓ(a1)− ℓ(b1)| ≤ tℓ ,
|ℓ(a2)− ℓ(b2)| ≤ tℓ and |ℓ(as)− ℓ(bs)| ≤ tℓ.

Here tℓ is another error-tolerance parameter that handles
sizing errors on the segment lengths of the bi-label. These
two definitions lead to our final definition that defines
whether two bi-labels should be defined as equivalent in
the de Bruijn graph.

Definition 6  Given integers k and D and two bi-labels
a and b, we define them to be proximal if and only if they
are fragment proximal and length proximal.

This leads to our final definition, which is the set of bi-
labels in which the bi-labelled de Bruijn graph is defined
on.

Definition 7  Given a set of Rmaps {R1, ..,Rn} and inte-
gers k and D, let B be the set of bi-labels from R. We
define the proximal reduced set of bi-labels as the set

Page 5 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6 	

B′ , where for each b in B there is a bi-label in B′ that it is
proximal to.

Definition of the bi‑labelled de Bruijn graph
Given the above definitions, we are now ready to define
the bi-labelled de Bruijn graph built on a set of proxi-
mal bi-labels extracted from Rmaps.

Definition 8  Given integers k and D and set of Rmaps
{R1, ..,Rn} , let B be the proximal reduced set of bi-labels
extracted from R. We create a directed edge e for each bi-
label b in B and label the incoming and outgoing nodes of
e as the prefix bi-label of b and suffix bi-label of b, respec-
tively. After all edges are formed, the graph undergoes a

gluing operation. A pair of node bi-labels are glued into
a single node if and only if they are proximal. We define
the final graph obtained after gluing of nodes as the bi-
labelled de Bruijn graph.

Methods
In this section, we describe our method for building and
traversing the bi-labelled de Bruijn graph from an Rmap
dataset. Our method, which we refer to as rmapper , can
be summarized into the following steps: extract and store
bi-labels, find proximal bi-labels, build the bi-labelled de
Bruijn graph, resolve tips and bubbles, and traverse the
graph to build the contigs. We now describe each of these
steps in detail.

Fig. 1  All bi-labels for k = 3 and D = 25 of an Rmap R. On each bi-label the fragments from the k-mers and the length of the skip segment are
shown in white while the fragments of the skip segment are shown in blue. For each bi-label we show the prefix and suffix bi-labels built with k = 2
and D = 25

Page 6 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6

Extract and store all Bi‑labels
We first error correct the Rmap data using cOMet [31]
and then extract and store all bi-labels from the error
corrected Rmaps. We recall from Definition 6 that two
bi-labels are proximal if they are both fragment proximal
as well as length proximal for error-tolerance param-
eters tf and tℓ . Therefore, we must store all the bi-labels
in a manner that allows finding all proximal bi-labels of
a given bi-label efficiently. To accomplish this, we store
all the bi-labels in a disjoint set of k-d trees [32] such that
each pair of bi-labels in the same k-d tree is length proxi-
mal. For each bi-label, the 2k fragments of the k-mers of it
are stored in the corresponding k-d tree, which will allow
for efficiently finding all fragment proximal bi-labels of a
given bi-label. Hence, the dimension of each k-d tree is
2k.

More formally, we identify each k-d tree Ka1,a2,a3 by
three positive integers a1 , a2 , and a3 , and insert a given bi-
label b into Ka1,a2,a3 if the length of its two k-mers ℓ(b1) and
ℓ(b2) are within the range [a1 × tℓ, . . . , (a1 + 1)× tℓ − 1]
and [a2 × tℓ, . . . , (a2 + 1)× tℓ − 1] respectively and the
length of the skip segment ℓ(bs) is also within the range
[a3 × tℓ, . . . , (a3 + 1)× tℓ − 1] . If such a tree does not
exist then we create a new one with Ka1,a2,a3 , where
a1 = ⌊ℓ(b1)/tℓ⌋ , a2 = ⌊ℓ(b2)/tℓ⌋ and a3 = ⌊ℓ(bs)/tℓ⌋.

Next, for each bi-label in our set of k-d trees, we find
and store pointers to all proximal bi-labels by performing
an orthogonal range query. Given a bi-label b in Ka1,a2,a3 ,
we let the k-mers of the bi-label b be b1 = [b11, .., b

1
k]

and b2 = [b21, .., b
2
k] . We perform a range query with

([b11 ± tf], . . . , [b
1
k ± tf], [b

2
1 ± tf], . . . , [b

2
k ± tf]) in the

disjoint set of k-d trees to find all bi-labels whose first k-
mer is equal to [b11 ± tf], . . . , [b

1
k ± tf] and whose second

k-mer is equal to [b21 ± tf], . . . , [b
2
k ± tf] . We add a pointer

from b to each of these bi-labels. We repeat this for each
bi-label. In particular, we perform the range query in
all k-d trees where the proximal bi-labels can be found,
i.e., all k-d trees Ka′1,a

′
2,a3

 where for m = min(ktf , tℓ) we
have, ⌊(ℓ(b1)−m)/tℓ⌋ ≤ a′1 ≤ ⌊(ℓ(b1)+m)/tℓ⌋ and
⌊(ℓ(b2)−m)/tℓ⌋ ≤ a′2 ≤ ⌊(ℓ(b2)+m)/tℓ⌋.

We note that k-d trees support multi-dimensional
orthogonal range-search queries in O(n(2k−1)/2k + occ)
time and O(n) space where n is the number of bi-labels
in the tree, k is the k-mer value, and occ is the number of
bi-labels that satisfy the constraints of the range-search
query.

Graph construction
We first filter all low frequency bi-labels, i.e., bi-labels
that have a low number of proximal bi-labels. As illus-
trated in Fig. 4, bi-labels that have low frequency typi-
cally arise from Rmap data that is highly erroneous. After
filtering low frequency bi-labels, we build the bi-labelled
de Bruijn graph by first building a proximal reduced set
from the unfiltered bi-labels, then building all directed
edges with labelled nodes from the reduced set, and
finally merging nodes that have the same label. Using

Fig. 2  Skip segment overcomes missed cut-site. All bi-labels for k = 3 and D = 25 of two Rmaps R and R′ , {b1, b2, b3} and {b′1, b
′
2} respectively. Both

Rmaps cover the same genomic location but R′ has a missed cut-site in position 5 (shown in red). On each bi-label the fragments from the k-mers
and the length of the skip segment are shown in white while the fragments of the skip segment are shown in blue. Despite the missed cut-site on
R′ bi-labels b1 and b2 are merged to b′1 and b′2 respectively according to our merge function

Page 7 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6 	

an efficient heuristic, we first greedily find the proximal
reduced set of bi-labels by sorting the unfiltered bi-labels
in descending order based on the number of proximal bi-
labels found for them. From this sorted list of bi-labels
B, we iteratively insert bi-labels into the reduced set B′
unless the bi-label is proximal to a bi-label already in B′.

Next, we build a bi-labelled de Bruijn graph by creating
a directed edge for each bi-label b′ in B′ and labeling the
incoming and outgoing nodes as the prefix bi-label and suf-
fix bi-label of b′ . We store all the nodes and edges in a mod-
ified adjacency list format that contains three arrays: one
array stores all node bi-labels, one array containing a list of
pointers of the incoming nodes for each node, and lastly,
one array containing a list of pointers of the outgoing nodes
for each node. Thus, to insert b′ into the graph, we first
determine if the prefix and suffix bi-labels are contained in
the node array and insert them if they are not contained in
the list, and then insert an entry into the incoming and out-
going arrays with lists containing pointers to the prefix and
suffix bi-labels. This graph representation will allow for the

adjacency lists of two nodes to be efficiently merged if the
bi-labels they represent are found to be proximal.

Lastly, we merge all nodes in the graph whose bi-
labels are proximal to obtain the final bi-labelled de
Bruijn graph. For merging the nodes, we again use a set
of disjoint k-d trees as we did before for finding proxi-
mal bi-labels for the edge bi-labels. Hence, we extract
all the node bi-labels and construct a set of k-d trees as
before. Then for each node v in the node array, we query
the corresponding k-d trees to find all nodes that are
proximal to it using the same error tolerance param-
eters tf and tℓ . Any node u that is found to be proximal
to v is merged to v by removing u from the graph by
updating the two adjacency lists such that the incom-
ing and outgoing array entries storing pointers to u are
updated to store pointers to v. This can be achieved
in linear time. We repeat this until all proximal nodes
have been merged. Figure 3 illustrates the construction
of the bi-labelled de Bruijn graph for a pair of Rmaps.

Fig. 3  The construction of the bi-labelled de Bruijn Graph. a Two Rmaps R1 and R2 and the bi-labels extracted from them—{b1, b2, b3} from R1 and
{b3, b4} from R2 for k = 3 and D = 25 . b Edges {e1, e2, e3} depict the proximal reduced set of bi-labels. Bi-labels {b1, b4} are represented by e1 , bi-labels
{b2, b5} are represented by e2 and bi-label {b3} forms e3 . We note that in this example no bi-labels are filtered for finding the proximal reduced set.
c Nodes introduced into the graph. Each edge breaks into two nodes—one denoted by the prefix bi-label and the other by suffix bi-label of the
edge. A directed edge is drawn from the former to the latter. d The final graph is formed by merging nodes v12 with v21 and merging v22 with v32

Page 8 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6

Graph cleaning and traversal
Before traversing the graph, we first pre-process the bi-
labelled de Bruijn graph to remove tips and bubbles,
which are common in de Bruijn graphs. Since they limit
the size of unary paths (i.e. paths in the graph that con-
tain nodes with only a single outgoing edge) and do not
affect the accuracy of the assembly, it is common prac-
tice in short read assembly to resolve or remove these
structures [33–36]. Tips are produced when errors cause
an otherwise unary path to branch at a node and create
a short unary path that ends in a terminal node. Bubbles
are created when bi-labels from the same genomic loca-
tion are not merged and included in the graph as sepa-
rate edges. This generates short unary paths that have the
same starting node and the same ending node and are
close in length.

Similar to existing short read assemblers, we identify
all tips and bubbles that have length of at most a speci-
fied threshold by performing depth first search starting
at each node with out-degree greater than one. Hence,
if there exists a tip starting at a given node as well as a
path of length longer than the specified threshold, then
the tip is removed by deleting all of its edges starting at
the branching node. Furthermore, if there exists a bubble
starting at a given node, we remove one of the edges adja-
cent to the branching node. We note we do not remove

an entire path from the graph to resolve a bubble—rather,
we only disconnect them at the branching node. Follow-
ing the work of Simpson et al. [35], we fix the maximum
length of the paths in a bubble to twice the size of the
bi-label.

After cleaning, our traversal algorithm extracts unit-
igs (i.e. contigs corresponding to unary paths) from the
graph by performing a simple depth first traversal start-
ing from each node with zero incoming edges. We termi-
nate the traversal of a given path if a cycle is reached or a
node with out-degree greater than one is reached.

Experiments
In this section, we compare the performance of rmapper ,
the assembler of Valouev et al. and Bionano Solve. We
used the most recent version of Bionano Solve that is
publicly available (version 3.5.1.). We performed all
experiments on Intel E5-2698v3 processors with 192 GB
of RAM running 64-bit Linux. Valouev and rmapper were
ran on error corrected data, which is analogous to assem-
bly of sequence reads. Bionano Solve was not because the
input is required to be specified in their proprietary for-
mat. In addition, for larger genomes, we also ran rmapper
by extracting bi-labels from both directions in an Rmap.
We refer to this as rmapper2.0.

For all experiments we report the run time (CPU time),
peak memory, maximum and mean contig size, genome
fraction and number of mis-assembled contigs. We note
that genome assembly evaluation tools such as QUAST
[37] cannot be used on optical maps—hence, we design
our own evaluation setup. To compute the genome
fraction, we align all assembled contigs to the optical
map reference genome using the alignment method of
Valouev et al. [25]. The optical map reference genome
is produced by in silico digesting the reference genome
using the same restriction enzyme as used for producing
the Rmaps. For all contigs that were successfully aligned,
we designate their alignment locations on the reference
genome as covered and report the percentage of the
genome covered by at least one contig as the genome
fraction. Any contig which is unable to be aligned by
Valouev et al. is verified to be mis-assembled by align-
ing it to the reference genome using a second alignment
software—Bionano’s RefAligner. The Valouev method
aligns an assembled contig to a contiguous stretch of the
reference optical map that optimizes its alignment score
and does not tolerate mis-assembled regions, whereas
RefAligner allows split alignments. Hence, if the align-
ment outputted from RefAligner is uncontiguous then it
is counted as a mis-assembly.

rmapper takes as input four parameters, namely the
size k of the k-mers, the minimum distance D between
the two k-mers in the bi-label, and the error tolerance

Fig. 4  Histogram showing the precision of finding proximal bi-labels.
For simulated human Rmap data, we found proximal bi-labels for
all extracted bi-labels. We designate a proximal bi-label found to be
a true positive if its true location in the genome is the same as the
location of the bi-label to which it is proximal—and false positive
otherwise. Next, we plotted a histogram showing the distribution of
true positives and false positive proximal bi-labels for each bi-label.
We show that high frequency bi-labels i.e. bi-labels for which we find
more proximal bi-labels produce more precise proximal bi-labels. This
justifies filtering low frequency bi-labels

Page 9 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6 	

parameter setting tf and tℓ . The k-mer size depends on
the rate of added and missed cut-sites in the Rmap data.
When the frequency of added and missed cut-sites is
high, the k-mer size needs to be set low so that a good
percentage of k-mers are error-free. We note that the
average error-rate of optical-map data typically lies
around 17% [30]. Considering that error-correction of
the Rmaps is likely to bring the average error-rate below
10% [31], the k-mer size of 6 is the largest value such that
the probability that an extracted k-mer will be error-free
is at least 50% . Hence we use 6 as the default k-mer size in
our experiments. The best combination of coverage, aver-
age length of contigs and run-time is achieved by fixing
tℓ = 2000 . We experimented with the following values
of D = {15000, 20000, 25000, 30000} and the following
values of tf = {500, 1000, 1500} and for each experiment,
we choose the parameter setting that gives the best per-
formance. A higher value of tf is needed when the Rmap
data still has significant sizing errors after error cor-
rection. A lower value of D is needed when the average
Rmap size is small so that we can extract an adequate
number of bi-labels from each Rmap. We show the
impact of varying the parameters on the E. coli genome
in Section Impact of parameters.

Datasets
We performed experiments on both simulated and
real Bionano data. We simulated data from both E.

coli K-12 substr. MG1655 genome and the human ref-
erence genome GRCh38 (NCBI accession number
GCF_000001405.26) with OMSim [38]. We used enzyme
BspQI — a standard, commonly used restriction enzyme
for optical mapping — and used the default error rate of
OMSim, which is a 15% rate of deleted cut sites, and 1
added cut site per 100kbp. The resulting E. coli dataset
contains 23450 Rmaps with a mean of 42 fragments per
Rmap. The human dataset contains 377894 Rmaps with a
mean of 61 fragments per Rmap.

Lastly, we performed experiments using the Rmap
dataset of the climbing perch (Anabas testudineus)
genome generated for the Vertebrate Genomes Project,
which consists of 3121480 Rmaps with mean of 28 frag-
ments. A draft assembly of the genome is provided from
the same source which was used to obtain the reference
genome optical map.

Impact of parameters
We investigated the impact of parameters on assem-
bly results of E. coli by varying the k-mer size, the
parameter D (which denotes the length of the skip
segment, the parameter tf  , and the parameter tl .
We considered the following set of values for these
parameters: k = {5, 6, 7} , D = {10000, 15000, 20000} ,
tf = {250, 500, 1000, 1500} , and tl = {1500, 2000, 3000} .
We show the impact of varying k, D and tf in Fig. 5.
The detailed statistics of this experiment are found in

Fig. 5  Impact of varying parameters k, D, and tf on the assembly of E. coli. For all possible combination of these parameters, we calculated and
reported the mean contig size. The blue lines depict a k-mer size 5, the red lines depict a k-mer size 6, and the magenta lines depict a k-mer size 7

Page 10 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6

Additional file 1: Table S1. For this experiment, tl was
fixed at 2,000. In Table 1, we show the impact of varing
tf and tl together. For all experiments, contigs longer
than 250 fragments are reported. The experiments
show that for tf = 250 the assembly quality is poor. This
is justified since the average sizing error exceeds 250.
Similarly, for increasing values of D, we see a drop in
the quality. This is because larger values of D create
fewer number of bi-labels from an Rmap which reduces
the effective coverage of the data. Among the three k-
mer sizes used, best assembly quality is achieved with
k = 6 . This is set as our default k-mer value for all
experiments.

Performance on E. coli
For the E. coli Rmap dataset, error correction took
2.66 hours of CPU time. The assembly results are sum-
marized in Table 2. For this experiment we extracted
bi-labels with k = 6 and D = 15000 and used error
tolerance parameter setting tf = 500 and tℓ = 2000 .
rmapper took 342 seconds and peak memory of 274
Mb to assemble the data. The assembler produced two

unitigs longer than 500 fragments, that are 529 and 522
fragments in length, both of which covered the refer-
ence from start to finish.

The Valouev assembler [24] took 204.8 hours to com-
pute pairwise alignments between all pairs of Rmaps
and an additional 30 minutes to assemble them into
contigs. It produced 5 contigs with the longest con-
tig of length 102 fragments (corresponding to a 1Mbp
genomic span). We aligned the assembled contigs back
to the reference and found the total genome coverage to
be 48%. Bionano solve produced a high quality assem-
bly, i.e., one contig that spanned 100% of the genome.
The assembly took 48.14 hours of CPU time (59.75
minutes of wall time using 60 CPUs in parallel) and
peak memory of 1.18 GB. The Valouev aligner reported
alignments for all contigs, hence we report zero mis-
assembled contigs for all three methods.

In summary, the quality of Bionano Solve and
rmapper were comparable, yet rmapper was 480 times
faster (6 minutes versus 2889 minutes) and used less
than 500 Mb of memory.

Table 1  Impact of varying the values of tf and tl on the assembly results for E. coli data

In this Table, the value of k was fixed to 6, and the value of D was fixed to 15,000. The contig with maximum length (Max) is reported in the number of fragments
and the total genomic length in mega base pairs (Mbp). Similarly, the mean contig length (Mean) is also reported in the number of fragments and the total genomic
length in mega base pairs

tf tl Run time(s) Peak Memory(Mb) No. of contigs Max Mean

250 1500 179 305 4 272 (2.420 Mbp) 267 (2.326 Mbp)

250 2000 200 305 3 271 (2.418 Mbp) 270 (2.351 Mbp)

250 3000 232 305 3 271 (2.419 Mbp) 267 (2.333 Mbp)

500 1500 403 459 10 336 (3.072 Mbp) 295 (2.625 Mbp)

500 2000 445 459 23 529 (4.701 Mbp) 371 (3.252 Mbp)

500 3000 509 459 49 529 (4.711 Mbp) 430 (3.793 Mbp)

1,000 1500 476 628 33 531 (4.745 Mbp) 427 (3.792 Mbp)

1,000 2000 533 629 29 529 (4.746 Mbp) 422 (4.746 Mbp)

1,000 3000 629 630 35 530 (4.742 Mbp) 412 (3.662 Mbp)

1,500 1500 537 705 11 424 (3.732 Mbp) 347 (3.028 Mbp)

1,500 2000 616 709 28 533 (4.778 Mbp) 424 (3.760 Mbp)

1,500 3000 748 711 22 535 (4.764 Mbp) 440 (3.887 Mbp)

Table 2  Assembly results for E. coli Rmap data simulated by OMSim using enzyme BspQI

The dataset has 23,450 Rmaps of mean size of 42 fragments and coverage of 900x. The peak memory is given in gigabytes (GB). The run time is reported in second (s)
minutes (m), hours (h) and days (d). rmapperwas run with k = 6 , D = 15000 and error tolerance parameter setting tf = 500 and tℓ = 2000 . The contig with maximum
length (Max) is reported in the number of fragments and the total genomic length in mega base pairs (Mbp). Similarly, the mean contig length (Mean) is also reported
in the number of fragments and the total genomic length in mega base pairs. The genome fraction (GF) is the percentage of the genome that is covered by at least
one contig. Lastly, the number of mis-assembled contigs (MA) is given

Assembler Run time Peak Memory No. of contigs Max Mean GF(%) MA

Valouev 8.5 d 0.48 5 102 (1.0 Mbp) 56 (0.5 Mbp) 48 0

Solve 48.1 h 1.18 1 631 (4.9 Mbp) 631 (4.9 Mbp) 100 0

rmapper 6 m 0.46 2 529 (4.6 Mbp) 526 (4.5 Mbp) 100 0

Page 11 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6 	

Performance on human
For the human Rmap dataset, error correction took
1339.31 seconds of wall time running cOMet in parallel
on 2000 CPUs (corresponding to 524 hours of CPU time).
The assembly results are shown in Table 3. For this exper-
iment we extracted bi-labels with k = 6 and D = 25000
and used error tolerance parameter setting tf = 1500 and
tℓ = 2000 . rmapper took 12.1 hours and peak memory
of 7.9 GB to assemble the data whereas rmapper 2.0 took
22.2 hours and 18.8 GB of peak memory. rmapper pro-
duced 3134 contigs whereas rmapper 2.0 produced 2867
contigs. The maximum size unitig produced by rmapper
and rmapper2.0 was 1380 and 1752 fragments in length,
respectively. Lastly, rmapper achieved a net coverage of
95.8% while rmapper2.0 was able to cover 96.7% of the
genome—both with zero mis-assembled contigs.

The Valouev assembler did not produce any output
after 360 CPU days so n/a is reported in Table 3. Bionano
Solve produced comparably fewer but longer contigs to
rmapper but had 4 mis-assembled contigs. In addition,
it took approximately 2937 CPU hours (55 hours of wall
time using 60 CPUs in parallel) and peak memory of 94.8
GB. It is also worth noting that Bionano Solve performs
an elaborate scaffolding and stitching of contigs, which
explains the relatively few number of contigs but higher
mis-assembly rate. The scaffolding and stitching cannot
be decoupled from the assembly since Bionano only dis-
tributed a single executable that runs both. The source
code is not publicly available.

In summary, the Valouev assembler did not scale to
the human genome, rmapper2.0 produced slightly longer

contigs than rmapper , Bionano Solve produced the long-
est contigs but covered 93.8% of the genome and had 4
mis-assembled contigs. In addition, rmapper2.0 has the
highest genome fraction, which is 96.7%. Lastly, rmapper
and rmapper2.0 was 242 and 132 times faster than Solve,
respectively, and used 5 times less memory.

Performance on climbing perch
Error correction of the the climbing perch (Anabas Tes-
tudineus) Rmap dataset took 1.84 hours of wall time
running cOMet in parallel on 3000 CPUs (correspond-
ing to 2042 hours of CPU time). The assembly results
are shown in Table 4. For this experiment we extracted
bi-labels with k = 6 and D = 15000 and used error tol-
erance parameter setting tf = 1500 and tℓ = 2000 .
rmapper took 7.5 hours and peak memory of 9.7 GB to
assemble the data whereas rmapper 2.0 took 14.9 hours
and 18.77 GB of peak memory. rmapper produced 4573
contigs whereas rmapper 2.0 produced 4972 contigs. The
maximum size unitig produced by rmapper and rmapper
2.0 was 217 and 294 fragments in length, respectively.
Lastly, rmapper achieved a genome fraction of 92.07%,
while rmapper 2.0 was able to cover 95.05% of the
genome. Both rmapper and rmapper2.0 produced zero
mis-assemblies.

The Valouev assembler did not halt on this dataset
after 360 CPU days so we do not report any results. Solve
halted with a fatal error message in its final scaffolding
step after 156 CPU days (93 hours of wall time using 60
CPUs in parallel) and using a peak memory of 16 GB. We
used the latest assembly result produced by the software

Table 3  Assembly results for human Rmap data simulated by OMSim using enzyme BspQI

The dataset has 377894 Rmaps of mean size of 61 fragments and coverage 80x. See Table 2 for a description of the assembly statistics and notation. As described in
the text, rmapper2.0 extracts bi-labels from Rmaps in both forward and reverse directions

Assembler Run time Peak Memory No. of contigs Max Mean GF(%) MA

Valouev > 360 d n/a n/a n/a n/a n/a n/a

Solve 122.4 d 94.8 169 14,133 (124.6 Mbp) 2,036 (16.4 Mbp) 93.8 4

rmapper 12.1 h 7.9 3865 1,380 (14.4 Mbp) 144 (1.4 Mbp) 95.8 0

rmapper 2.0 22.2 h 18.8 3524 1,752 (18.5 Mbp) 203 (2.0 Mbp) 96.7 0

Table 4  Assembly results for the Rmap dataset of the climbing perch genome

The data was generated for the Vertebrate Genomes Project and it consists of 3121480 Rmaps with mean size of 28 fragments. The restriction enzyme used in the
experiment is BspQI. See Table 2 for a description of the assembly statistics and notation. As described in the text, rmapper2.0 extracts bi-labels from Rmaps in both
forward and reverse directions. Bionano Solve halted with a fatal error message in its final scaffolding step. We used the latest assembly result produced by the Solve
in order to compare their assembly quality

Assembler Run time Peak Memory No. of contigs Max Mean GF(%) MA

Solve 156 d 16 Gb 907 1032 (8.4 Mbp) 104 (7.9 Mbp) 97.6 5

rmapper 7.5 h 9.7 4573 217 (1.6 Mbp) 32 (0.28 Mbp) 92.07 0

rmapper2.0 14.9 h 18.8 4972 294 (2.4 Mbp) 42 (0.4 Mbp) 95.05 0

Page 12 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6

in order to compare their assembly quality. Similar to the
human assembly, Bionano Solve produced comparably
fewer and longer contigs to rmapper and had a genome
coverage of 97.8%—but had 5 mis-assembled contigs.
In summary, the Valouev assembler did not scale to the
human genome, rmapper2.0 produced slightly longer
contigs than rmapper , Bionano Solve produced the long-
est contigs and covered 97.6% of the draft genome but
had 5 mis-assembled contigs. rmapper2.0 has compara-
ble genome coverage to Solve, which is 95.05% — while
running 251 times faster.

Discussion and future work
We implement our approach and show its performance
on multiple simulated and real datasets. Our experimen-
tal results show the only non-proprietary method (i.e. by
Valouev et al. [24]) is unable to scale to the human and
fish genomes, and that our method is at least 130 times
faster than Bionano Solve and its memory usage is less
than 20% of the memory usage of Bionano Solve. We
point out that there is a trade-off between the length of
the contigs, the genome fraction, and number of mis-
assemblies. Analogous to assembly of short reads, ideally
an assembler should return a small number of contigs
or scaffolds which cover the entire genome and have no
mis-assembled regions. In the case of the human and fish
data, Solve was able to produce fewer and longer scaf-
folds than rmapper but produced more mis-assemblies
than rmapper . Conversely, for the human data, rmapper
produced contigs that covered a larger fraction of the
genome with no mis-assembled regions. This highlights
one trade-off in Rmap assembly. Hence, there is an
opportunity to improve Rmap assemblers so that this gap
between Solve and rmapper is closed. Another impor-
tant note about the comparison between the assemblers
is that rmapper has a very simple traversal algorithm and
does not use any sort of scaffolding. This is due to the fact
that the main contribution of this work is formulating
and solving the problem of assembly of Rmaps. Bionano
Solve has a scaffolding algorithm that cannot be decou-
pled from the assembly step since only an executable is
available. Thus, the results really compare rmapper ’s unit-
igs with Solve’s scaffolds, and rmapper is still comparable.

This work presents the first non-proprietary Rmap
assembler developed in the past decade, and thus, opens
the door for improving Rmap assembly. Thus, there are
many related problems and possible improvements that
warrant future research. First, the main contribution of
our work was adapting the de Bruijn graph to Rmap data.
For completeness, we perform depth first search to trav-
erse the bi-labelled de Bruijn graph and extract contigs.
Our traversal does not attempt to reconcile complicated

regions in the graph, however, we believe that there is a
great opportunity to improve the length of the assem-
bled optical maps by devising an algorithm to extend the
traversal. Next, we hypothesize that by adapting meth-
ods designed for scaffolding and stitching optical map-
ping data [39, 40], the length of the assembled optical
maps can be improved. Lastly, we note that there does
not exist a method to evaluate optical map assembles like
there does for genome assemblies—QUAST [37] being
the well-known genome assembly evaluation method.
Furthermore, although some of the metrics of genome
assembly evaluation tools (e.g., mean contig length and
length of the longest contig) trivially extend to optical
map assemblies, metrics that require sequence alignment
to a reference genome (e.g., number of mis-assemblies)
do not extend and need redevelopment.

Conclusion
Assembly of Rmap data is a fundamental problem in
optical mapping that still remains in a nascent stage—
as prior to this work, there was only a single other non-
proprietary assembler. In this paper, we formulate and
describe the first de Bruijn graph approach for Rmap
assembly by redefining the de Brujn graph to adapt it to
Rmap data. We accomplish this by extending the defini-
tion of a bi-label introduced in the context of the paired-
end de Bruijn graph by Medvedev et al. [28]. We refer
to our modified de Bruijn graph as the bi-labelled de
Bruijn graph and demonstrate how to efficiently build
and store it using a two-tiered orthogonal range search
data-structure.

We implement this approach, leading to a novel Rmap
assembler that we call rmapper . We compare the per-
formance of our method with the assembler of Valouev
et al., and Bionano Solve on three genomes of varying
size: E. coli, human, climbing perch (a fish species from
the Vertebrate Genomes Project). Our comparison dem-
onstrates that rmapper was more than 130 times faster
and used less than five times less memory than Solve,
and was more than 2,000 times faster than Valouev et al..
Consequently, rmapper successfully assembled the 3.1
million Rmaps of the climbing perch genome into con-
tigs that covered over 95% of the draft genome with zero
mis-assemblies.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​021-​00182-9.

Additional file 1: Table S1. Impact of varying the values of k, D and tf on
the assembly results for E. coli data.

https://doi.org/10.1186/s13015-021-00182-9
https://doi.org/10.1186/s13015-021-00182-9

Page 13 of 13Mukherjee et al. Algorithms Mol Biol (2021) 16:6 	

Acknowledgements
Not applicable

Authors’ contributions
KM developed the software and carried out all experiments. All authors con-
tributed towards the design of the algorithm and writing the manuscript. All
authors read and approved the final manuscript.

Funding
This work was supported by NSF IIS (Grant No. 1618814) and Academy of
Finland (Grants 308030, 335553, and 323233 to LS).

Availability of data and materials
Our software, rmapper is written in C++ and is publicly available under GNU
General Public License at https://​github.​com/​kingu​fl/​Rmapp​er. Additional
data can be accessed from the Github repository.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer and Information Science and Engineering, Herbert
Wertheim College of Engineering, University of Florida, Gainesville, USA.
2 Department of Computer Science, Helsinki Institute for Information Technol-
ogy, HIIT, University of Helsinki, Helsinki, Finland.

Received: 19 January 2021 Accepted: 13 April 2021

References
	1.	 Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang Y-K. Ordered

restriction maps of saccharomyces cerevisiae chromosomes constructed
by optical mapping. Science. 1993;262:110–4.

	2.	 Li L, et al. OMSV enables accurate and comprehensive identification of
large structural variations from nanochannel-based single-molecule opti-
cal maps. Genome Biol. 2017;18(1):230.

	3.	 Fan X, Xu J, Nakhleh L. Detecting large indels using optical map data. In:
RECOMB-CG. LNCS, vol. 11183, pp. 108–127. Springer, 2018.

	4.	 Ganapathy G, et al. De novo high-coverage sequencing and annotated
assemblies of the budgerigar genome. GigaScience. 2014;3:11.

	5.	 Chamala S, et al. Assembly and validation of the genome of the non-
model basal angiosperm amborella. Science. 2013;342(6165):1516–7.

	6.	 Teague B, et al. High-resolution human genome structure by single-
molecule analysis. Proc Natl Acad Sci USA. 2010;107(24):10848–53.

	7.	 Muggli MD, Puglisi SJ, Ronen R, Boucher C. Misassembly detection using
paired-end sequence reads and optical mapping data. Bioinformatics.
2015;31(12):80–8.

	8.	 Pan W, Lonardi S. Accurate detection of chimeric contigs via BioNano
optical maps. Bioinformatics. 2018;35(10):1760–2.

	9.	 Reslewic S, et al. Whole-genome shotgun optical mapping of Rho-
dospirillum Rubrum. Appl Environ Microbiol. 2005;71(9):5511–22.

	10.	 Zhou S, et al. A whole-genome shotgun optical map of Yersinia pestis
strain KIM. Appl Environ Microbiol. 2002;68(12):6321–31.

	11.	 Zhou S, et al. Shotgun optical mapping of the entire leishmania major
Friedlin genome. Mol Biochem Parasitol. 2004;138(1):97–106.

	12.	 Zhou S, et al. Validation of rice genome sequence by optical mapping.
BMC Genom. 2007;8(1):278.

	13.	 Zhou S, et al. A single molecule Scaffold for the Maize Genome. PLoS
Genet. 2009;5:1000711.

	14.	 Church DM, et al. Lineage-specific biology revealed by a finished
genome assembly of the mouse. PLoS Biol. 2009;7(5):1000112.

	15.	 Dong Y, et al. Sequencing and automated whole-genome optical map-
ping of the genome of a domestic goat (Capra hircus). Nat Biotechnol.
2013;31:135.

	16.	 Mukherjee K, Alipanahi B, Kahveci T, Salmela L, Boucher C. Aligning opti-
cal maps to de Bruijn graphs. Bioinformatics. 2019;35(18):3250–6.

	17.	 Muggli MD, Puglisi SJ, Boucher C. Efficient indexed alignment of contigs
to optical maps; 2014. pp. 68–81

	18.	 Muggli MD, Puglisi SJ, Boucher C. A Succinct Solution to Rmap Align-
ment. In: 18th International Workshop on Algorithms in Bioinformatics
(WABI 2018), vol. 113; 2018. pp. 12–11216.

	19.	 Muggli MD, Puglisi SJ, Boucher C. Kohdista: an efficient method to index
and query possible rmap alignments. Algorithms Mol Biol. 2019;14:25.

	20.	 Leung AK-Y, Kwok T-P, Wan R, Xiao M, Kwok P-Y, et al. Omblast: alignment
tool for optical mapping using a seed-and-extend approach. Bioinformat-
ics; 2016. 620.

	21.	 Mendelowitz LM, Schwartz DC, Pop M. Maligner: a fast ordered restriction
map aligner. Bioinformatics. 2016;32(7):1016–22.

	22.	 Verzotto D, et al. Optima: Sensitive and accurate whole-genome align-
ment of error-prone genomic maps by combinatorial indexing and
technology-agnostic statistical analysis. GigaScience. 2016;5(1):2.

	23.	 Anantharaman TS, Mishra B, Schwartz DC. Genomics via optical mapping
iii: Contiging genomic DNA and variations (extended abstract). New York:
AAAI Press; 1997. p. 18–27.

	24.	 Valouev A, Schwartz DC, Zhou S, Waterman MS. An algorithm for assem-
bly of ordered restriction maps from single dna molecules. Proc Natl Acad
Sci USA. 2006;103(43):15770–5.

	25.	 Valouev A, et al. Alignment of optical maps. J Comp Biol.
2006;13(2):442–62.

	26.	 Idury RM, Waterman MS. A new algorithm forDNA sequence assembly. J
Comput Biol. 1995;2(2):291–306.

	27.	 Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci. 2001;98(17):9748–53.

	28.	 Medvedev P, Pham S, Chaisson M, Tesler G, Pevzner P. Paired de Bruijn
graphs: a novel approach for incorporating mate pair information into
genome assemblers. J Comput Biol. 2011;18:1.

	29.	 Li M, et al. Towards a more accurate error model for BioNano optical
maps. In: ISBRA 2016; 2016. pp. 67–79.

	30.	 Chen P, Jing X, Ren J, Cao H, Hao P, Li X. Modelling BioNano optical
data and simulation study of genome map assembly. Bioinformatics.
2018;34(23):3966–74.

	31.	 Mukherjee K, Washimkar D, Muggli MD, Salmela L, Boucher C. Error cor-
recting optical mapping data. GigaScience. 2018;7:1.

	32.	 Bentley JL. Multidimensional binary search trees used for associative
searching. Commun ACM. 1975;18(9):509–17.

	33.	 Bankevich A, et al. SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.

	34.	 Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821–9.

	35.	 Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS:
a parallel assembler for short read sequence data. Genome Res.
2009;19(6):1117–23.

	36.	 Peng Y, Leung HC, Yiu S-M, Chin FY. IDBA-UD: A de novo assembler for
single-cell and metagenomic sequencing data with highly uneven
depth. Bioinformatics. 2012;28(11):1420–8.

	37.	 Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29(8):1072–5.

	38.	 Miclotte G, Plaisance S, Rombauts S, Van de Peer Y, Audenaert P, et al.
OMSim: a simulator for optical map data. Bioinformatics. 2017;1:2740–2.

	39.	 Pan W, Jiang T, Lonardi S. OMGS: optical map-based genome scaffolding.
J Comput Biol. 2020;27(4):519–33.

	40.	 Shelton JM, Coleman MC, Herndon N, Lu N, Lam ET, Anantharaman
T, Sheth P, Brown SJ. Tools and pipelines for BioNano data: molecule
assembly pipeline and fasta super scaffolding tool. BMC Genomics.
2015;16(1):734.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/kingufl/Rmapper

	Fast and efficient Rmap assembly using the Bi-labelled de Bruijn graph
	Abstract
	Introduction
	Background and definitions
	Rmap data and genome wide optical maps
	Error profile of Rmap data
	Rmap segments and k-mers
	Prefixes and suffixes of Rmaps

	The Bi-labelled de Bruijn graph
	Bi-labels
	Bi-label proximity
	Definition of the bi-labelled de Bruijn graph

	Methods
	Extract and store all Bi-labels
	Graph construction
	Graph cleaning and traversal

	Experiments
	Datasets
	Impact of parameters
	Performance on E. coli
	Performance on human
	Performance on climbing perch

	Discussion and future work
	Conclusion
	Acknowledgements
	References

