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Abstract 

Background:  Metagenomic sequencing allows us to study the structure, diversity and ecology in microbial com-
munities without the necessity of obtaining pure cultures. In many metagenomics studies, the reads obtained from 
metagenomics sequencing are first assembled into longer contigs and these contigs are then binned into clusters of 
contigs where contigs in a cluster are expected to come from the same species. As different species may share com-
mon sequences in their genomes, one assembled contig may belong to multiple species. However, existing tools for 
binning contigs only support non-overlapped binning, i.e., each contig is assigned to at most one bin (species).

Results:  In this paper, we introduce GraphBin2 which refines the binning results obtained from existing tools and, 
more importantly, is able to assign contigs to multiple bins. GraphBin2 uses the connectivity and coverage informa-
tion from assembly graphs to adjust existing binning results on contigs and to infer contigs shared by multiple spe-
cies. Experimental results on both simulated and real datasets demonstrate that GraphBin2 not only improves binning 
results of existing tools but also supports to assign contigs to multiple bins.

Conclusion:  GraphBin2 incorporates the coverage information into the assembly graph to refine the binning results 
obtained from existing binning tools. GraphBin2 also enables the detection of contigs that may belong to multiple 
species. We show that GraphBin2 outperforms its predecessor GraphBin on both simulated and real datasets. Graph-
Bin2 is freely available at https://​github.​com/​Vini2/​Graph​Bin2.
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Background
With the advent of high throughput sequencing 
approaches, the field of metagenomics has enabled us to 
access and study the genetic material of entire microbial 
communities [1, 2]. A microbial community is usually a 
complex mixture of multiple species and recovering these 
species is crucial to understand the behaviour and func-
tions within such communities. To characterise the com-
position of a sample, we cluster metagenomic sequences 
into bins that represent different taxonomic groups 
such as species, genera or higher levels [3]. This pro-
cess is known as metagenomics binning. Various efforts 

have been made to bin reads directly (prior to assembly) 
[4–10]. However, reads are considered as too short to 
produce accurate and reliable binning results for down-
stream analysis [11]. Hence, the standard approach fol-
lowed during metagenomics analysis is to assemble short 
reads into longer contigs and then cluster these resulting 
contigs into bins that represent different species, genera, 
etc [3].

Existing metagenomic contig-binning tools can be 
divided into two categories. These two categories are (1) 
reference-based binning and (2) reference-free binning. 
Reference-based binning approaches [12–15] rely on a 
database consisting of reference genomes and thus may 
not be applicable in many metagenomic samples when 
the reference genomes of novel species are not avail-
able. On the contrary, reference-free binning tools use 
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unsupervised approaches to group contigs into unla-
belled bins which correspond to different taxonomic 
groups, solely based on the information obtained from 
the contigs [3]. These reference-free binning methods 
become very convenient when analysing environmental 
samples, especially when many species are not found in 
currently available reference databases [16]. Most of the 
reference-free binning tools make use of the composition 
and/or abundance (coverage) information of the contigs 
to bin them [17–23]. Even though contigs are assembled 
from reads using assembly graphs, the majority of the 
existing binning tools do not make use of the informa-
tion available in the assembly graph. Recently, GraphBin 
[24] has been developed to use the connectivity informa-
tion in the assembly graph to refine the binning results of 
existing tools because contigs connected to each other in 
the assembly graph are more likely to belong to the same 
taxonomic group [25].

Different bacterial genomes in a metagenomic sam-
ple may share similar genes and genomic regions [26], 
which is a major challenge in assembling metagenomic 
reads into contigs [27]. Therefore, some assembled con-
tigs from metagenomic reads may be shared by multiple 
species in the sample. However, very few contig-binning 
tools support overlapped binning (i.e., assigning shared 
contigs to multiple species). S-GSOM [28] abstracts the 
flanking sequences of highly conserved 16S rRNA and 
incorporates them into Growing Self-Organising Maps 
(GSOM) to bin contigs into overlapping bins. MetaPhase 
[29] uses Hi-C reads to scaffold assembled contigs into 
assemblies of individual species and allows certain con-
tigs to belong to multiple species. However, the applica-
tions of S-GSOM and MetaPhase are limited due to their 
required additional sequencing effort (e.g., 16S RNA 
or Hi-C sequencing). As shared contigs correspond to 
shared vertices between different genomic paths on the 
assembly graph [27], it is worth investigating whether it 
is possible to infer such shared contigs from the assembly 
graph without additional sequencing requirements.

In this paper, we present GraphBin2, the new genera-
tion of GraphBin, to improve binning results using the 
assembly graph. While GraphBin only uses the topology 
information of the assembly graph, GraphBin2 improves 
the algorithms to adjust existing binning results and 
to support overlapped binning based on both the con-
nectivity and coverage information of assembly graphs. 

Experimental results show that GraphBin2 not only 
improves existing binning results, but also infers con-
tigs that may belong to multiple species. Furthermore, 
we have experimentally shown that GraphBin2 could be 
applied to long-read assemblies as well.

Methods
Figure  1 denotes the workflow of GraphBin2. The pre-
processing steps of GraphBin2 assemble reads into con-
tigs using the assembly graph and then bin the contigs 
(i.e., assign coloured labels to contigs) using existing con-
tig-binning tools. GraphBin2 takes this labelled assembly 
graph as input, removes unsupported labels, corrects the 
labels of inconsistent vertices, propagates labels to unla-
belled vertices and finally infers vertices with multiple 
labels (colours).

Preprocessing
In this step, we assemble the next generation reads (e.g., 
Illumina reads with length ranging from 75 to 300 bp) 
into contigs using the assembly graph. There are two 
dominant paradigms for genome assembly: overlap-
layout-consensus (or string graphs) [30] and de Bruijn 
graphs [31]. We select one representative assembler from 
each paradigm, SGA [32] and metaSPAdes [27] respec-
tively, to demonstrate the adaptability of GraphBin2. 
In order to show that GraphBin2 could be in principle 
applied to long-read assemblies, we also considered a 
simulated dataset which was assembled using metaFlye 
[33], a popular metagenomics long-read assembler.

In the assembly graph, each vertex represents a con-
tig with coverage denoting the average number of reads 
that map to each base of the contig and each edge indi-
cates a significant overlap between a pair of contigs. In 
an ideal case, a genome corresponds to a path in the 
assembly graph and its genomic sequence corresponds 
to the concatenation of contigs along this path. Hence, 
if two contigs are connected by an edge in the assem-
bly graph, they are more likely to belong to the same 
genome. Previous studies [24, 25] have shown that the 
connectivity information between contigs can be used 
to refine and improve binning results. In the assembly 
graph of metagenomic datasets, different genomes usu-
ally correspond to different paths in the assembly graph. 
If two genomes share a common contig (e.g., unresolved 

Fig. 1  The workflow of GraphBin2. The preprocessing steps of GraphBin2 assemble reads into contigs using the assembly graph and then bin the 
contigs using existing contig-binning tools. GraphBin2 takes this labelled assembly graph as input, removes unsupported labels, corrects the labels 
of inconsistent vertices, propagates labels to unlabelled vertices and infers vertices with multiple labels. Finally, GraphBin2 outputs the bins with 
their corresponding contigs

(See figure on next page.)
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“interspecies repeat” [27]), the corresponding vertex 
would be shared by two genomic paths in the assembly 
graph.

After assembling reads into contigs using assembly 
graphs, GraphBin2 uses an existing contig-binning tool 
to derive an initial binning result. Note that most of the 
existing tools for binning contigs require a minimum 
length for the contigs (e.g., 1000 bp for MaxBin2 [23] and 
SolidBin [22], 500 bp for BusyBee Web [16] and 1500 bp 
for MetaBAT2 [19]). Therefore, many short contigs in 
the assembly graph will be discarded, resulting in low 
recall values as a common limitation of existing binning 
tools. For example, 65% of the contigs in the metaSPAdes 
assembly of the Sharon-All dataset were discarded by 
MaxBin2 due to their short length.

Step 1: Remove labels of unsupported vertices
A linear (or circular) chromosome usually corresponds to 
a path (or a cycle) that traverses multiple vertices in the 
assembly graph. If two contigs belong to the same chro-
mosome, they are likely to be connected by a path which 
consists of other contigs from the same chromosome. 
Therefore, a labelled vertex is defined as supported if and 
only if one of the following conditions hold:

•	 It is an isolated vertex
•	 It directly connects to a vertex of the same label
•	 It connects to a vertex of the same label through a 

path that consists of only unlabelled vertices.

Otherwise, a labelled vertex is defined as unsupported. 
Note that the definition of unsupported vertices in 
GraphBin2 is more strict than ambiguous vertices in 
GraphBin.1 For example, in the initial labelled assembly 
graph of Fig. 1, vertex 2 in red is supported by vertex 6 
in red as they are directly connected. Note that vertex 18 
in green is also supported by vertex 15 in green as there 
exists a path (i.e., 18 → 19 → 14 → 15 ) between them 
that traverses only unlabelled vertices (i.e., 19 and 14). 
However, vertex 1 in blue is unsupported as it cannot 
reach another blue vertex through a path consisting of 
only unlabelled (white coloured) vertices.

To check whether a labelled vertex is supported or 
unsupported, a naive approach is to perform a breadth-
first-search from each labelled vertex. A refined algo-
rithm first initialises all labelled vertices as unsupported 
and scans the graph to identify all labelled vertices that 

are either isolated or directly connected to a vertex of 
the same label and classifies them as supported vertices. 
This refined algorithm then uses breadth-first-search to 
find all connected components that consist of only unla-
belled vertices and for each component Component 
stores a set of labelled vertices N(Component) that are 
connected to vertices in Component. If multiple labelled 
vertices in N(Component) have the same label, these ver-
tices are supported because they connect to each other 
through a path that consists of only unlabelled vertices in 
Component. GraphBin2 removes the labels for all unsup-
ported vertices because these labels may not be reliable. 
For example, the label of the unsupported vertex 1 is 
removed by GraphBin2 in Step 1 of Fig. 1.

Step 2: Correct labels of inconsistent vertices
After Step 1, each non-isolated labelled vertex v is sup-
ported by at least one vertex with the same label. The 
closer two vertices are in the assembly graph, the more 
likely they have the same label. For each vertex v, we 
introduce a labelled score, S(v, x), for each label x by con-
sidering all vertices of label x that are directly connected 
to v or connected to v through a path that consists of 
only unlabelled vertices. A vertex t of label x contributes 
to S(v, x) by 2−D(v,t) where D(v, t) is the shortest distance 
between v and t using only unlabelled vertices. This dis-
tance is measured by the number of edges in a path and 
D(v, t) = 1 if v and t are directly connected. Therefore, 
the labelled score S(v, x) is the sum of contributions from 
all vertices of label x that are directly connected to v or 
connected to v through a path that consists of only unla-
belled vertices. In Step 1 of Fig. 1, vertex 17 contributes 
1/2 to S(18,  blue) because D(17, 18) = 1 and vertex 8 
contributes 1/8 to S(18, green) because D(8, 17) = 3 . The 
labelled score of S(18, blue) is 2 to which all four blue ver-
tices 17, 20, 23 and 24 contribute 1/2 respectively while 
S(18, green) = 5/16 to which vertex 8 contributes 1/8, 
vertex 15 contributes 1/8 and vertex 26 contributes 1/16.

A labelled vertex v of label x is defined as inconsistent if 
and only if the labelled score of its current label x times α 
is less than or equal to the labelled score of another label 
y where α is a parameter, i.e., α × S(v, x) � S(v, y) . We 
have set α = 1.5 in the default settings of GraphBin2. In 
Step 1 of Fig. 1, vertex 18 in green is an inconsistent ver-
tex because 1.5× S(18, green) = 1.5× 5/16 = 0.47 is less 
than S(18, blue) = 2.

Again, GraphBin2 uses the breadth-first-search to 
check if a labelled vertex is inconsistent. GraphBin2 cor-
rects the label of an inconsistent vertex v to another label 
that maximises the labelled score. For example, Graph-
Bin2 corrects the label of vertex 18 from green to blue 
and corrects the label of vertex 22 from red to green 
(refer from Step 1 to Step 2 in Fig. 1).

1  In GraphBin, a vertex i is denoted as an ambiguous vertex if at least one of 
its closest labelled vertices has a label that is different than the label of the ver-
tex i.
An ambiguous vertex in GraphBin may be supported (in GraphBin2) by 
another vertex of the same label if they are directly connected or connected 
through a path consisting of only unlabelled vertices. An unsupported ver-
tex in GraphBin2 is always ambiguous in GraphBin.
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Step 3: Propagate labels to unlabelled vertices
As existing contig-binning tools discard contigs due 
to their short lengths in the initial binning, many verti-
ces are still unlabelled in the current assembly graph. In 
this step, we will propagate existing labels to the remain-
ing unlabelled vertices using the assembly graph. There 
are two intuitions behind this label propagation process. 
Firstly, vertices that are closer to each other in the assem-
bly graph are more likely to have the same label. Secondly, 
vertices with similar coverages are more likely to have the 
same label because contigs from the same genome usu-
ally have similar coverages [18, 34]. GraphBin2 uses both 
the connectivity and coverage information of the assem-
bly graph to propagate the labels.

For each unlabelled vertex v with coverage c(v) (i.e., 
coverage of the contig that corresponds to the vertex), a 
candidate propagation action (D(v, t), |c(v)− c(t)|, t, v) 
is recorded as a tuple where t is the nearest labelled ver-
tex to v, c(t) is the coverage of t and D(v, t) is the short-
est distance between v and t (as defined in Step 2). Given 
two candidate propagation actions, (d1, c1, t1, v1) and 
(d2, c2, t2, v2) , GraphBin2 will execute (d1, c1, t1, v1) before 
(d2, c2, t2, v2) , i.e., propagating the label of t1 to v1 before 
propagating the label of t2 to v2 , if ( d1 < d2 ) or ( c1 < c2 
and d1 = d2 ). In other words, GraphBin2 puts more 
emphasis on the connectivity information than the cover-
age information because the edges in the assembly graph 
are expected to be more reliable than the coverage infor-
mation on vertices, especially for vertices corresponding 
to short contigs (which are discarded by initial binning 
tools).

GraphBin2 first uses the breadth-first-search to com-
pute all candidate propagation actions for unlabelled 
vertices and sort them into a ranked list according to 
the order defined above. At each iteration, GraphBin2 
executes the first candidate propagation action and then 
updates the ranked list of candidate propagation actions. 
Note that one unlabelled vertex receives its label at each 
iteration and updating the ranked list of candidate prop-
agation actions can be done efficiently by breadth-first-
search from this unlabelled vertex.

Figure 2 shows how GraphBin2 propagates labels from 
Step 2 to Step 3 in Fig. 1. Figure 2a denotes the assembly 

graph after correcting labels of inconsistent vertices 
(after Step 2). The step-by-step label propagation process 
is explained in the remaining figures in Fig. 2.

Note that this label propagation process in GraphBin2 
improves on the label propagation algorithm in Graph-
Bin by incorporating both the connectivity and coverage 
information in the assembly graph. So far, GraphBin2 
does not generate multi-labelled vertices. In the next 
step, we will show how GraphBin2 uses the labelling, 
connectivity and coverage information together on the 
assembly graph to infer multi-labelled vertices.

Step 4: Infer multi‑labelled vertices
Contigs belonging to multiple genomes correspond to 
multi-labelled vertices in the assembly graph. What are 
the characteristics of shared contigs between multiple 
species? Firstly, a contig shared by multiple genomes may 
connect other contigs in these genomes. Secondly, the 
coverage of a contig shared by multiple genomes should 
be equal to the sum of coverages of these genomes in the 
ideal case. After label propagation, vertices of the same 
label are likely to form connected components in the 
assembly graph and multi-labelled vertices are likely to 
be located along the borders between multiple connected 
components where distinct labels meet and have a cover-
age similar to the sum of the average coverages of multi-
ple components that they belong to.

GraphBin2 checks labelled vertices that are connected 
to vertices of multiple different labels. The average cover-
age of a connected component P is calculated by 

∑
c(i)×L(i)∑

L(i)
 

for each vertex i in the connected component P, where 
c(i) is the coverage of the vertex i and L(i) is the length of 
the contig corresponding to vertex i. Assume v is a 
labelled vertex v from a component P, the coverage of v is 
c(v) and the average coverage of P is c(P). When c(v) is 
larger than c(P) and v is connected to other components 
P1,P2, . . . ,Pk with different labels, it is possible that v also 
belongs to one or more components (in addition to P). For 
example, if v belongs to P, Pi and Pj in the ground-truth, 
the coverage of v, c(v), is expected to be close to the sum 
of average coverages of the above three components, 
c(P)+ c(Pi)+ c(Pj) . In fact, finding which components in 

(See figure on next page.)
Fig. 2  Step-by-step illustration of how labels are propagated in Step 3 of the GraphBin2 Workflow on the assembly graph shown in a. The following 
candidate propagation actions will be executed in the given order. (1) The candidate propagation action (1,0,6,1) is executed. Vertex 1 receives the 
red label from vertex 6 as shown in b. (2)The candidate propagation action (1,0,13,14) is executed. Vertex 14 receives the red label from vertex 13 
as shown in c. (3) The candidate propagation action (1,1,22,21) is executed. Vertex 21 receives the green label from vertex 22 as shown in d. (4) The 
candidate propagation action (1,2,14,7) is executed. Vertex 7 receives the red label from vertex 14 as shown in e. (5) The candidate propagation 
action (1,3,18,19) is executed. Vertex 19 receives the blue label from vertex 18 as shown in f. (6) The candidate propagation action (1,16,8,3) is 
executed. Vertex 3 receives the green label from vertex 8 as shown in g. (7) The candidate propagation action (1,53,21,25) is executed. Vertex 25 
receives the green label from vertex 21 as shown in h 
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{P1,P2, . . . ,Pk} that v also belongs to (in addition to P) can 
be modelled as the following subset sum problem [35]. 
Given a set of positive numbers {c(P1), c(P2), . . . , c(Pk)} , 
find a subset whose sum is or is closest to c(v)− c(P) . 
Then v will be assigned to the corresponding components 
in this subset as well as to P. Note that it is possible that 
the selected subset is empty and thus v only belongs to P.

In all of our experiments, the maximum number of 
different components that a vertex connects to in the 
assembly graph is less than 5. We use a brute-force way to 
enumerate all possible combinations of components and 
find out the combinations that best explain the observed 
coverages. For example, after Step 3 in Fig.  1, vertex 3 
in green connects to another red component. The cov-
erage of vertex 3 is 108 while the average coverage of 
the green component is 95 and the average coverage of 
the red components is 19. Because the coverage of ver-
tex 3 (108) is closer to the sum of average coverages of 
green and red components (95+19=114) compared to 
the average coverage of the green component (95), ver-
tex 3 is assigned both green and red labels. Similarly, the 
coverage of vertex 25 (142) is closer to the sum of aver-
age coverages of green and blue components (95 + 49 
= 144) compared to the average coverage of the green 
component (95). Hence, vertex 25 is assigned both green 
and blue labels. In the same assembly graph after Step 3 
in Fig. 1, vertex 14 in red does not gain any other labels 
because its own coverage is closest to the average cover-
age of the red component (19) compared to other possi-
ble combinations (i.e., red+blue, red+green, green+blue 
and red+green+blue).

Experimental setup
Datasets
Simulated datasets
We simulated three metagenomic datasets accord-
ing to the species found in the simMC+ dataset [23]. 
These datasets were simulated each containing 5 species 
(referred as Sim-5G), 10 species (referred as Sim-10G) 
and 20 species (referred as Sim-20G) respectively. Paired-
end reads were simulated using the tool InSilicoSeq [36] 
modelling a MiSeq instrument with 300 bp mean read 
length.

To benchmark the performance of GraphBin2 on com-
plex metagenomic datasets, we simulated a dataset with 
the 50 most abundant species found in the simMC+ 
dataset [23]. This dataset consisting of MiSeq reads is 
referred as 50G-SR. Moreover, we used the 100-genomes 
long-read dataset [37] which consisted of simulated 
PacBio reads of 100 species to evaluate the performance 
of GraphBin2 on long-read assemblies. This dataset has 
been simulated by the long-read simulator SimLoRD [38] 
using default parameters for PacBio reads. We refer to 

this dataset as 100G-LR. Further details about the sim-
ulated datasets can be found in Section  1 of Additional 
file 1.

Real datasets
We used the preborn infant gut metagenome, commonly 
known as the Sharon dataset [39] (NCBI accession num-
ber SRA052203). There are 18 Illumina (Illumina HiSeq 
2000) runs available for this dataset. One run SRR492184 
is included as a representative dataset (referred as Sha-
ron-1) and all the 18 Illumina runs are combined to form 
the Sharon-All dataset in our experiments.

We also used the Lake Biwa bacterioplankton metage-
nome dataset  ([40]) which consists of bacterioplankton 
obtained from the Lake Biwa, Japan (NCBI BioProject 
number PRJDB6644, run DRR125127, referred as Lake 
Water) and consists of Illumina MiSeq paired-end reads.

Further details on the Sharon and Lake Water datasets 
can be found in Section 1 of the Additional file 1.

Tools used
To derive the assembly graph from short reads, there are 
two dominant assembly paradigms, de Bruijn graphs [31] 
and overlap-overlap-layout-consensus (or string graphs) 
[30]. We selected one representative tool from each para-
digm to show the effectiveness of GraphBin2. To repre-
sent the de Bruijn graph paradigm, we used metaSPAdes 
[27] (from SPAdes version 3.13.0 [41]) with its default 
parameters to generate the assembly graph. As for the 
overlap-layout-consensus paradigm, we selected SGA 
(version 0.10.15) [32] to derive the assembly graph. We 
used the long-read metagenomic assembler metaFlye 
[33] (available in Flye version 2.4.2 [42]) with its default 
parameters to assemble the 100G-LR dataset.

We used CONCOCT (version 1.1.0) [17] and MaxBin2 
(version 2.2.5) [23] with default parameters, and Solid-
Bin (version 1.3) [22] in SolidBin-SFSmode to obtain 
the initial binning results for our experiments. CON-
COCT, MaxBin2 and SolidBin are considered as hybrid 
contig-binning tools as they use both the composition 
and coverage information. They make use of tetranu-
cleotide frequencies and coverages of reads with differ-
ent machine learning approaches to bin contigs. Note 
that CONCOCT, MaxBin2 and SolidBin only bin contigs 
which are longer than 1000 bp by default. We also com-
pared GraphBin2 with its predecessor GraphBin [24]. 
The commands used to run all the assembly and binning 
tools can be found in Section 2 of Additional file 1.

Evaluation criteria
Since the reference genomes of the simulated datasets 
were known, we used BWA-MEM [43] to align the con-
tigs to their reference genomes to determine the ground 
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truth species to which the contigs actually belonged to. For 
each contig, the alignment lengths for each species were 
recorded. A contig is considered to belong to one spe-
cies if the longest alignment to this species covers at least 
50% of the contig length. Furthermore, isolated contigs 

(corresponding vertices with zero degree in the assembly 
graph) were not considered for the ground-truth set of the 
datasets.

For the Sharon dataset, we considered the annotated 
contigs from 12 species which are available at https://​
ggkba​se.​berke​ley.​edu/​carrol/​organ​isms as references. For 

(a) (b)

(d) (e)

(c)

Fig. 3  Comparison of binning results of CONCOCT [17], GraphBin [24] and GraphBin2 (on top of CONCOCT results) using assembly graphs built by 
metaSPAdes [27]

(a) (b)

(d) (e)

(c)

Fig. 4  Comparison of binning results of MaxBin2 [23], GraphBin [24] and GraphBin2 (on top of MaxBin2 results) using assembly graphs built by 
metaSPAdes [27]

https://ggkbase.berkeley.edu/carrol/organisms
https://ggkbase.berkeley.edu/carrol/organisms
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the Lake Water dataset, we considered the assembled 
genomes provided by the authors as ground truth species. 
A process similar to the simulated datasets was followed 
for the Sharon and Lake Water datasets to determine the 
origin species of contigs and alignment lengths to species.

To evaluate the binning results of CONCOCT [17], 
MaxBin2 [23], SolidBin [22], GraphBin [24] and Graph-
Bin2, we used the metrics (1) precision, (2) recall and (3) 
F1-score which have been used in previous studies [17, 
24, 44]. The binning result is denoted as a K × S matrix 
where K is the number of bins identified by the bin-
ning tool and S is the number of species available in the 
ground truth. In this matrix, the element aks denotes the 
number of contigs binned to the kth bin and belongs to 
the sth species. Unclassified denotes the number of con-
tigs that are unclassified or discarded by the tool. Follow-
ing are the definitions and equations that were used to 
calculate the precision, recall and F1-score.

(1)Precision =

∑
k maxs{aks}∑
k

∑
s aks

(2)Recall =

∑
s maxk{aks}

(
∑

k

∑
s aks +Unclassified)

To evaluate whether a vertex in the assembly graph cor-
responds to a contig that may belong to multiple species, 
we align this contig to genomes of ground-truth spe-
cies and record the best alignment against each species, 
respectively. Then we introduce a parameter Ratio(2nd/1st ) 
as the ratio between the alignment lengths of the second 
longest alignment and the longest alignment. If a contig 
is aligned to only one species (i.e., there is no alignment 
to another species), then Ratio(2nd/1st ) = 0 . If a contig is 
aligned to multiple species, the higher the Ratio(2nd/1st ) is, 
the more likely that this contig belongs to multiple spe-
cies. The violin plots of Ratio(2nd/1st ) are computed for 
both inferred multi-labelled and single-labelled contigs in 
the next section to demonstrate how Ratio(2nd/1st ) varies 
for each type of contigs.

Results and discussion
Binning results
Figures 3, 4 and 5 demonstrate the results of CONCOCT 
[17], MaxBin2 [23] and SolidBin [22], respectively with 
GraphBin [24] and GraphBin2 on top of the initial bin-
ning results for the metaSPAdes assemblies. Figure  6 

(3)F1 =2×
Precision× Recall

Precision+ Recall

(a) (b)

(d) (e)

(c)

Fig. 5  Comparison of binning results of SolidBin [22], GraphBin [24] and GraphBin2 (on top of SolidBin results) using assembly graphs built by 
metaSPAdes [27]
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denotes the binning results of all the tools for the com-
plex datasets 50G-SR, Lake Water and 100G-LR. The 
number of bins identified by the binning tools for each 
dataset can be found in Table  1. Binning results of the 
SGA assemblies can be found in Section 3 of Additional 
file 1.

The binning results show that GraphBin2 achieves the 
best performance in most of the scenarios. The improve-
ment over GraphBin is because GraphBin2 makes use 
of coverage information additionally, rather than rely-
ing only on the graph topology as GraphBin does. 
Both GraphBin and GraphBin2 have shown significant 
improvements on recall compared to CONCOCT, Max-
Bin2 and SolidBin. While CONCOCT, MaxBin2 and 
SolidBin filter contigs with length shorter than 1000 bp, 
GraphBin and GraphBin2 are able to bin short contigs 

using assembly graphs. In a few scenarios, GraphBin2 
improved on the recall with a bit of a compromise on 
the precision compared to GraphBin because GraphBin 
removes ambiguous labels in the final step. Furthermore, 
the existence of weak edges (i.e., edges that are not well 
supported from the data) can form false connections 
between contigs and can mislead the label propagation 
process.

Multi‑Labelled Inference Results
One key novelty of GraphBin2 is the introduction of 
the multi-labelled inference for contigs where Graph-
Bin2 detects possible contigs that may belong to multi-
ple species. Table 2 denotes the number of multi-labelled 
contigs identified by GraphBin2 for the metaSPAdes 
assemblies and assemblies of the complex datasets using 

(a) (b) (c)

(d) (e) (f)

(g) (h)
Fig. 6  Comparison of binning results of CONCOCT [17], MaxBin2 [23], SolidBin [22], GraphBin [24] and GraphBin2 for the complex datasets 50G-SR, 
100G-LR and Lake Water
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the initial binning result of the binning tools CONCOCT 
[17], MaxBin2 [23] and SolidBin [22]. Moreover, for each 
combination of dataset and initial binning tool, we cal-
culated the ratio Ratio(2nd/1st ) (please refer to section 

“Evaluation criteria”) of single and multi-labelled contigs 
produced by GraphBin2. Then we plotted the violin plots 
of Ratio(2nd/1st ) in Figs. 7, 8, 9 and 10 to demonstrate how 
Ratio(2nd/1st ) varies for different datasets. Multi-labelled 
inference results of the SGA assemblies can be found in 
Section 3 of Additional file 1.   

According to Figs.  7, 8, 9 and 10, the multi-labelled 
contigs identified by GraphBin2 for most of the data-
sets have a high mean value (much greater than zero) for 
Ratio(2nd/1st ) , suggesting that these identified contigs have 
significant alignments to multiple species. Moreover, the 
mean value of Ratio(2nd/1st ) for the single-labelled contigs 
identified by GraphBin2 is close to zero, suggesting that 
the majority of the contigs only belong to one species. 
The clear distinction between the Ratio(2nd/1st ) of inferred 
single and multi-labelled contigs in these datasets dem-
onstrates the effective detection of contigs that may 
belong to multiple species by GraphBin2. Note that the 
relatively low mean value of Ratio(2nd/1st ) for the Sharon-
All dataset can be due to repeats and weak edges in com-
plex assembly graphs, i.e., contigs that represent repeats 
within one species tend to have higher coverage and may 
be misinterpreted as multi-labelled contigs if there exist 
weak edges connecting them to contigs in other species. 
The possible multi-labelled contigs in the 50G-SR and 
100G-LR datasets which are not identified by GraphBin2 
may be due to the underestimation of the number of bins, 
misassemblies and fragmentation of the assembly graphs, 
especially for datasets with a large number of species.

Visualisation of the assembly graph
Figures 11 and 12 denote the labelling of the contigs in 
the metaSPAdes assembly graphs of the Sim-5G and 

Table 1  The number of bins identified by the binning tools for 
each dataset

∗ SolidBin [22] could not be run on the Lake Water dataset due to insufficient 
memory

Dataset Ground 
truth 
bins

Assembly 
type

Binning tool Number 
of bins 
identified

Sim-5G 5 metaSPAdes CONCOCT 7

MaxBin2 5

SolidBin 5

SGA CONCOCT 11

MaxBin2 5

SolidBin 5

Sim-10G 10 metaSPAdes CONCOCT 12

MaxBin2 10

SolidBin 10

SGA CONCOCT 14

MaxBin2 9

SolidBin 9

Sim-20G 20 metaSPAdes CONCOCT 22

MaxBin2 21

SolidBin 20

SGA CONCOCT 28

MaxBin2 20

SolidBin 19

Sharon-1 [39] 12 metaSPAdes CONCOCT 27

MaxBin2 5

SolidBin 5

SGA CONCOCT 25

MaxBin2 5

SolidBin 4

Sharon-All [39] 12 metaSPAdes CONCOCT 48

MaxBin2 11

SolidBin 9

SGA CONCOCT 27

MaxBin2 8

SolidBin 5

50G-SR 50 metaSPAdes CONCOCT 44

MaxBin2 44

SolidBin 45

Lake Water [40] 57 metaSPAdes CONCOCT 149

MaxBin2 57

SolidBin N/A∗

100G-LR [37] 100 metaFlye CONCOCT 76

MaxBin2 76

SolidBin 86

Table 2  The number of multi-labelled contigs identified by 
GraphBin2 for the metaSPAdes assemblies and assemblies of the 
complex datasets using the initial binning result of each binning 
tool

∗ SolidBin [22] could not be run on the Lake Water dataset due to insufficient 
memory

Dataset With CONCOCT 
result

With MaxBin2 
result

With 
SolidBin 
result

Sim-5G 3 4 5

Sim-10G 6 7 7

Sim-20G 5 11 10

Sharon1 [39] 3 3 2

SharonAll [39] 69 38 30

50G-SR 89 74 74

Lake Water [40] 178 329 N/A∗

100G-LR [37] 17 10 10
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(a)

(b)

(c)
Fig. 7  Violin plots for the ratio between the alignment lengths of the second longest alignment and the longest alignment of the single and 
multi-labelled inference results using GraphBin2 on top of a CONCOCT [17], b MaxBin2 [23] and c SolidBin [22] results for the metaSPAdes 
assemblies
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Sim-10G datasets at different stages as it undergoes 
the processing of GraphBin2. White coloured verti-
ces denote un-binned contigs and the rest of the col-
oured vertices denote the labelled contigs. In Figs. 11a 
and 12a, we can see that some mis-binned contigs are 
identified (circled in red) as differently coloured con-
tigs within components of a single colour. Figures 11b 
and 12b show the refined assembly graph where Graph-
Bin2 has removed labels of unsupported vertices and 

corrected labels of inconsistent vertices. After Graph-
Bin2 propagates labels to the remaining unlabelled 
vertices, the assembly graph will look as denoted in 
Figs. 11c and 12c. Finally, GraphBin2 will detect multi-
labelled vertices that correspond to contigs that may 
belong to multiple species as shown by the black col-
oured vertices in Figs. 11d and 12d.

Fig. 8  Violin plots for the ratio between the second longest alignment and the longest alignment of the single and multi-labelled inference results 
using GraphBin2 on top of the initial binning results from CONCOCT [17], MaxBin2 [23] and SolidBin [22] for the 50G-SR assembly

Fig. 9  Violin plots for the ratio between the alignment lengths of the second longest alignment and the longest alignment of the single and 
multi-labelled inference results using GraphBin2 on top of the initial binning results from CONCOCT [17] and MaxBin2 [23] for the Lake Water 
assembly. ∗ SolidBin [22] could not be run on the Lake Water dataset due to insufficient memory
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Implementation, running time and memory usage
The source code for the experiments was implemented 
using Python 3.7.3 and run on a Darwin system with 
macOS Mojave 10.14.6, 16 GB memory and Intel Core 
i7 CPU @ 2.8 GHz with 4 CPU cores. In our experi-
ments, we restrict the depth of the breadth-first-search 
in Steps 2-3 to be 5 to speed up GraphBin2. Moreo-
ver, we have set the parameter α = 1.5 by default 
for GraphBin2. Furthermore, the process of infer-
ring multi-labelled vertices was performed in parallel 
using multithreading (set to 8 threads by default in 
GraphBin2).

The running times (wall time) and the peak memory 
used by the assemblers to assemble all the datasets, and 
the initial binning tools (CONCOCT, MaxBin2 and 
SolidBin) and GraphBin2 were recorded. All the running 
times and memory usage can be found in Section  4 of 
Additional file 1.

Conclusion
In this paper we presented a novel algorithm, Graph-
Bin2, that incorporates the coverage information into 
the assembly graph as an improvement of Graph-
Bin [24]. While GraphBin uses only the topology of 
the assembly graph to refine and propagate labels, 

GraphBin2 makes use of the coverage information 
on vertices to perform label propagation. Moreover, 
GraphBin2 uses an improved label propagation algo-
rithm that takes into consideration the distance and 
coverage of neighbouring contigs, compared to the 
label propagation algorithm used in GraphBin. Fur-
thermore, GraphBin2 enables the detection of contigs 
that may belong to multiple species. The performance 
of GraphBin2 was evaluated against its predecessor 
and three other contig-binning tools on top of contigs 
obtained from short-reads assembled using metaS-
PAdes [27] and SGA [32] which represent the two 
assembly paradigms; de Bruijn graphs and overlap-lay-
out-consensus (string graphs). The results showed that 
GraphBin2 achieves the best binning performance in 
both simulated and real datasets. Moreover, GraphBin2 
shows the potential to infer contigs shared by multiple 
species. We have experimentally shown that Graph-
Bin2 could be in principle applied to long-read assem-
blies. In the future, we intend to extend the capabilities 
of GraphBin2 to explore the avenues at improving the 
detection of contigs shared by multiple species, detec-
tion of misassemblies, and further extend towards bin-
ning long reads directly using read-overlap graphs.

Fig. 10  Violin plots for the ratio between the alignment lengths of the second longest alignment and the longest alignment of the single and 
multi-labelled inference results using GraphBin2 on top of the initial binning results from CONCOCT [17], MaxBin2 [23] and SolidBin [22] for the 
100G-LR assembly



Page 15 of 18Mallawaarachchi et al. Algorithms Mol Biol            (2021) 16:3 	

(a) (b)

(c) (d)
Fig. 11  The labelling of the assembly graph of Sim-5G dataset based on a the initial MaxBin2 result (un-binned contigs are denoted by white 
coloured vertices and mis-binned contigs are circled in red), b after removing labels of unsupported vertices and correcting labels of inconsistent 
vertices, c after propagating labels of unlabelled vertices, d after determining multi-labelled vertices (black coloured vertices) by GraphBin2
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(a) (b)

(c) (d)
Fig. 12  The labelling of the assembly graph of Sim-10G dataset based on a the initial MaxBin2 result (un-binned contigs are denoted by white 
coloured vertices and mis-binned contigs are circled in red), b after removing labels of unsupported vertices and correcting labels of inconsistent 
vertices, c after propagating labels of unlabelled vertices, d after determining multi-labelled vertices (black coloured vertices) by GraphBin2
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