
Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3
https://doi.org/10.1186/s13015-021-00185-6

RESEARCH

Improving metagenomic binning results
with overlapped bins using assembly graphs
Vijini G. Mallawaarachchi  , Anuradha S. Wickramarachchi and Yu Lin* 

Abstract 

Background:  Metagenomic sequencing allows us to study the structure, diversity and ecology in microbial com-
munities without the necessity of obtaining pure cultures. In many metagenomics studies, the reads obtained from
metagenomics sequencing are first assembled into longer contigs and these contigs are then binned into clusters of
contigs where contigs in a cluster are expected to come from the same species. As different species may share com-
mon sequences in their genomes, one assembled contig may belong to multiple species. However, existing tools for
binning contigs only support non-overlapped binning, i.e., each contig is assigned to at most one bin (species).

Results:  In this paper, we introduce GraphBin2 which refines the binning results obtained from existing tools and,
more importantly, is able to assign contigs to multiple bins. GraphBin2 uses the connectivity and coverage informa-
tion from assembly graphs to adjust existing binning results on contigs and to infer contigs shared by multiple spe-
cies. Experimental results on both simulated and real datasets demonstrate that GraphBin2 not only improves binning
results of existing tools but also supports to assign contigs to multiple bins.

Conclusion:  GraphBin2 incorporates the coverage information into the assembly graph to refine the binning results
obtained from existing binning tools. GraphBin2 also enables the detection of contigs that may belong to multiple
species. We show that GraphBin2 outperforms its predecessor GraphBin on both simulated and real datasets. Graph-
Bin2 is freely available at https://​github.​com/​Vini2/​Graph​Bin2.

Keywords:  Metagenomics binning, Contigs, Assembly graphs, Overlapped binning

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
With the advent of high throughput sequencing
approaches, the field of metagenomics has enabled us to
access and study the genetic material of entire microbial
communities [1, 2]. A microbial community is usually a
complex mixture of multiple species and recovering these
species is crucial to understand the behaviour and func-
tions within such communities. To characterise the com-
position of a sample, we cluster metagenomic sequences
into bins that represent different taxonomic groups
such as species, genera or higher levels [3]. This pro-
cess is known as metagenomics binning. Various efforts

have been made to bin reads directly (prior to assembly)
[4–10]. However, reads are considered as too short to
produce accurate and reliable binning results for down-
stream analysis [11]. Hence, the standard approach fol-
lowed during metagenomics analysis is to assemble short
reads into longer contigs and then cluster these resulting
contigs into bins that represent different species, genera,
etc [3].

Existing metagenomic contig-binning tools can be
divided into two categories. These two categories are (1)
reference-based binning and (2) reference-free binning.
Reference-based binning approaches [12–15] rely on a
database consisting of reference genomes and thus may
not be applicable in many metagenomic samples when
the reference genomes of novel species are not avail-
able. On the contrary, reference-free binning tools use

Open Access

Algorithms for
Molecular Biology

*Correspondence: yu.lin@anu.edu.au
School of Computing, College of Engineering and Computer Science,
Australian National University, Canberra, Australia

http://orcid.org/0000-0002-2651-8719
https://github.com/Vini2/GraphBin2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00185-6&domain=pdf

Page 2 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

unsupervised approaches to group contigs into unla-
belled bins which correspond to different taxonomic
groups, solely based on the information obtained from
the contigs [3]. These reference-free binning methods
become very convenient when analysing environmental
samples, especially when many species are not found in
currently available reference databases [16]. Most of the
reference-free binning tools make use of the composition
and/or abundance (coverage) information of the contigs
to bin them [17–23]. Even though contigs are assembled
from reads using assembly graphs, the majority of the
existing binning tools do not make use of the informa-
tion available in the assembly graph. Recently, GraphBin
[24] has been developed to use the connectivity informa-
tion in the assembly graph to refine the binning results of
existing tools because contigs connected to each other in
the assembly graph are more likely to belong to the same
taxonomic group [25].

Different bacterial genomes in a metagenomic sam-
ple may share similar genes and genomic regions [26],
which is a major challenge in assembling metagenomic
reads into contigs [27]. Therefore, some assembled con-
tigs from metagenomic reads may be shared by multiple
species in the sample. However, very few contig-binning
tools support overlapped binning (i.e., assigning shared
contigs to multiple species). S-GSOM [28] abstracts the
flanking sequences of highly conserved 16S rRNA and
incorporates them into Growing Self-Organising Maps
(GSOM) to bin contigs into overlapping bins. MetaPhase
[29] uses Hi-C reads to scaffold assembled contigs into
assemblies of individual species and allows certain con-
tigs to belong to multiple species. However, the applica-
tions of S-GSOM and MetaPhase are limited due to their
required additional sequencing effort (e.g., 16S RNA
or Hi-C sequencing). As shared contigs correspond to
shared vertices between different genomic paths on the
assembly graph [27], it is worth investigating whether it
is possible to infer such shared contigs from the assembly
graph without additional sequencing requirements.

In this paper, we present GraphBin2, the new genera-
tion of GraphBin, to improve binning results using the
assembly graph. While GraphBin only uses the topology
information of the assembly graph, GraphBin2 improves
the algorithms to adjust existing binning results and
to support overlapped binning based on both the con-
nectivity and coverage information of assembly graphs.

Experimental results show that GraphBin2 not only
improves existing binning results, but also infers con-
tigs that may belong to multiple species. Furthermore,
we have experimentally shown that GraphBin2 could be
applied to long-read assemblies as well.

Methods
Figure 1 denotes the workflow of GraphBin2. The pre-
processing steps of GraphBin2 assemble reads into con-
tigs using the assembly graph and then bin the contigs
(i.e., assign coloured labels to contigs) using existing con-
tig-binning tools. GraphBin2 takes this labelled assembly
graph as input, removes unsupported labels, corrects the
labels of inconsistent vertices, propagates labels to unla-
belled vertices and finally infers vertices with multiple
labels (colours).

Preprocessing
In this step, we assemble the next generation reads (e.g.,
Illumina reads with length ranging from 75 to 300 bp)
into contigs using the assembly graph. There are two
dominant paradigms for genome assembly: overlap-
layout-consensus (or string graphs) [30] and de Bruijn
graphs [31]. We select one representative assembler from
each paradigm, SGA [32] and metaSPAdes [27] respec-
tively, to demonstrate the adaptability of GraphBin2.
In order to show that GraphBin2 could be in principle
applied to long-read assemblies, we also considered a
simulated dataset which was assembled using metaFlye
[33], a popular metagenomics long-read assembler.

In the assembly graph, each vertex represents a con-
tig with coverage denoting the average number of reads
that map to each base of the contig and each edge indi-
cates a significant overlap between a pair of contigs. In
an ideal case, a genome corresponds to a path in the
assembly graph and its genomic sequence corresponds
to the concatenation of contigs along this path. Hence,
if two contigs are connected by an edge in the assem-
bly graph, they are more likely to belong to the same
genome. Previous studies [24, 25] have shown that the
connectivity information between contigs can be used
to refine and improve binning results. In the assembly
graph of metagenomic datasets, different genomes usu-
ally correspond to different paths in the assembly graph.
If two genomes share a common contig (e.g., unresolved

Fig. 1  The workflow of GraphBin2. The preprocessing steps of GraphBin2 assemble reads into contigs using the assembly graph and then bin the
contigs using existing contig-binning tools. GraphBin2 takes this labelled assembly graph as input, removes unsupported labels, corrects the labels
of inconsistent vertices, propagates labels to unlabelled vertices and infers vertices with multiple labels. Finally, GraphBin2 outputs the bins with
their corresponding contigs

(See figure on next page.)

Page 3 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3 	

Page 4 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

“interspecies repeat” [27]), the corresponding vertex
would be shared by two genomic paths in the assembly
graph.

After assembling reads into contigs using assembly
graphs, GraphBin2 uses an existing contig-binning tool
to derive an initial binning result. Note that most of the
existing tools for binning contigs require a minimum
length for the contigs (e.g., 1000 bp for MaxBin2 [23] and
SolidBin [22], 500 bp for BusyBee Web [16] and 1500 bp
for MetaBAT2 [19]). Therefore, many short contigs in
the assembly graph will be discarded, resulting in low
recall values as a common limitation of existing binning
tools. For example, 65% of the contigs in the metaSPAdes
assembly of the Sharon-All dataset were discarded by
MaxBin2 due to their short length.

Step 1: Remove labels of unsupported vertices
A linear (or circular) chromosome usually corresponds to
a path (or a cycle) that traverses multiple vertices in the
assembly graph. If two contigs belong to the same chro-
mosome, they are likely to be connected by a path which
consists of other contigs from the same chromosome.
Therefore, a labelled vertex is defined as supported if and
only if one of the following conditions hold:

•	 It is an isolated vertex
•	 It directly connects to a vertex of the same label
•	 It connects to a vertex of the same label through a

path that consists of only unlabelled vertices.

Otherwise, a labelled vertex is defined as unsupported.
Note that the definition of unsupported vertices in
GraphBin2 is more strict than ambiguous vertices in
GraphBin.1 For example, in the initial labelled assembly
graph of Fig. 1, vertex 2 in red is supported by vertex 6
in red as they are directly connected. Note that vertex 18
in green is also supported by vertex 15 in green as there
exists a path (i.e., 18 → 19 → 14 → 15 ) between them
that traverses only unlabelled vertices (i.e., 19 and 14).
However, vertex 1 in blue is unsupported as it cannot
reach another blue vertex through a path consisting of
only unlabelled (white coloured) vertices.

To check whether a labelled vertex is supported or
unsupported, a naive approach is to perform a breadth-
first-search from each labelled vertex. A refined algo-
rithm first initialises all labelled vertices as unsupported
and scans the graph to identify all labelled vertices that

are either isolated or directly connected to a vertex of
the same label and classifies them as supported vertices.
This refined algorithm then uses breadth-first-search to
find all connected components that consist of only unla-
belled vertices and for each component Component
stores a set of labelled vertices N(Component) that are
connected to vertices in Component. If multiple labelled
vertices in N(Component) have the same label, these ver-
tices are supported because they connect to each other
through a path that consists of only unlabelled vertices in
Component. GraphBin2 removes the labels for all unsup-
ported vertices because these labels may not be reliable.
For example, the label of the unsupported vertex 1 is
removed by GraphBin2 in Step 1 of Fig. 1.

Step 2: Correct labels of inconsistent vertices
After Step 1, each non-isolated labelled vertex v is sup-
ported by at least one vertex with the same label. The
closer two vertices are in the assembly graph, the more
likely they have the same label. For each vertex v, we
introduce a labelled score, S(v, x), for each label x by con-
sidering all vertices of label x that are directly connected
to v or connected to v through a path that consists of
only unlabelled vertices. A vertex t of label x contributes
to S(v, x) by 2−D(v,t) where D(v, t) is the shortest distance
between v and t using only unlabelled vertices. This dis-
tance is measured by the number of edges in a path and
D(v, t) = 1 if v and t are directly connected. Therefore,
the labelled score S(v, x) is the sum of contributions from
all vertices of label x that are directly connected to v or
connected to v through a path that consists of only unla-
belled vertices. In Step 1 of Fig. 1, vertex 17 contributes
1/2 to S(18, blue) because D(17, 18) = 1 and vertex 8
contributes 1/8 to S(18, green) because D(8, 17) = 3 . The
labelled score of S(18, blue) is 2 to which all four blue ver-
tices 17, 20, 23 and 24 contribute 1/2 respectively while
S(18, green) = 5/16 to which vertex 8 contributes 1/8,
vertex 15 contributes 1/8 and vertex 26 contributes 1/16.

A labelled vertex v of label x is defined as inconsistent if
and only if the labelled score of its current label x times α
is less than or equal to the labelled score of another label
y where α is a parameter, i.e., α × S(v, x) � S(v, y) . We
have set α = 1.5 in the default settings of GraphBin2. In
Step 1 of Fig. 1, vertex 18 in green is an inconsistent ver-
tex because 1.5× S(18, green) = 1.5× 5/16 = 0.47 is less
than S(18, blue) = 2.

Again, GraphBin2 uses the breadth-first-search to
check if a labelled vertex is inconsistent. GraphBin2 cor-
rects the label of an inconsistent vertex v to another label
that maximises the labelled score. For example, Graph-
Bin2 corrects the label of vertex 18 from green to blue
and corrects the label of vertex 22 from red to green
(refer from Step 1 to Step 2 in Fig. 1).

1  In GraphBin, a vertex i is denoted as an ambiguous vertex if at least one of
its closest labelled vertices has a label that is different than the label of the ver-
tex i.
An ambiguous vertex in GraphBin may be supported (in GraphBin2) by
another vertex of the same label if they are directly connected or connected
through a path consisting of only unlabelled vertices. An unsupported ver-
tex in GraphBin2 is always ambiguous in GraphBin.

Page 5 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3 	

Step 3: Propagate labels to unlabelled vertices
As existing contig-binning tools discard contigs due
to their short lengths in the initial binning, many verti-
ces are still unlabelled in the current assembly graph. In
this step, we will propagate existing labels to the remain-
ing unlabelled vertices using the assembly graph. There
are two intuitions behind this label propagation process.
Firstly, vertices that are closer to each other in the assem-
bly graph are more likely to have the same label. Secondly,
vertices with similar coverages are more likely to have the
same label because contigs from the same genome usu-
ally have similar coverages [18, 34]. GraphBin2 uses both
the connectivity and coverage information of the assem-
bly graph to propagate the labels.

For each unlabelled vertex v with coverage c(v) (i.e.,
coverage of the contig that corresponds to the vertex), a
candidate propagation action (D(v, t), |c(v)− c(t)|, t, v)
is recorded as a tuple where t is the nearest labelled ver-
tex to v, c(t) is the coverage of t and D(v, t) is the short-
est distance between v and t (as defined in Step 2). Given
two candidate propagation actions, (d1, c1, t1, v1) and
(d2, c2, t2, v2) , GraphBin2 will execute (d1, c1, t1, v1) before
(d2, c2, t2, v2) , i.e., propagating the label of t1 to v1 before
propagating the label of t2 to v2 , if ( d1 < d2 ) or ( c1 < c2
and d1 = d2 ). In other words, GraphBin2 puts more
emphasis on the connectivity information than the cover-
age information because the edges in the assembly graph
are expected to be more reliable than the coverage infor-
mation on vertices, especially for vertices corresponding
to short contigs (which are discarded by initial binning
tools).

GraphBin2 first uses the breadth-first-search to com-
pute all candidate propagation actions for unlabelled
vertices and sort them into a ranked list according to
the order defined above. At each iteration, GraphBin2
executes the first candidate propagation action and then
updates the ranked list of candidate propagation actions.
Note that one unlabelled vertex receives its label at each
iteration and updating the ranked list of candidate prop-
agation actions can be done efficiently by breadth-first-
search from this unlabelled vertex.

Figure 2 shows how GraphBin2 propagates labels from
Step 2 to Step 3 in Fig. 1. Figure 2a denotes the assembly

graph after correcting labels of inconsistent vertices
(after Step 2). The step-by-step label propagation process
is explained in the remaining figures in Fig. 2.

Note that this label propagation process in GraphBin2
improves on the label propagation algorithm in Graph-
Bin by incorporating both the connectivity and coverage
information in the assembly graph. So far, GraphBin2
does not generate multi-labelled vertices. In the next
step, we will show how GraphBin2 uses the labelling,
connectivity and coverage information together on the
assembly graph to infer multi-labelled vertices.

Step 4: Infer multi‑labelled vertices
Contigs belonging to multiple genomes correspond to
multi-labelled vertices in the assembly graph. What are
the characteristics of shared contigs between multiple
species? Firstly, a contig shared by multiple genomes may
connect other contigs in these genomes. Secondly, the
coverage of a contig shared by multiple genomes should
be equal to the sum of coverages of these genomes in the
ideal case. After label propagation, vertices of the same
label are likely to form connected components in the
assembly graph and multi-labelled vertices are likely to
be located along the borders between multiple connected
components where distinct labels meet and have a cover-
age similar to the sum of the average coverages of multi-
ple components that they belong to.

GraphBin2 checks labelled vertices that are connected
to vertices of multiple different labels. The average cover-
age of a connected component P is calculated by

∑
c(i)×L(i)∑

L(i)

for each vertex i in the connected component P, where
c(i) is the coverage of the vertex i and L(i) is the length of
the contig corresponding to vertex i. Assume v is a
labelled vertex v from a component P, the coverage of v is
c(v) and the average coverage of P is c(P). When c(v) is
larger than c(P) and v is connected to other components
P1,P2, . . . ,Pk with different labels, it is possible that v also
belongs to one or more components (in addition to P). For
example, if v belongs to P, Pi and Pj in the ground-truth,
the coverage of v, c(v), is expected to be close to the sum
of average coverages of the above three components,
c(P)+ c(Pi)+ c(Pj) . In fact, finding which components in

(See figure on next page.)
Fig. 2  Step-by-step illustration of how labels are propagated in Step 3 of the GraphBin2 Workflow on the assembly graph shown in a. The following
candidate propagation actions will be executed in the given order. (1) The candidate propagation action (1,0,6,1) is executed. Vertex 1 receives the
red label from vertex 6 as shown in b. (2)The candidate propagation action (1,0,13,14) is executed. Vertex 14 receives the red label from vertex 13
as shown in c. (3) The candidate propagation action (1,1,22,21) is executed. Vertex 21 receives the green label from vertex 22 as shown in d. (4) The
candidate propagation action (1,2,14,7) is executed. Vertex 7 receives the red label from vertex 14 as shown in e. (5) The candidate propagation
action (1,3,18,19) is executed. Vertex 19 receives the blue label from vertex 18 as shown in f. (6) The candidate propagation action (1,16,8,3) is
executed. Vertex 3 receives the green label from vertex 8 as shown in g. (7) The candidate propagation action (1,53,21,25) is executed. Vertex 25
receives the green label from vertex 21 as shown in h 

Page 6 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Page 7 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3 	

{P1,P2, . . . ,Pk} that v also belongs to (in addition to P) can
be modelled as the following subset sum problem [35].
Given a set of positive numbers {c(P1), c(P2), . . . , c(Pk)} ,
find a subset whose sum is or is closest to c(v)− c(P) .
Then v will be assigned to the corresponding components
in this subset as well as to P. Note that it is possible that
the selected subset is empty and thus v only belongs to P.

In all of our experiments, the maximum number of
different components that a vertex connects to in the
assembly graph is less than 5. We use a brute-force way to
enumerate all possible combinations of components and
find out the combinations that best explain the observed
coverages. For example, after Step 3 in Fig. 1, vertex 3
in green connects to another red component. The cov-
erage of vertex 3 is 108 while the average coverage of
the green component is 95 and the average coverage of
the red components is 19. Because the coverage of ver-
tex 3 (108) is closer to the sum of average coverages of
green and red components (95+19=114) compared to
the average coverage of the green component (95), ver-
tex 3 is assigned both green and red labels. Similarly, the
coverage of vertex 25 (142) is closer to the sum of aver-
age coverages of green and blue components (95 + 49
= 144) compared to the average coverage of the green
component (95). Hence, vertex 25 is assigned both green
and blue labels. In the same assembly graph after Step 3
in Fig. 1, vertex 14 in red does not gain any other labels
because its own coverage is closest to the average cover-
age of the red component (19) compared to other possi-
ble combinations (i.e., red+blue, red+green, green+blue
and red+green+blue).

Experimental setup
Datasets
Simulated datasets
We simulated three metagenomic datasets accord-
ing to the species found in the simMC+ dataset [23].
These datasets were simulated each containing 5 species
(referred as Sim-5G), 10 species (referred as Sim-10G)
and 20 species (referred as Sim-20G) respectively. Paired-
end reads were simulated using the tool InSilicoSeq [36]
modelling a MiSeq instrument with 300 bp mean read
length.

To benchmark the performance of GraphBin2 on com-
plex metagenomic datasets, we simulated a dataset with
the 50 most abundant species found in the simMC+
dataset [23]. This dataset consisting of MiSeq reads is
referred as 50G-SR. Moreover, we used the 100-genomes
long-read dataset [37] which consisted of simulated
PacBio reads of 100 species to evaluate the performance
of GraphBin2 on long-read assemblies. This dataset has
been simulated by the long-read simulator SimLoRD [38]
using default parameters for PacBio reads. We refer to

this dataset as 100G-LR. Further details about the sim-
ulated datasets can be found in Section 1 of Additional
file 1.

Real datasets
We used the preborn infant gut metagenome, commonly
known as the Sharon dataset [39] (NCBI accession num-
ber SRA052203). There are 18 Illumina (Illumina HiSeq
2000) runs available for this dataset. One run SRR492184
is included as a representative dataset (referred as Sha-
ron-1) and all the 18 Illumina runs are combined to form
the Sharon-All dataset in our experiments.

We also used the Lake Biwa bacterioplankton metage-
nome dataset ([40]) which consists of bacterioplankton
obtained from the Lake Biwa, Japan (NCBI BioProject
number PRJDB6644, run DRR125127, referred as Lake
Water) and consists of Illumina MiSeq paired-end reads.

Further details on the Sharon and Lake Water datasets
can be found in Section 1 of the Additional file 1.

Tools used
To derive the assembly graph from short reads, there are
two dominant assembly paradigms, de Bruijn graphs [31]
and overlap-overlap-layout-consensus (or string graphs)
[30]. We selected one representative tool from each para-
digm to show the effectiveness of GraphBin2. To repre-
sent the de Bruijn graph paradigm, we used metaSPAdes
[27] (from SPAdes version 3.13.0 [41]) with its default
parameters to generate the assembly graph. As for the
overlap-layout-consensus paradigm, we selected SGA
(version 0.10.15) [32] to derive the assembly graph. We
used the long-read metagenomic assembler metaFlye
[33] (available in Flye version 2.4.2 [42]) with its default
parameters to assemble the 100G-LR dataset.

We used CONCOCT (version 1.1.0) [17] and MaxBin2
(version 2.2.5) [23] with default parameters, and Solid-
Bin (version 1.3) [22] in SolidBin-SFSmode to obtain
the initial binning results for our experiments. CON-
COCT, MaxBin2 and SolidBin are considered as hybrid
contig-binning tools as they use both the composition
and coverage information. They make use of tetranu-
cleotide frequencies and coverages of reads with differ-
ent machine learning approaches to bin contigs. Note
that CONCOCT, MaxBin2 and SolidBin only bin contigs
which are longer than 1000 bp by default. We also com-
pared GraphBin2 with its predecessor GraphBin [24].
The commands used to run all the assembly and binning
tools can be found in Section 2 of Additional file 1.

Evaluation criteria
Since the reference genomes of the simulated datasets
were known, we used BWA-MEM [43] to align the con-
tigs to their reference genomes to determine the ground

Page 8 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

truth species to which the contigs actually belonged to. For
each contig, the alignment lengths for each species were
recorded. A contig is considered to belong to one spe-
cies if the longest alignment to this species covers at least
50% of the contig length. Furthermore, isolated contigs

(corresponding vertices with zero degree in the assembly
graph) were not considered for the ground-truth set of the
datasets.

For the Sharon dataset, we considered the annotated
contigs from 12 species which are available at https://​
ggkba​se.​berke​ley.​edu/​carrol/​organ​isms as references. For

(a) (b)

(d) (e)

(c)

Fig. 3  Comparison of binning results of CONCOCT [17], GraphBin [24] and GraphBin2 (on top of CONCOCT results) using assembly graphs built by
metaSPAdes [27]

(a) (b)

(d) (e)

(c)

Fig. 4  Comparison of binning results of MaxBin2 [23], GraphBin [24] and GraphBin2 (on top of MaxBin2 results) using assembly graphs built by
metaSPAdes [27]

https://ggkbase.berkeley.edu/carrol/organisms
https://ggkbase.berkeley.edu/carrol/organisms

Page 9 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3 	

the Lake Water dataset, we considered the assembled
genomes provided by the authors as ground truth species.
A process similar to the simulated datasets was followed
for the Sharon and Lake Water datasets to determine the
origin species of contigs and alignment lengths to species.

To evaluate the binning results of CONCOCT [17],
MaxBin2 [23], SolidBin [22], GraphBin [24] and Graph-
Bin2, we used the metrics (1) precision, (2) recall and (3)
F1-score which have been used in previous studies [17,
24, 44]. The binning result is denoted as a K × S matrix
where K is the number of bins identified by the bin-
ning tool and S is the number of species available in the
ground truth. In this matrix, the element aks denotes the
number of contigs binned to the kth bin and belongs to
the sth species. Unclassified denotes the number of con-
tigs that are unclassified or discarded by the tool. Follow-
ing are the definitions and equations that were used to
calculate the precision, recall and F1-score.

(1)Precision =

∑
k maxs{aks}∑
k

∑
s aks

(2)Recall =

∑
s maxk{aks}

(
∑

k

∑
s aks +Unclassified)

To evaluate whether a vertex in the assembly graph cor-
responds to a contig that may belong to multiple species,
we align this contig to genomes of ground-truth spe-
cies and record the best alignment against each species,
respectively. Then we introduce a parameter Ratio(2nd/1st)
as the ratio between the alignment lengths of the second
longest alignment and the longest alignment. If a contig
is aligned to only one species (i.e., there is no alignment
to another species), then Ratio(2nd/1st) = 0 . If a contig is
aligned to multiple species, the higher the Ratio(2nd/1st) is,
the more likely that this contig belongs to multiple spe-
cies. The violin plots of Ratio(2nd/1st) are computed for
both inferred multi-labelled and single-labelled contigs in
the next section to demonstrate how Ratio(2nd/1st) varies
for each type of contigs.

Results and discussion
Binning results
Figures 3, 4 and 5 demonstrate the results of CONCOCT
[17], MaxBin2 [23] and SolidBin [22], respectively with
GraphBin [24] and GraphBin2 on top of the initial bin-
ning results for the metaSPAdes assemblies. Figure 6

(3)F1 =2×
Precision× Recall

Precision+ Recall

(a) (b)

(d) (e)

(c)

Fig. 5  Comparison of binning results of SolidBin [22], GraphBin [24] and GraphBin2 (on top of SolidBin results) using assembly graphs built by
metaSPAdes [27]

Page 10 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

denotes the binning results of all the tools for the com-
plex datasets 50G-SR, Lake Water and 100G-LR. The
number of bins identified by the binning tools for each
dataset can be found in Table 1. Binning results of the
SGA assemblies can be found in Section 3 of Additional
file 1.

The binning results show that GraphBin2 achieves the
best performance in most of the scenarios. The improve-
ment over GraphBin is because GraphBin2 makes use
of coverage information additionally, rather than rely-
ing only on the graph topology as GraphBin does.
Both GraphBin and GraphBin2 have shown significant
improvements on recall compared to CONCOCT, Max-
Bin2 and SolidBin. While CONCOCT, MaxBin2 and
SolidBin filter contigs with length shorter than 1000 bp,
GraphBin and GraphBin2 are able to bin short contigs

using assembly graphs. In a few scenarios, GraphBin2
improved on the recall with a bit of a compromise on
the precision compared to GraphBin because GraphBin
removes ambiguous labels in the final step. Furthermore,
the existence of weak edges (i.e., edges that are not well
supported from the data) can form false connections
between contigs and can mislead the label propagation
process.

Multi‑Labelled Inference Results
One key novelty of GraphBin2 is the introduction of
the multi-labelled inference for contigs where Graph-
Bin2 detects possible contigs that may belong to multi-
ple species. Table 2 denotes the number of multi-labelled
contigs identified by GraphBin2 for the metaSPAdes
assemblies and assemblies of the complex datasets using

(a) (b) (c)

(d) (e) (f)

(g) (h)
Fig. 6  Comparison of binning results of CONCOCT [17], MaxBin2 [23], SolidBin [22], GraphBin [24] and GraphBin2 for the complex datasets 50G-SR,
100G-LR and Lake Water

Page 11 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3 	

the initial binning result of the binning tools CONCOCT
[17], MaxBin2 [23] and SolidBin [22]. Moreover, for each
combination of dataset and initial binning tool, we cal-
culated the ratio Ratio(2nd/1st) (please refer to section

“Evaluation criteria”) of single and multi-labelled contigs
produced by GraphBin2. Then we plotted the violin plots
of Ratio(2nd/1st) in Figs. 7, 8, 9 and 10 to demonstrate how
Ratio(2nd/1st) varies for different datasets. Multi-labelled
inference results of the SGA assemblies can be found in
Section 3 of Additional file 1.

According to Figs. 7, 8, 9 and 10, the multi-labelled
contigs identified by GraphBin2 for most of the data-
sets have a high mean value (much greater than zero) for
Ratio(2nd/1st) , suggesting that these identified contigs have
significant alignments to multiple species. Moreover, the
mean value of Ratio(2nd/1st) for the single-labelled contigs
identified by GraphBin2 is close to zero, suggesting that
the majority of the contigs only belong to one species.
The clear distinction between the Ratio(2nd/1st) of inferred
single and multi-labelled contigs in these datasets dem-
onstrates the effective detection of contigs that may
belong to multiple species by GraphBin2. Note that the
relatively low mean value of Ratio(2nd/1st) for the Sharon-
All dataset can be due to repeats and weak edges in com-
plex assembly graphs, i.e., contigs that represent repeats
within one species tend to have higher coverage and may
be misinterpreted as multi-labelled contigs if there exist
weak edges connecting them to contigs in other species.
The possible multi-labelled contigs in the 50G-SR and
100G-LR datasets which are not identified by GraphBin2
may be due to the underestimation of the number of bins,
misassemblies and fragmentation of the assembly graphs,
especially for datasets with a large number of species.

Visualisation of the assembly graph
Figures 11 and 12 denote the labelling of the contigs in
the metaSPAdes assembly graphs of the Sim-5G and

Table 1  The number of bins identified by the binning tools for
each dataset

∗ SolidBin [22] could not be run on the Lake Water dataset due to insufficient
memory

Dataset Ground
truth
bins

Assembly
type

Binning tool Number
of bins
identified

Sim-5G 5 metaSPAdes CONCOCT 7

MaxBin2 5

SolidBin 5

SGA CONCOCT 11

MaxBin2 5

SolidBin 5

Sim-10G 10 metaSPAdes CONCOCT 12

MaxBin2 10

SolidBin 10

SGA CONCOCT 14

MaxBin2 9

SolidBin 9

Sim-20G 20 metaSPAdes CONCOCT 22

MaxBin2 21

SolidBin 20

SGA CONCOCT 28

MaxBin2 20

SolidBin 19

Sharon-1 [39] 12 metaSPAdes CONCOCT 27

MaxBin2 5

SolidBin 5

SGA CONCOCT 25

MaxBin2 5

SolidBin 4

Sharon-All [39] 12 metaSPAdes CONCOCT 48

MaxBin2 11

SolidBin 9

SGA CONCOCT 27

MaxBin2 8

SolidBin 5

50G-SR 50 metaSPAdes CONCOCT 44

MaxBin2 44

SolidBin 45

Lake Water [40] 57 metaSPAdes CONCOCT 149

MaxBin2 57

SolidBin N/A∗

100G-LR [37] 100 metaFlye CONCOCT 76

MaxBin2 76

SolidBin 86

Table 2  The number of multi-labelled contigs identified by
GraphBin2 for the metaSPAdes assemblies and assemblies of the
complex datasets using the initial binning result of each binning
tool

∗ SolidBin [22] could not be run on the Lake Water dataset due to insufficient
memory

Dataset With CONCOCT
result

With MaxBin2
result

With
SolidBin
result

Sim-5G 3 4 5

Sim-10G 6 7 7

Sim-20G 5 11 10

Sharon1 [39] 3 3 2

SharonAll [39] 69 38 30

50G-SR 89 74 74

Lake Water [40] 178 329 N/A∗

100G-LR [37] 17 10 10

Page 12 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

(a)

(b)

(c)
Fig. 7  Violin plots for the ratio between the alignment lengths of the second longest alignment and the longest alignment of the single and
multi-labelled inference results using GraphBin2 on top of a CONCOCT [17], b MaxBin2 [23] and c SolidBin [22] results for the metaSPAdes
assemblies

Page 13 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3 	

Sim-10G datasets at different stages as it undergoes
the processing of GraphBin2. White coloured verti-
ces denote un-binned contigs and the rest of the col-
oured vertices denote the labelled contigs. In Figs. 11a
and 12a, we can see that some mis-binned contigs are
identified (circled in red) as differently coloured con-
tigs within components of a single colour. Figures 11b
and 12b show the refined assembly graph where Graph-
Bin2 has removed labels of unsupported vertices and

corrected labels of inconsistent vertices. After Graph-
Bin2 propagates labels to the remaining unlabelled
vertices, the assembly graph will look as denoted in
Figs. 11c and 12c. Finally, GraphBin2 will detect multi-
labelled vertices that correspond to contigs that may
belong to multiple species as shown by the black col-
oured vertices in Figs. 11d and 12d.

Fig. 8  Violin plots for the ratio between the second longest alignment and the longest alignment of the single and multi-labelled inference results
using GraphBin2 on top of the initial binning results from CONCOCT [17], MaxBin2 [23] and SolidBin [22] for the 50G-SR assembly

Fig. 9  Violin plots for the ratio between the alignment lengths of the second longest alignment and the longest alignment of the single and
multi-labelled inference results using GraphBin2 on top of the initial binning results from CONCOCT [17] and MaxBin2 [23] for the Lake Water
assembly. ∗ SolidBin [22] could not be run on the Lake Water dataset due to insufficient memory

Page 14 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

Implementation, running time and memory usage
The source code for the experiments was implemented
using Python 3.7.3 and run on a Darwin system with
macOS Mojave 10.14.6, 16 GB memory and Intel Core
i7 CPU @ 2.8 GHz with 4 CPU cores. In our experi-
ments, we restrict the depth of the breadth-first-search
in Steps 2-3 to be 5 to speed up GraphBin2. Moreo-
ver, we have set the parameter α = 1.5 by default
for GraphBin2. Furthermore, the process of infer-
ring multi-labelled vertices was performed in parallel
using multithreading (set to 8 threads by default in
GraphBin2).

The running times (wall time) and the peak memory
used by the assemblers to assemble all the datasets, and
the initial binning tools (CONCOCT, MaxBin2 and
SolidBin) and GraphBin2 were recorded. All the running
times and memory usage can be found in Section 4 of
Additional file 1.

Conclusion
In this paper we presented a novel algorithm, Graph-
Bin2, that incorporates the coverage information into
the assembly graph as an improvement of Graph-
Bin [24]. While GraphBin uses only the topology of
the assembly graph to refine and propagate labels,

GraphBin2 makes use of the coverage information
on vertices to perform label propagation. Moreover,
GraphBin2 uses an improved label propagation algo-
rithm that takes into consideration the distance and
coverage of neighbouring contigs, compared to the
label propagation algorithm used in GraphBin. Fur-
thermore, GraphBin2 enables the detection of contigs
that may belong to multiple species. The performance
of GraphBin2 was evaluated against its predecessor
and three other contig-binning tools on top of contigs
obtained from short-reads assembled using metaS-
PAdes [27] and SGA [32] which represent the two
assembly paradigms; de Bruijn graphs and overlap-lay-
out-consensus (string graphs). The results showed that
GraphBin2 achieves the best binning performance in
both simulated and real datasets. Moreover, GraphBin2
shows the potential to infer contigs shared by multiple
species. We have experimentally shown that Graph-
Bin2 could be in principle applied to long-read assem-
blies. In the future, we intend to extend the capabilities
of GraphBin2 to explore the avenues at improving the
detection of contigs shared by multiple species, detec-
tion of misassemblies, and further extend towards bin-
ning long reads directly using read-overlap graphs.

Fig. 10  Violin plots for the ratio between the alignment lengths of the second longest alignment and the longest alignment of the single and
multi-labelled inference results using GraphBin2 on top of the initial binning results from CONCOCT [17], MaxBin2 [23] and SolidBin [22] for the
100G-LR assembly

Page 15 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3 	

(a) (b)

(c) (d)
Fig. 11  The labelling of the assembly graph of Sim-5G dataset based on a the initial MaxBin2 result (un-binned contigs are denoted by white
coloured vertices and mis-binned contigs are circled in red), b after removing labels of unsupported vertices and correcting labels of inconsistent
vertices, c after propagating labels of unlabelled vertices, d after determining multi-labelled vertices (black coloured vertices) by GraphBin2

Page 16 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

(a) (b)

(c) (d)
Fig. 12  The labelling of the assembly graph of Sim-10G dataset based on a the initial MaxBin2 result (un-binned contigs are denoted by white
coloured vertices and mis-binned contigs are circled in red), b after removing labels of unsupported vertices and correcting labels of inconsistent
vertices, c after propagating labels of unlabelled vertices, d after determining multi-labelled vertices (black coloured vertices) by GraphBin2

Page 17 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​021-​00185-6.

Additional file 1. Supplementary data including further details on
datasets, commands used to run the tools, results of SGA assemblies and
resource usage of the tools.

Acknowledgements
This research was undertaken with the assistance of resources and services
from the National Computational Infrastructure (NCI), which is supported by
the Australian Government.

Authors’ contributions
All authors contributed to developing GraphBin2 and writing the paper. VM
and AW implemented GraphBin2 and performed all the experiments. YL
directed the work. All authors read and approved the final manuscript.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 4 February 2021 Accepted: 20 April 2021

References
	1.	 Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shot-

gun metagenomics, from sampling to analysis. Nat Biotechnol.
2017;35(9):833–44. https://​doi.​org/​10.​1038/​nbt.​3935.

	2.	 Thomas T, Gilbert J, Meyer F. Metagenomics - a guide from sampling to
data analysis. Microb Inform Exp. 2012;2(1):3. https://​doi.​org/​10.​1186/​
2042-​5783-2-3.

	3.	 Sedlar K, Kupkova K, Provaznik I. Bioinformatics strategies for taxonomy
independent binning and visualization of sequences in shotgun
metagenomics. Comput Struct Biotechnol J. 2017;15:48–55. https://​doi.​
org/​10.​1016/j.​csbj.​2016.​11.​005.

	4.	 Alanko J, Cunial F, Belazzougui D, Mäkinen V. A framework for space-
efficient read clustering in metagenomic samples. BMC Bioinform.
2017;18(3):59. https://​doi.​org/​10.​1186/​s12859-​017-​1466-6.

	5.	 Cleary B, Brito IL, Huang K, Gevers D, Shea T, Young S, Alm EJ. Detection of
low-abundance bacterial strains in metagenomic datasets by eigenge-
nome partitioning. Nat Biotechnol. 2015;33:1053.

	6.	 Girotto S, Pizzi C, Comin M. MetaProb: accurate metagenomic reads
binning based on probabilistic sequence signatures. Bioinformatics.
2016;32(17):567–75. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw466.
https://​acade​mic.​oup.​com/​bioin​forma​tics/​artic​le-​pdf/​32/​17/​i567/​24151​
444/​btw466.​pdf

	7.	 Luo Y, Yu YW, Zeng J, Berger B, Peng J. Metagenomic binning through
low-density hashing. Bioinformatics. 2018;35(2):219–26. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​bty611. http://​oup.​prod.​sis.​lan/​bioin​forma​tics/​
artic​le-​pdf/​35/2/​219/​27497​122/​bty611.​pdf

	8.	 Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate
classification of metagenomic and genomic sequences using discrimi-
native k-mers. BMC Genom. 2015;16(1):236. https://​doi.​org/​10.​1186/​
s12864-​015-​1419-2.

	9.	 Schaeffer L, Pimentel H, Bray N, Melsted P, Pachter L. Pseudoalignment
for metagenomic read assignment. Bioinformatics. 2017;33(14):2082–8.
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx106. http://​oup.​prod.​sis.​lan/​
bioin​forma​tics/​artic​le-​pdf/​33/​14/​2082/​25156​929/​btx106.​pdf

	10.	 Vinh LV, Lang TV, Binh LT, Hoai TV. A two-phase binning algorithm using
l-mer frequency on groups of non-overlapping reads. Algorithms Mol
Biol. 2015;10(1):2. https://​doi.​org/​10.​1186/​s13015-​014-​0030-4.

	11.	 Wang J, Jiang Y, Yu G, Zhang H, Luo H. BMC3C: binning metagenomic
contigs using codon usage, sequence composition and read coverage.
Bioinformatics. 2018;34(24):4172–9. https://​doi.​org/​10.​1093/​bioin​forma​

tics/​bty519. http://​oup.​prod.​sis.​lan/​bioin​forma​tics/​artic​le-​pdf/​34/​24/​
4172/​27088​792/​bty519.​pdf

	12.	 Ames SK., Hysom DA, Gardner SN et al.: Scalable metagenomic tax-
onomy classification using a reference genome database. Bioinformat-
ics 29(18), 2253–2260 (2013). http://​oup.​prod.​sis.​lan/​bioin​forma​tics/​
artic​le-​pdf/​29/​18/​2253/​17128​159/​btt389.​pdf

	13.	 Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and
sensitive classification of metagenomic sequences. Genome Res.
2016;26(12):1721–9. http://​genome.​cshlp.​org/​conte​nt/​26/​12/​1721.​full.​
pdf+​html

	14.	 Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for
metagenomics with Kaiju. Nat Commun. 2016;7:1–7.

	15.	 Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol. 2014;15(3):46.

	16.	 Laczny CC, Kiefer C, Galata V, Fehlmann T, Backes C, Keller A. BusyBee
Web: metagenomic data analysis by bootstrapped supervised binning
and annotation. Nucleic Acids Research. 2017;45(W1):171–9. https://​
doi.​org/​10.​1093/​nar/​gkx348. https://​acade​mic.​oup.​com/​nar/​artic​le-​
pdf/​45/​W1/​W171/​18137​403/​gkx348.​pdf

	17.	 Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti
L, Loman NJ, Andersson AF, Quince C. Binning metagenomic contigs by
coverage and composition. Nat Methods. 2014;11:1144–6.

	18.	 Herath D, Tang S-L, Tandon K, Ackland D, Halgamuge SK. Comet: a work-
flow using contig coverage and composition for binning a metagenomic
sample with high precision. BMC Bioinform. 2017;18(16):571. https://​doi.​
org/​10.​1186/​s12859-​017-​1967-3.

	19.	 Kang D, Li F, Kirton ES, Thomas A, Egan RS, An H, Wang Z. MetaBAT 2: an
adaptive binning algorithm for robust and efficient genome reconstruc-
tion from metagenome assemblies. PeerJ. 2019;7:27522–1. https://​doi.​
org/​10.​7287/​peerj.​prepr​ints.​27522​v1.

	20.	 Kelley D, Salzberg S. Clustering metagenomic sequences with interpo-
lated Markov models. BMC Bioinform. 2010;11(1):544. https://​doi.​org/​10.​
1186/​1471-​2105-​11-​544.

	21.	 Strous M, Kraft B, Bisdorf R, Tegetmeyer H. The binning of metagenomic
contigs for microbial physiology of mixed cultures. Front Microbiol.
2012;3:410. https://​doi.​org/​10.​3389/​fmicb.​2012.​00410.

	22.	 Wang Z, Wang Z, Lu YY, Sun F, Zhu S. SolidBin: improving metagen-
ome binning with semi-supervised normalized cut. Bioinformatics.
2019;35(21):4229–38. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz253.
https://​acade​mic.​oup.​com/​bioin​forma​tics/​artic​le-​pdf/​35/​21/​4229/​30330​
800/​btz253.​pdf

	23.	 Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning
algorithm to recover genomes from multiple metagenomic datasets.
Bioinformatics. 2015;32(4):605–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btv638.

	24.	 Mallawaarachchi V, Wickramarachchi A, Lin Y. GraphBin: Refined binning
of metagenomic contigs using assembly graphs. Bioinformatics. 2020.
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa1​80. https://​acade​mic.​oup.​
com/​bioin​forma​tics/​advan​ce-​artic​le-​pdf/​doi/​10.​1093/​bioin​forma​tics/​
btaa1​80/​32903​382/​btaa1​80.​pdf

	25.	 Barnum TP, Figueroa IA, Carlström CI, Lucas LN, Engelbrektson AL,
Coates JD. Genome-resolved metagenomics identifies genetic mobility,
metabolic interactions, and unexpected diversity in perchlorate-reducing
communities. ISME J. 2018;12(6):1568–81. https://​doi.​org/​10.​1038/​
s41396-​018-​0081-5.

	26.	 Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic
analysis of microbial communities. Annu Rev Genet. 2004;38(1):525–52.
https://​doi.​org/​10.​1146/​annur​ev.​genet.​38.​072902.​091216.

	27.	 Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new
versatile metagenomic assembler. Genome Research. 2017;27(5):824–34.
https://​doi.​org/​10.​1101/​gr.​213959.​116. http://​genome.​cshlp.​org/​conte​nt/​
27/5/​824.​full.​pdf+​html

	28.	 Chan C-KK, Hsu AL, Halgamuge SK, Tang S-L. Binning sequences using
very sparse labels within a metagenome. BMC Bioinform. 2008;9(1):215.
https://​doi.​org/​10.​1186/​1471-​2105-9-​215.

	29.	 Burton JN, Liachko I, Dunham MJ, Shendure J. Species-level deconvolu-
tion of metagenome assemblies with hi-c–based contact probability
maps. G3: Genes Genom Genet 2014;4(7), 1339–1346. https://​doi.​org/​10.​
1534/​g3.​114.​011825. https://​www.​g3jou​rnal.​org/​conte​nt/4/​7/​1339.​full.​
pdf

https://doi.org/10.1186/s13015-021-00185-6
https://doi.org/10.1186/s13015-021-00185-6
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1186/2042-5783-2-3
https://doi.org/10.1186/2042-5783-2-3
https://doi.org/10.1016/j.csbj.2016.11.005
https://doi.org/10.1016/j.csbj.2016.11.005
https://doi.org/10.1186/s12859-017-1466-6
https://doi.org/10.1093/bioinformatics/btw466
https://academic.oup.com/bioinformatics/article-pdf/32/17/i567/24151444/btw466.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/17/i567/24151444/btw466.pdf
https://doi.org/10.1093/bioinformatics/bty611
https://doi.org/10.1093/bioinformatics/bty611
http://oup.prod.sis.lan/bioinformatics/article-pdf/35/2/219/27497122/bty611.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/35/2/219/27497122/bty611.pdf
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1093/bioinformatics/btx106
http://oup.prod.sis.lan/bioinformatics/article-pdf/33/14/2082/25156929/btx106.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/33/14/2082/25156929/btx106.pdf
https://doi.org/10.1186/s13015-014-0030-4
https://doi.org/10.1093/bioinformatics/bty519
https://doi.org/10.1093/bioinformatics/bty519
http://oup.prod.sis.lan/bioinformatics/article-pdf/34/24/4172/27088792/bty519.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/34/24/4172/27088792/bty519.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/29/18/2253/17128159/btt389.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/29/18/2253/17128159/btt389.pdf
http://genome.cshlp.org/content/26/12/1721.full.pdf+html
http://genome.cshlp.org/content/26/12/1721.full.pdf+html
https://doi.org/10.1093/nar/gkx348
https://doi.org/10.1093/nar/gkx348
https://academic.oup.com/nar/article-pdf/45/W1/W171/18137403/gkx348.pdf
https://academic.oup.com/nar/article-pdf/45/W1/W171/18137403/gkx348.pdf
https://doi.org/10.1186/s12859-017-1967-3
https://doi.org/10.1186/s12859-017-1967-3
https://doi.org/10.7287/peerj.preprints.27522v1
https://doi.org/10.7287/peerj.preprints.27522v1
https://doi.org/10.1186/1471-2105-11-544
https://doi.org/10.1186/1471-2105-11-544
https://doi.org/10.3389/fmicb.2012.00410
https://doi.org/10.1093/bioinformatics/btz253
https://academic.oup.com/bioinformatics/article-pdf/35/21/4229/30330800/btz253.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/21/4229/30330800/btz253.pdf
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1093/bioinformatics/btaa180
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaa180/32903382/btaa180.pdf
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaa180/32903382/btaa180.pdf
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaa180/32903382/btaa180.pdf
https://doi.org/10.1038/s41396-018-0081-5
https://doi.org/10.1038/s41396-018-0081-5
https://doi.org/10.1146/annurev.genet.38.072902.091216
https://doi.org/10.1101/gr.213959.116
http://genome.cshlp.org/content/27/5/824.full.pdf+html
http://genome.cshlp.org/content/27/5/824.full.pdf+html
https://doi.org/10.1186/1471-2105-9-215
https://doi.org/10.1534/g3.114.011825
https://doi.org/10.1534/g3.114.011825
https://www.g3journal.org/content/4/7/1339.full.pdf
https://www.g3journal.org/content/4/7/1339.full.pdf

Page 18 of 18Mallawaarachchi et al. Algorithms Mol Biol (2021) 16:3

	30.	 Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21(suppl_2), 79–85. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bti11​
14. http://​oup.​prod.​sis.​lan/​bioin​forma​tics/​artic​le-​pdf/​21/​suppl_2/​ii79/​
66860​32/​bti11​14.​pdf

	31.	 Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci. 2001;98(17):9748–53. https://​doi.​
org/​10.​1073/​pnas.​17128​5098. https://​www.​pnas.​org/​conte​nt/​98/​17/​
9748.​full.​pdf

	32.	 Simpson JT, Durbin R. Efficient de novo assembly of large genomes using
compressed data structures. Genome Res. 2012;22(3):549–56. https://​doi.​
org/​10.​1101/​gr.​126953.​111. http://​genome.​cshlp.​org/​conte​nt/​22/3/​549.​
full.​pdf+​html

	33.	 Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB,
Kuhn K, Yuan J, Polevikov E, Smith TPL, Pevzner PA. metaflye: scalable
long-read metagenome assembly using repeat graphs. Nat Methods.
2020;17(11):1103–10. https://​doi.​org/​10.​1038/​s41592-​020-​00971-x.

	34.	 Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. Maxbin: an auto-
mated binning method to recover individual genomes from metage-
nomes using an expectation-maximization algorithm. Microbiome.
2014;2(1):26. https://​doi.​org/​10.​1186/​2049-​2618-2-​26.

	35.	 Garey MR, Johnson DS. Computers and intractability: a guide to the
theory of NP-completeness. New York: W. H. Freeman & Co.; 1979.

	36.	 Gourlé H, Karlsson-Lindsjö O, Hayer J, Bongcam-Rudloff E. Simulating Illu-
mina metagenomic data with InSilicoSeq. Bioinformatics. 2018;35(3):521–
2. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty630. http://​oup.​prod.​sis.​lan/​
bioin​forma​tics/​artic​le-​pdf/​35/3/​521/​27699​758/​bty630.​pdf

	37.	 Wickramarachchi A, Mallawaarachchi V, Rajan V, Lin Y. MetaBCC-LR:
metagenomics binning by coverage and composition for long reads.
Bioinformatics. 2020;36(Supplement_1), 3–11. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btaa4​41. https://​acade​mic.​oup.​com/​bioin​forma​tics/​artic​
le-​pdf/​36/​Suppl​ement_1/​i3/​33488​763/​btaa4​41.​pdf

	38.	 Stöcker BK, Köster J, Rahmann S. SimLoRD: Simulation of Long Read Data.
Bioinformatics. 2016;32(17):2704–6. http://​oup.​prod.​sis.​lan/​bioin​forma​
tics/​artic​le-​pdf/​32/​17/​2704/​17346​032/​btw286.​pdf

	39.	 Sharon I, Morowitz MJ, Thomas BC, Costello EK, Relman DA, Banfield JF.
Time series community genomics analysis reveals rapid shifts in bacterial
species, strains, and phage during infant gut colonization. Genome
Res. 2013;23(1):111–20. https://​doi.​org/​10.​1101/​gr.​142315.​112. http://​
genome.​cshlp.​org/​conte​nt/​23/1/​111.​full.​pdf+​html

	40.	 Mehrshad M, Salcher MM, Okazaki Y, Nakano S-I, Šimek K, Andrei A-S,
Ghai R. Hidden in plain sight–highly abundant and diverse planktonic
freshwater chloroflexi. Microbiome. 2018;6(1):176.

	41.	 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin
VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi
N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. J Comput Biol.
2012;19(5):455–77. https://​doi.​org/​10.​1089/​cmb.​2012.​0021.

	42.	 Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone
reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6.

	43.	 Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. 2013. 1303.3997

	44.	 Wang Y, Wang K, Lu YY, Sun F. Improving contig binning of metagenomic
data using d2S oligonucleotide frequency dissimilarity. BMC Bioinform.
2017;18(1):425. https://​doi.​org/​10.​1186/​s12859-​017-​1835-1.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1093/bioinformatics/bti1114
http://oup.prod.sis.lan/bioinformatics/article-pdf/21/suppl_2/ii79/6686032/bti1114.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/21/suppl_2/ii79/6686032/bti1114.pdf
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://www.pnas.org/content/98/17/9748.full.pdf
https://www.pnas.org/content/98/17/9748.full.pdf
https://doi.org/10.1101/gr.126953.111
https://doi.org/10.1101/gr.126953.111
http://genome.cshlp.org/content/22/3/549.full.pdf+html
http://genome.cshlp.org/content/22/3/549.full.pdf+html
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1186/2049-2618-2-26
https://doi.org/10.1093/bioinformatics/bty630
http://oup.prod.sis.lan/bioinformatics/article-pdf/35/3/521/27699758/bty630.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/35/3/521/27699758/bty630.pdf
https://doi.org/10.1093/bioinformatics/btaa441
https://doi.org/10.1093/bioinformatics/btaa441
https://academic.oup.com/bioinformatics/article-pdf/36/Supplement_1/i3/33488763/btaa441.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/Supplement_1/i3/33488763/btaa441.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/32/17/2704/17346032/btw286.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/32/17/2704/17346032/btw286.pdf
https://doi.org/10.1101/gr.142315.112
http://genome.cshlp.org/content/23/1/111.full.pdf+html
http://genome.cshlp.org/content/23/1/111.full.pdf+html
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1186/s12859-017-1835-1

	Improving metagenomic binning results with overlapped bins using assembly graphs
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Methods
	Preprocessing
	Step 1: Remove labels of unsupported vertices
	Step 2: Correct labels of inconsistent vertices
	Step 3: Propagate labels to unlabelled vertices
	Step 4: Infer multi-labelled vertices

	Experimental setup
	Datasets
	Simulated datasets
	Real datasets

	Tools used
	Evaluation criteria

	Results and discussion
	Binning results
	Multi-Labelled Inference Results
	Visualisation of the assembly graph
	Implementation, running time and memory usage

	Conclusion
	Acknowledgements
	References

