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Abstract 

Background:  Mutation trees are rooted trees in which nodes are of arbitrary degree and labeled with a mutation set. 
These trees, also referred to as clonal trees, are used in computational oncology to represent the mutational history of 
tumours. Classical tree metrics such as the popular Robinson–Foulds distance are of limited use for the comparison 
of mutation trees. One reason is that mutation trees inferred with different methods or for different patients often 
contain different sets of mutation labels.

Results:  We generalize the Robinson–Foulds distance into a set of distance metrics called Bourque distances for 
comparing mutation trees. We show the basic version of the Bourque distance for mutation trees can be computed 
in linear time. We also make a connection between the Robinson–Foulds distance and the nearest neighbor inter-
change distance.

Keywords:  Labeled phylogenetic trees, Mutation trees, The nearest neighbor interchange distance, Robinson−
Foulds distance, Bourque distances

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Trees have been used in biology to model the evolution 
of species, genes and cancer cells [1–3]; to represent the 
secondary structures of RNA molecules and to classify 
cell types, to name just a few uses [4, 5]. A fundamen-
tal issue arising from these applications of trees is how 
to quantitatively compare tree models that are inferred 
by different methods or from different data. A number 
of tree metrics have been proposed for comparisons, 
including the Robinson–Foulds (RF) [6–8], nearest-
neighbor interchange (NNI) [7, 9] and triple(t) distances 
[10] for phylogenetic trees; gene duplication, gene loss 
and reconciliation costs [11, 12] for gene and species 
trees; and the tree-edit distances [5, 13, 14] for tree mod-
els of secondary RNA structures, etc. [15–19].

With advances in next-generation sequencing and 
single-cell sequencing technologies, a large amount of 
genomic data is now available for identifying tumour 
subclones and inferring their evolutionary relationships. 
The most common representation of these relationships 
are mutation trees, also known as clonal trees, which 
encode the (partial) temporal order in which mutations 
were acquired. Formally, a mutation tree on a finite set of 
mutations Ŵ is a rooted tree T with k nodes and a parti-
tion of Ŵ into k disjoint non-empty parts Pi so that each 
Pi is assigned as the label of a node of T [2, 20]. A large 
number of computational approaches for reconstruct-
ing mutation trees from bulk sequencing data [21–25], 
single-cell sequencing data [26–29], or a combination 
of both [30, 31] have been developed over the last years. 
Unlike phylogenetic trees, mutation trees inferred with 
these methods will not only differ in their topology but 
may also be defined on different sets of mutations. The 
latter happens in the comparison of methods using differ-
ent data (e. g. single-cell vs. bulk) or divergent criteria for 
mutation calling. For that reason, classical tree distance 
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measures are not immediately applicable to mutation 
trees. Instead novel measures have recently been devel-
oped [32–37], but no standard approach for mutation 
tree comparison has yet emerged. Instead, shortcomings 
of some of these measures such as the inability to resolve 
major differences between trees have recently been dem-
onstrated [34]. Additionally, computing the distances 
between two mutation trees takes at least quadratic time 
for each of these measures.

Here, we generalize the Robinson–Foulds metric, a 
classic distance measure for unrooted trees, for the com-
parison of mutation trees. This metric is based on the so-
called (edge) contraction and decontraction operations 
introduced by Bourque for leaf-labeled unrooted trees in 
a study of Steiner trees [6]. A contraction on an edge (u.v) 
of a tree T is an operation that transforms T into a new 
tree by shrinking (u,  v) into a single node. The decon-
traction operation is the reverse of contraction. Robin-
son and Foulds independently adopted the contraction 
and decontraction to define a metric of unrooted labeled 
trees, where there is a finite set S and a partition of S 
into disjoint parts (some of which may be empty) so that 
nodes with a degree of at most 2 are each labeled with 
a unique non-empty part, and nodes with a degree of at 
least 3 are labeled with either a unique non-empty part 
or an empty part. They defined a metric, now called the 
Robinson–Foulds (RF) distance, by  which the distance 
between two unrooted labeled trees is the minimum 
number of contraction or decontraction operations that 
are necessary to transform one into another [8]. The RF 
distance is equal to the number of edge-induced parti-
tions that are not shared between the two trees and thus 
is computed in linear time [38].

Although the RF distance is popular in phylogenetic 
analysis, it is not robust when applied to the comparison 
of mutation trees with different sets of mutations, as it is 
simply equal to the total number of edges in the trees and 
thus fails to capture any topological similarity between 
the trees.

In this paper, by generalizing the RF distance, we pro-
pose a collection of distance measures to measure the 
topological dissimilarity between unrooted (resp. rooted) 
labeled trees with different label sets. We also apply these 
measures to simulated and real tumour mutation trees. 
To set our distances apart from another recently intro-
duced generalised RF distance that is based on a node 
flip operation [33], we refer to our generalisations as 
Bourque distances, as they are closely related to the edge 
contraction and decontraction operations introduced by 
Bourque for leaf-labeled unrooted trees [6]. They are also 
shown to be related to the NNI distance [7]. Unlike previ-
ous measures proposed for the comparison of mutation 

trees, the Bourque distances are metrics and the basic 
version can be computed in linear time.

The rest of this paper is divided into seven sections. 
"Concepts and notation" section introduces basic con-
cepts and the notation that will be used. In "Metrics for 
labeled trees", we present a connection between the NNI 
distance and the RF distance for both phylogenetic and 
arbitrary trees that are unrooted and labeled. In "Gener-
alizations of the RF distance for labeled trees on different 
label sets", we generalize the RF distance into the Bour-
que distances for unrooted labeled trees. In "The Bour-
que distances for mutation trees", we define the Bourque 
distances for mutation trees. In "Comparison of eight 
distance measures on rooted labeled trees", we exam-
ine the relationships among the distance measures pro-
posed in [34, 35, 37] and the Bourque distances on rooted 
7-node trees and on random rooted trees with 30 nodes. 
In "Applications to mutation trees", we computed the 
Bourque distances on two sets of mutation trees. "Con-
clusions" section concludes the study with a few remarks.

Concepts and notation
A (unrooted) tree is an acyclic graph. A rooted tree is a 
directed tree with a designated root node ρ in which the 
edges are oriented away from ρ and there is a unique 
directed path from ρ to every other node.

For a tree or rooted tree T, the nodes, leaves and 
edges are denoted V(T), Leaf(T) and E(T), respectively. 
Let u ∈ V (T ) . The degree of u is the number of edges 
incident to it, where edge orientation is ignored if T is 
rooted. In a rooted tree, non-root nodes with a degree 
of one are called the leaves; non-leaf nodes are called 
internal nodes. One or more edges may leave an internal 
node, but exactly one edge enters every node that is not 
the root. An internal edge is an edge between two inter-
nal nodes.

Let u, v ∈ V (T ) . The node v is called a child of u and 
u is called the parent of v if (u, v) ∈ E(T ) . In general, v is 
a descendant of u and u is an ancestor of v if the unique 
path from the tree root to v contains u. We use CT (u) , 
AT (u) and DT (u) to denote the set of all children, ances-
tors and descendants of u in T, respectively. Note that 
u  ∈ AT (u) and u  ∈ DT (u).

A star tree is a tree that contains only one non-leaf 
node, which is called the center of the tree. A rooted star 
tree is a rooted tree in which all except for the root are 
leaves.

A line tree is a tree in which every internal node is of 
degree 2. A rooted line tree is the tree obtained by root-
ing a line tree at a leaf.

A tree is binary if every internal node is of degree 
3. A rooted tree is binary if the root is of degree 2 and 
every other internal node is of degree 3. A (resp. rooted) 
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caterpillar tree is a binary tree in which each internal 
node is adjacent to one or two leaves.

Let X be a finite set. A phylogenetic tree (resp. 
rooted phylogenetic tree) T on X is a binary (resp. 
rooted) tree where the leaves are uniquely labeled 
with the elements of X, the taxon set. It is labeled if 
there is a set I that is disjoint from X and a labeling 
function ℓ : V (T ) \ Leaf(T) → I such that each u of 
V (T ) \ Leaf(T) is labeled with ℓ(u) and ℓ(u) ∩ ℓ(v) = ∅ 
for all u  = v ∈ V (T ) \ Leaf(T) . If ℓ is a one-to-one func-
tion, T is said to be uniquely labeled or 1-labeled. In a 
labeled phylogenetic tree, the label set for the internal 
nodes and the taxon set for the leaves are distinct and 
thus are not interchangeable.

A tree (resp. rooted tree) T with n nodes is 
labeled if there is a finite set M and a labeling func-
tion ℓ : V (T ) → 2M satisfying ∪v∈V (T )ℓ(v) = M and 
ℓ(v)  = ∅ for v ∈ V (T ) so that f(v) is assigned as the label 
of v, where 2M denotes the collection of subsets of M. 

Furthermore, if ℓ(v) contains exactly one element for 
each node v, we say T is 1-labeled. Here, M is called the 
label set of T.

A mutation tree on a set M of mutations is a rooted 
labeled tree that has M as the label set.

Metrics for labeled trees
For convenience, we will introduce new metrics on the 
space of 1-labeled trees and then generalize them to the 
space of mutation trees later.

NNIs on labeled phylogenetic trees
The NNI operation (Fig. 1A) and NNI distance were orig-
inally introduced for unrooted phylogenetic trees [7]. It 
is known that any binary phylogenetic tree can be trans-
formed into another in n log n+ 2n− 4 NNIs at most 
[39]. The NNI operation for rooted phylogenetic trees 
is given in Fig.  1B. Since the NNI operation does never 
interchange the labels of internal nodes and of leaves, 
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Fig. 1  Illustration of the NNI operation on phylogenetic trees. A In a phylogenetic tree, an NNI operation on an internal edge (a, b) first selects two 
edges (a, x) and (b, y) that are, respectively, incident to a and b such that (a, x)  = (a, b)  = (y , b) ; it then rewires them to the opposite end so that 
(a, y) and (b, x) are the two edges in the resulting tree (red). Since a and b are labeled differently, a unrooted tree can be transformed into one of 
four possible trees in one NNI. B In a rooted phylogenetic tree T, an NNI operation on an internal edge (a, b) (where b is a child of a) transforms T 
by either (i) selecting two edges (a, x) and (b, y) that leave from a and b, respectively, and replacing them with (a, y) and (b, x) (left), where x  = b , 
or (ii) selecting an edge (b, y) leaving from b and replacing the unique edge (z, a) that enters a, (a, b) and (b, y) with (z, b), (b, a) and (a, y) (right), 
respectively. A rooted tree can be transformed into four different trees in one NNI. C An illustration of the interchange of two labels of the ends of 
an internal edge in two NNIs in an 1-labeled phylogenetic tree
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Proposition  1 is simple, but as far as we know, it has 
never appeared in literature.

Proposition 1  In the space of binary (resp. rooted) phy-
logenetic trees where the internal nodes are 1-labeled, any 
tree can be transformed into another.

Proof  This follows from the fact that two NNIs on an 
internal edge (a, b) are enough to exchange the labels of 
a and b (Fig.  1C). A similar fact is also true for binary 
rooted phylogenetic trees.

Generalized NNI on 1‑labeled trees
An arbitrary tree with n nodes can have at least 1 and at 
most n− 2 internal nodes of degree ≥ 2 . To transform a 
1-labeled tree into any other with the same number of 
nodes on the same label set, we define the generalized 
NNI (gNNI) operation as follows.

Definition 1  Let T be a 1-labeled tree and 
e = (a, b) ∈ E(T ) . A gNNI on e is an operation that trans-
forms T into a new tree S by (i) selecting a subset Ca and 
a subset Cb of the edges that are, respectively, incident to 
a and b such that e  ∈ Ca ∪ Cb and then (ii) replacing each 
edge (a, x) of Ca with (b, x) and each edge (b, y) of Cb with 
(a, y).

The gNNI operation is illustrated in Fig.  2. Note that 
if we apply a gNNI operation on an edge e = (a, b) to 
reconnect all the children of a to b while keeping the chil-
dren of b unmoved, a will become a leaf adjacent to b in 
the resulting tree. An important difference between the 
gNNI and the NNI is that the gNNI can be applied to any 
edge, whereas the NNI is defined only on internal edges.

Let L be a set of n elements. The gNNI graph Ggnni(L) 
is defined as a graph in which the nodes are all 1-labeled 
trees with nodes labeled with L and two trees are con-
nected by an edge if the two trees are one gNNI apart. 
The diameter of Ggnni(L) is written as D(Ggnni(L)) . 
The distance between two trees T ′ and T ′′ in the graph 
is called the gNNI distance between them, written as 
dgnni(T

′,T ′′).

Proposition 2  Let L be a set of n elements. The graph 
Ggnni(L) has the following properties:

•	 |V (Ggnni(L))| = nn−2;
•	 Ggnni(L) is connected;
•	 n− 2 ≤ D(Ggnni(L)) ≤ 2n− 4

Proof  The first property is the Cayley formula on the 
count of 1-labeled n-node trees. The second property is 
a consequence of the third that can be proved as follows.

Let T1,T2 ∈ V (Ggnni(L)) . Let r1 and r2 be the two nodes 
of T1 and T2 , respectively, that have the same label. Each 
n-node tree has at least two leaves and therefore n− 2 
internal nodes at most. By applying a gNNI operation on 
an edge (r1,u) , we can reconnect all the subtrees that each 
contain exactly one neighbor of u to r1 , producing a tree 
in which u becomes a leaf adjacent to r1 . By continuing 
to apply the gNNI operation on the edges between r1 and 
its non-leaf neighbors, we can transform T1 into the star 
tree centered at r1 in n− 2 gNNIs at most. In reverse, we 
can transform the star tree centered at r2 into T2 in n− 2 
gNNIs at most. By combining these two transformations, 
we transform T1 into T2 by using 2n− 4 gNNIs at most. 
This proves the upper bound of the third statement.

Let S be a line tree where the leaves are labeled with a 
and b and let T be a 1-labeled star tree centered at the 
node of the label a. The distances between a and b are 
(n− 1) and 1 in S and T, respectively. It takes at least 
(n− 2) gNNIs to transform S to T, as each gNNI can only 
decrease the distance between a and b by 1. This proves 
the lower bound of the third property.

Let T be a tree in Ggnni(L) . We use d(u, v) to denote the 
number of edges in the unique path between u and v in 
T. Any edge (u, v) ∈ E(T ) induces a two-part partition 
P(e) = {Pu,Pv} of L, where Pu = {ℓ(x) | d(x,u) < d(x, v)} , 
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Fig. 2  Illustration of the gNNI operation on labeled trees. A 
On a unrooted labeled tree, a gNNI operation on an edge (a, b) 
interchanges one or more children of a with an arbitrary number 
of children of b. B On a rooted labeled tree, a gNNI operation on an 
edge (a, b) (where b is the child of a) not only rewires the selected 
edges leaving a and b (left), but also rewires the unique edge 
entering a and b simultaneously if necessary (right).
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which contains u, and Pv = {ℓ(y) | d(y, v) < d(y,u)} , 
which contains v. Let us define P(T ) = {P(e) | e ∈ E(T )}.

Proposition 3  For any two 1-labeled trees S,  T of 
Ggnni(L),

where � is the set symmetric difference operator.

Proof  Let S and T be two trees with n nodes over the 
same label set. The first inequality is derived from the fol-
lowing two facts:

•	 P(S) \ P(T ) contains exactly one partition P(e) if T 
is obtained from S by applying a gNNI on e for each 
e ∈ E(S);

•	 A�B ⊆ (A�C) ∪ (C�B) for any three sets.

Let dgnni(S,T ) = d . There are a sequence of 1-labeled 
trees

such that Ti can be obtained from Ti−1 by applying a 
gNNI operation for i = 1, 2, · · · , d . Note that only one 
edge-induced partition of Ti−1 is not an edge-induced 
partition in Ti and vice versa. Since the Ti ’s are 1-labeled, 
we have that |P(Ti−1)�P(Ti)| = 2 for each i. Since the � 
operator satisfies the triangle inequality, we have that

and thus 12 |P(T )�P(S)| ≤ d = dgnni(S,T ).

To prove the upper bound, we let m = |P(S) ∩ P(T )| 
and let

where e′i ∈ E(S), e′′i ∈ E(T ) such that P(e′i) = P(e′′i ) for 
each i. S − {e′i|1 ≤ i ≤ m} is the disjoint union of m+ 1 
subtrees Sj ( 0 ≤ j ≤ m ); similarly, T − {e′′i |1 ≤ i ≤ m} is 
the disjoint union of m+ 1 subtrees Ti ( 0 ≤ i ≤ m ). Addi-
tionally, for each 0 ≤ j ≤ m , a unique index k(j) exists 
such that Sj and Tk(j) contain the same number (say oi ) of 
nodes, where oi ≥ 1 . Note that

1

2
|P(S)�P(T )| ≤ dgnni(S,T ) < |P(S)�P(T )|,

T = T0,T1, · · · ,Td = S

|P(T )�P(S)| ≤

d
∑

i=1

|P(Ti−1)�P(Ti)| = 2d

P(S) ∩ P(T ) ={P(e′1),P(e
′
2), · · ·P(e

′
m)}

= {P(e′′1),P(e
′′
2), · · ·P(e

′′
m)},

(1)
|P(S)�P(T )| + 2m = |E(S)| + |E(T )| = 2n− 2.

There are three possible cases for each pair of subtrees Sj 
and Tk(j) . First, if oj = 1 , we do not need to do any local 
adjustments of Sj to transform S to T.

If both Sj and Tk(j) contain two nodes u and v, (u, v) is 
then the only edge of Sj and Tk(j) . This implies that the 
two nodes are the ends of different edges of P(S) ∩ P(T ) 
in S and T, and thus we need one gNNI to switch these 
two nodes in S so that they are incident to the same edges 
as in T after the operation.

If both Sj and Tk(j) contain oj ( ≥ 3 ) nodes, we select an 
internal node s of Sj and a node t of Tk(j) such that s and 
t have the same label. By continuing to apply, at most, 
oj − 3 gNNIs on the edges incident to s, we can transform 
Sj into a star tree C centered on s, as s is an internal node. 
Similarly, by applying oj − 2 gNNIs at most, we can trans-
form C into Tk(j) . Taken together, the two transforma-
tions give a transformation from Sj into Tk(j) consisting of 
at most 2oj − 5 gNNIs at most.

Let mi be the number of subtrees Sj such that |Sj| = i for 
i = 1, 2 and let m3 be the number of subtrees Sj such that 
|Sj| ≥ 3 . We have that m1 +m2 +m3 = m+ 1 and there 
are n−m1 − 2m2 nodes in the union of all subtrees Sj in 
Case 3. By combining all the transformations from Sj to 
Tk(j) , we can transform S to T in c gNNIs at most, where:

Since m2 ≥ 0 and m3 ≥ 0 , by Eqn.  (1), 
c ≤ 2n− 2m− 2 = |P(S)�P(T )|.

The RF distance on 1‑labeled trees on the same label set
Let S and T be two 1-labeled trees. |P(S)�P(T )| 
is called the RF distance between S and T, denoted 
RF(S, T) [8]. For example, in the left tree given in Fig. 3A, 
the edge (2,  4) (bold) induces the two-part partition 
{{1, 2, 3}, {4, 5, 6, 7, 8}} ; the edge (7,  8) (bold) induces 
{{7}, {1, 2, 3, 4, 5, 6, 8}} . These two partitions are not equal 
to any edge-induced partition in the right tree. Similarly, 
we have that the two-part partitions induced by the edges 
(2, 4) and (7, 8) in the right tree are not found in the left 
tree. One can also verify that the other five edge-induced 
partitions in both trees are identical. Hence, the RF dis-
tance between the left and right trees is 4.

Like the phylogenetic tree case, it is easy to see that the 
RF satisfies the non-negativity, symmetry and triangle 
inequality conditions.

c =0+m2 + [2(n−m1 − 2m2)− 5m3]

=2n− 2m1 − 3m2 − 3m3 − 2m3

=2n− 2m1 − 3m2 − 3m3 − 2(m+ 1−m1 −m2)

=2n− 2m− 2−m2 − 3m3.
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Generalizations of the RF distance for labeled trees 
on different label sets
Let us consider labeled trees of different sizes or whose 
label sets are not the same. The RF distance between any 
pair of such trees is simply equal to the total number 
of edges in the trees and thus fails to capture their dis-
similarity. Here, we generalize the RF distance in order to 
measure the dis-similarity of such pairs of trees better.

Bourque distances
For a labeled tree S, we use L(S) to denote the label 
set of S. Since each node of V(S) is labeled with 
a non-empty subset of L(S) , each edge e = (u, v) 
induces the two-part partition P(e) = {L(u), L(v)} , 
where L(u) = ∪x∈V (S):d(x,u)<d(x,v)ℓ(x) and 
L(v) = ∪y∈V (S):d(y,v)<d(y,u)ℓ(y).

Let T be another labeled tree such that 
L(S) ∩ L(T ) �= ∅. We define C = L(S) ∩ L(T ).

For e′ ∈ E(S) , we assume that the two-part partition 
induced by e′ is P(e′) = {X ,L(S) \ X} , where X ⊂ L(S) . 
P(e′) is said to be similar to a two-part partition 
P = (C ′,C ′′) of C if the following condition is satisfied:

•	 {X ∩ C , (L(S) \ X) ∩ C} = {C ′,C ′′}.

We use ∼ to denote the similarity relationship.

Remarks  (1) The similarity relation is a many-to-many 
relation in the product space of edge-induced partitions 
P(S)× P(T ) . (2) If L(S) = L(T ) , the similarity becomes 
the equal relation.

Definition 2  Let S and T be two labeled trees and let 
P = {{C ′,C \ C ′} : ∅ �= C ′ ⊂ C , C ′ �= C} . The Bourque 
metric B(S, T) between S and T is defined as:

where

The rationale behind the Bourque distance is that 
we “correct” the RF distance by those partitions, that 
would be shared between both trees when labels unique 
to either of the two trees were ignored. For example, in 
Fig.  3B, the labels {7, 9} that appear in the left tree are 
not found in the right tree, whereas the labels {6, 8} that 
appear in the right tree are not found in the left tree. 
Therefore, none of the seven edge-induced partitions 
in either tree is found in the other. This implies that the 
RF distance between the two trees is 14. Since the labels 
appearing in both trees are {0, 1, 2, 3, 4, 5} , the edge (4, 9) 
(purple) of the left tree induces the same partition, 
{{1, 2, 3, 4}, {0, 5}} of {0, 1, 2, 3, 4, 5} as the edges (4, 6) and 
(6,  0) (purple) of the right tree. Furthermore, the edge 
(1, 2) (resp. (2, 3) and (2, 4)) induces the same partition of 
{0, 1, 2, 3, 4, 5} in both trees; and the edge (9, 5) of the left 
tree induces the same partition of {1, 2, 3, 4, 5} as the edge 
(0,  5) of the right tree. Therefore, the Bourque distance 
between both trees is 14 − 5 = 9.

Proposition 4  Let S and T be two labeled trees with s 
and t edges, respectively. 

	(i)	 If L(S) = L(T ) , B(S,T ) = RF(S, T) ≥ |s− t|.
	(ii)	 If L(S) ∩ L(T ) = ∅ , B(S,T ) = RF(S, T) = s+ t.
	(iii)	 If L(S)  = L(T ) , max(s, t) ≤ B(S,T ) ≤ s + t.

Proof  Let S and T be two labeled trees. (i) Without loss 
of generality, we assume s ≥ t . If L(S) = L(T ) , the first 
and second term of Eqn.(2) equals s + t − |P(S) ∩ P(T )| 

(2)|P(T ) ∪ P(S)| −
∑

P∈P

min
(

|Q′
S(P)|, |Q

′′
T (P)|

)

Q′
S(P) ={Q′ ∈ P(S) : Q′ ∼ P},

Q′′
T (P) ={Q′′ ∈ P(T ) : Q′′ ∼ P}.
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Fig. 3  Illustration of the RF distance and the Bourque distance. A 
Two unrooted 1-labeled trees. The RF distance between them is 4, as 
in the left tree, the edges (2, 4) and (7, 8) induces two partitions that 
are not found in the right tree and vice versa. B The labels 0–5 are 
the labels appearing in the two trees. The Bourque distance between 
them is 9 (see the main text for details). C The two labeled trees are 
rooted at different nodes. The RF distance between the left tree and 
the right tree is 2, as the partitions induced by (6, 4) of Tree A and 
(4, 6) of Tree B are different
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and −|P(S) ∩ P(T )| , respectively. Thus, 
B(S,T ) = RF(S, T) = s+ t − 2|P(S) ∩P(T)| ≥ s+ t − 2t = s− t.

(ii) If L(S) ∩ L(T ) = ∅ , then, the first term and sec-
ond term of Eqn.(2) equals s + t and 0, respectively, as 
|P(S) ∩ P(T )| = ∅.

(iii) If L(S)  = L(T ) , |P(T ) ∪ P(S)| = s + t , imply that 
B(S,T ) ≤ s + t . Moreover, by definition, we have:

and:

Additionally, we also have the following fact, which is 
proved in Additional file 1.

Proposition 5  The Bourque metric is a distance met-
ric in the space of labeled trees; in other words, it satis-
fies the non-negativity, symmetry and triangle inequality 
conditions.

Proposition 6  The Bourque distance between two 
labeled trees S and T can be computed in linear time 
O(|L(S)| + L(T )|.

Proof  The proof is an adaption of the proof by Day for 
computing the Robinson–Foulds distance of rooted leaf-
labelled trees in linear time [38]. We assume node labels 
are integers (otherwise, we apply hashing to convert the 
labels into integers). By indexing labels with integers 
and filling a hash table, we can determine the set C of 
node labels that are in both trees. If C is empty, we have 
B(S,T ) = s + t . Otherwise, we remove all labels that 
are not in C from the two trees S and T. This may create 
some nodes v with no labels, i. e. ℓ(v) = ∅ . We remove 
leafs with no labels from S and the corresponding edges 
as they do not induce any non-trivial partitions. We then 
select an arbitrary node r that is labeled with at least one 
label, root S at r and map the labels to [1, 2, · · · , |C|] based 
on a pre-order depth-first traversal of S. Since node labels 
occur only once per tree, this mapping is well-defined, 
and we obtain a new node labelling ℓ′ for which the ele-
ments of each ℓ′(v) are consecutive integers and smaller 
than the elements of ℓ′(w) for every w accessed after v in 
the pre-order depth-first traversal of S. In particular, 1 is 
a label of the root; for every subtree of the rooted S, the 

∑

P∈P

min
(

|Q′(P)|, |Q′′(P)|
)

≤min

(

∑

P∈P

|Q′
S(P)|,

∑

P∈P

|Q′′
T (P)|

)

≤min(|P(S)|, |P(T )|) = min(s, t)

B(S,T ) ≥ s + t −min(s, t) = max(s, t).

union of node labels of all nodes in the subtree is now a 
consecutive interval. Using efficient data structures, the 
above tree manipulations amortise to linear time with 
regard to |L(S)| . Using a post-order depth-first traversal 
of the rooted tree S, we can obtain all consecutive inter-
vals in linear time with regard to |L(S)| . Due to nodes 
with no labels, the same interval can occur multiple 
times. Therefore we track the counts of the intervals. This 
can be done efficiently with a hash table.

Now, we relabel the nodes of T using the mapping 
obtained from the pre-order traversal of S and root T at 
the node containing the label 1. We perform a post-order 
depth-first traversal of T and obtain the intervals defined 
by the smallest and largest label of each subtree. In addi-
tion we also keep track of the total number of labels in the 
subtree. If the length of the interval matches this number, 
the interval is consecutive and thereby the incoming edge 
to the subtree defines a partition that is also induced by 
an edge in S. The necessary operations amortise to linear 
time with regard to |L(S)| + |L(T )| . Since the label 1 is 
located at the root in both S and T, the obtained inter-
vals for S and T are always the part of the partition that 
does not contain the label 1. Therefore it is sufficient to 
consider these intervals to compare partitions. Let ZS be 
the multi-set of intervals obtained from S and ZT be the 
multi-set of (consecutive) intervals obtained from T, then 
we obtain the second part of Eq.  (2) by summing over 
the smaller prevalence of each interval in either T or S. 
This can be accomplished in linear time using two hash 
tables to track the prevalence of the intervals in each tree. 
The first part of Eq.  (2) is just the number of edges in S 
and T in the case L(S)  = L(T ) . Pseudocode of the algo-
rithm is given in Section  4 of Additional file  1. In case 
L(S) = L(T ) , B(S, T) is simply the size of the intersection 
of ZS and ZT . This concludes that the Bourque distance 
can be computed in linear time.

High‑order Bourque distances for labelled trees
Like the RF distance, the Bourque distance has the ten-
dency to overpenalize certain labeling differences and 
can saturate quickly (see our validation tests on random 
trees presented later). In this subsection, we will use the 
Bourque distances between local subtrees and a match-
ing algorithm ([15, 17, 18]) to define new distance met-
rics. The new metrics will take more values than the basic 
version.

Let T be a labeled tree and u ∈ V (T ) . For an inte-
ger k > 0 , the k-star subtree Ck(u) centered at u 
is defined as the subtree induced by the vertex set 
{v ∈ V (T ) : d(u, v) ≤ k} in T. For any pair of labeled 
trees S and T of n and n′ nodes, respectively, such that 
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n ≤ n′ , define BGk(S, T) to be the complete weighted 
bipartite graph with two node parts {∅1, · · · ∅n′−n} ∪ V (S) 
and V(T), where each ∅i is just a copy of the empty graph; 
the Bourque distance B(Ck(x),Ck(y)) is assigned to the 
edge (x, y) as a weight for every x ∈ V (S) and y ∈ V (T ) 
and a weight of |E(Ck(y))| is assigned to the edge (∅i, y) 
for any ∅i and y ∈ V (T ) . Although Ck(x) can be identical 
for different nodes x, BGk(S, T) always has 2n′ nodes.

Definition 3  Let S and T be two labeled trees and 
k ≥ 1 . The k-Bourque distance Bk(S,T ) is defined to be 
the minimum weight of a perfect matching in BGk(S, T).

Proposition 7  The k-Bourque distances have the follow-
ing properties: 

(1)	 For any 1-labeled trees S and T such that 
|V (S)| = |V (T )| = n , Bk(S,T ) = n · B(S,T ) for 
any k ≥ max(diam(S), diam(T)) , where diam(X) is 
the diameter of X for X = S,T .

(2)	 Bk(S,T ) satisfies the non-negativity, symmetry and 
triangle inequality conditions for each k ≥ 1.

Proof  The full proof appears in the Additional file 1.

Remark  The run time of computing the k-Bourque dis-
tance for two labeled trees S and T with n and n′ nodes, 
respectively, is O(max(n′, n)3) , as computing the Bourque 
distances between the k-star trees centered at tree nodes 
takes O(max(n′, n)) in the worst case and computing the 
minimum weight perfect matching in BGk(S, T) takes 
O(max(n′, n)3) time.

The Bourque distances for mutation trees
In this section, we will describe how to generalize the 
gNNI and Bourque distances to rooted labeled trees.

The gNNI for mutation trees
To transform a binary rooted phylogenetic tree into 
another, we need the so-called rotation operation that 
allows two nodes u and v that are connected by an edge 
to interchange not only one of their children but also 
their positions (right, Fig. 1B) [40]. A gNNI on a directed 
edge (a, b) of a rooted tree rewires some outgoing edges 
from a to b and vice versa and/or rewires the incoming 
edges to both a and b simultaneously (right, Fig.  2B). 
More precisely, the gNNI is defined on rooted labeled 
trees as follows:

Definition 4  Let T be a rooted labeled tree and 
e = (a, b) ∈ E(T ) (where b is a child of a). An NNI opera-
tion on e transforms T by selecting a subset of edges 
Ca = {(a, x)} that leave a, where (a, b)  ∈ Ca , and a sub-
set of edges Cb = {(b, y)} that leave b and then either (i) 
replacing each edge (a, x) of Ca with (b, x) and each edge 
(b,  y) of Cb with (a,  y) (left, Fig.  2B) or (ii) rewiring the 
edges in Ca and Cb as in (i) as well as replacing the unique 
edge (z, a) that enters a and (a, b) with (z, b) and (b, a), 
respectively (right, Fig. 2B).

It is easy to see that for any pair of arbitrary labeled 
trees S and T, S can be transformed into T through a 
series of gNNIs as long as the labels appearing in the two 
trees are the same.

The RF and Bourque distances for mutation trees
In a rooted labeled tree, each directed edge also induces 
a 2-part partition on the label set. Therefore, the RF dis-
tance is well defined even for rooted trees that may not 
be uniquely labeled.

Let T be a rooted labeled tree. Recall that L(T ) denotes 
the set of labels appearing in T. For a non-root node 
u ∈ V (T ) , we use LT (u) to denote the set of the labels of 
u and its descendants, i.e.

The unique edge entering u induces then an “ordered” 
two-part partition (LT (u),L(T ) \ LT (u)) , which is an 
ordered pair of the two complementary subsets of L(T ) . 
Since the root of a rooted tree is a distinct node of the 
tree, we assume that the root is contained in the second 
part of an edge-induced partition. Hence, two edge-
induced ordered partitions P′ and P′′ are equal if and 
only if the first part of P′ is equal to the first component 
of P′′ and the second part of P′ is equal to the second 
component of P′′ . This is particularly useful when com-
paring two rooted trees with different roots. Let us define 
OP(T ) to be the set of all edge-induced ordered parti-
tions of T.

Definition 5  For two rooted labeled trees S and T, 
the RF distance RF(S, T) between S and T is defined as 
|OP(T ) � OP(T )|.

For example, the two trees given in Fig. 3C are obtained 
from rooting a unrooted labeled tree at different nodes. 
Only the partition induced by the edge (6, 4) of the left 
tree is not found in the right tree and vice versa. Hence, 
the RF distance between these two trees is 2.

(3)LT (u) = ∪x∈{u}∪DT (u)ℓ(x).
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Proposition 8  Let S and T be two rooted labeled trees of 
equal size that have the same labels. 

(1)	 Let t ∈ V (T ) such that it has the same label as the 
root rS of S and let rT be the root of T. We have that 
RF(S,T ) ≥ 2dT (rT , t) , where d(rT , t) is the distance 
between rT and t in T.

(2)	 12RF(S,T ) ≤ dgnni(S,T ) ≤ RF(S,T ).

Proof  (1). Let the path between rT and t be 
rT = t0, t1, t2, · · · , td = t , where d = dT (rT , t) . All label 
sets LT (ti) contain the label ℓ(rS) . However, only LT (t0) 
is an element of {LS(u) | u ∈ V (S)} . Furthermore, since 
both trees have the same number of nodes and edges, 
at least d subsets of {LS(u) | u ∈ V (S)} are not found in 
{LT (v) | v ∈ V (T )} . Hence, RF(S,T ) ≥ 2d.

(2) The proof is similar to that of Proposition 3.

Similarly, we can generalize the similarity relation-
ship of edge-induced partitions. For two non-root nodes 
u ∈ V (S) and v ∈ V (T ) , the ordered partitioned induced 
by the edges entering u and v are similar if and only if

 and ∅ �= LS(u) ∩ C �= C , where C = L(S) ∩ L(T ) , 
denoted by

Definition 6  The Bourque distance B(S,  T) between 
two rooted labeled trees S and T is defined to be:

where

Proposition 9  The Bourque distance between two 
mutation trees S and T can be computed in linear time 
O(|L(S)| + L(T )|.

The proof of Proposition  9 is analogous to Proposi-
tion 6, but instead of rooting the tree at a random node, 
we use the actual root as start for the tree traversal. By 
construction, the generated intervals will not contain 
any root labels and thus represent the left component of 
the partition. Hence, partitions can still be counted and 

(LS(u) ∩ C , [L(S) \ LS(u)] ∩ C)

= (LT (v) ∩ C , [L(T ) \ LT (v)] ∩ C)

(LS(u),L(S) \ LS(u)) ∼ (LT (v),L(T ) \ LT (v)).

(4)|OP(S) ∪OP(T )| −
∑

P∈P

min(|O′
S(P)|, |O

′′
T (P)|),

O′
S(P) = {P′ ∈ OP(S) : P′ ∼ P},

O′′
T (P) = {P′′ ∈ OP(T ) : P′′ ∼ P}.

compared based on the intervals obtained from the tree 
traversals as detailed in the proof of Proposition 6. There-
fore the Bourque distance can be computed in linear time 
also for mutation trees.

High‑order Bourque distances
Let S and T be two rooted labeled trees and k ≥ 1 . Recall 
that DT (u) denotes the set of descendants of u in T. 
Define further D(k)

T (u) = {v ∈ DT (u) : dT (u, v) ≤ k} and 
T (k)(u) to be the subtree of T induced by D(k)

T (u).
Like the unrooted tree case, we define the k-Bourque 

distance Bk(S,T ) to be the minimum weight of a per-
fect matching in the complete weighted bipartite graph 
Gk(S,T ) . Here, assuming n = |V (S)| ≤ |V (T )| = n′ , 
Gk(S,T ) has the vertex set:

and the edge set:

together with the following edge-weight function w:

where each ∅i is a copy of the empty graph.

Comparison of eight distance measures on rooted 
labeled trees
In this section, we compare the Bourque distance (BD) 
against the 1-Bourque distance (1-BD), the 2-Bourque 
distance (2-BD) and five previously published distance 
measures: Common Ancestor Set (CASet) [35], Distinctly 
Inherited Set Comparison (DISC) [35], an Ancestor Dif-
ference measure (AD) [36], a Triplet-based Distance (TD) 
[34] and the Multi-Labeled Tree Edit Distance (MLTED) 
measure [37]. A detailed description of these measures is 
given in Section  3 of the Supplementary file. The gNNI 
distance is not included in the comparison, as no efficient 
method for computing it is known.

Frequency distributions of the pair‑wise distances 
in different metrics
There are 16,807 unrooted and 7× 16, 807 rooted 
1-labeled trees with seven nodes. Let R denote the 
set of such trees and let Ri denote the set of those 
rooted at Node i, where 1 ≤ i ≤ 7 . Let d be a dis-
tance function of rooted labeled trees. Clearly, for any 
i, {d(x, y) : x ∈ Ri, y ∈ Ri} = {d(x, y) : x ∈ R1, y ∈ R1} ; 
for different nodes i and j, 
{d(x, y) : x ∈ Ri, y ∈ Rj} = {d(x, y) : x ∈ R1, y ∈ R2}   . 
Therefore, for each measure, we computed the pairwise 

{∅i, x : 1 ≤ i ≤ n′ − n; x ∈ V (S)} ∪ {y : y ∈ V (T )}

{∅i, x : 1 ≤ i ≤ n′ − n; x ∈ V (S)} × {y : y ∈ V (T )},

w((x, y)) = B(S(k)(x),T (k)(y)),

w((∅i, y)) = |E(T (k)(y))|.
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distances between any x ∈ R1 and any y ∈ R1 ∪ R2 such 
that x  = y.

The frequency distributions of the BD, 1-BD and 2-BD 
are given in Fig. 4A, showing a Poisson distribution as the 
RF in the unrooted case [41].

The pairwise distances of AD, CASet, DISC and TD 
range from 0 to 1. Because of over 512 million of pair-
wise distances, we binned them into 40 intervals 
(

i
40 ,

i+1
40

)

 , 0 ≤ i ≤ 39 . The histograms for the frequency 
distributions of the pairwise distance values for the three 
measures are given in Fig. 4B. The AD and CASet meas-
ures have a similar distribution (blue and red in Fig. 4B), 
each having two peaks. The pairwise distances between 
trees rooted at the same node form the first peak, 
whereas the pairwise distances between trees rooted at 
different nodes form the second peak. These facts show 
that AD and CASet are sensitive to the root node. The 
frequency distribution (black) of the DISC measure 
appears to be again a kind of Poisson distribution. 
Whether the pairwise distances of the DISC, 1-BD and 
2-BD between all 1-labeled trees with a given number of 
nodes follow a Poisson distribution or not needs further 
mathematical investigation. The key point is that the 
DISC measure and the Bourque metrics have different 

distributions of pairwise distances from the AD and 
DISC measures.

The frequency distribution of the TD is clearly differ-
ent from the AD, CASet and DISC (Fig. 4C). More than 
60% of the pairwise distances are greater than 0.9. For the 
discrete MLTED measure, we observe a Poisson-like dis-
tribution similar to the BD metric.

Lastly, for each of the AD, CASet and TD measures, 
there are many pairs of trees with the same distance 
value, that have distinct distances in the BD metric. 
Additional file 2: Fig. S1 give an example for each of these 
measures.

Pairwise distances between random trees
We compared the BD, 1-BD, 2-BD, AD, CASet, DISC, 
TD and MLTED measures on rooted 1-labeled, 30-node 
trees that were randomly generated as follows. The tree 
generator first generated a random unrooted 1-labeled 
30-node tree T0 and then generated 20,000 random 
unrooted 1-labeled, 30-node trees in 400 iterations. In 
the i-th iteration, a tree generated in the (i − 1)-th itera-
tion was randomly selected; five random trees were then 
generated from the selected tree by applying a random 
NNI on an edge e = (u, v) that was randomly selected, 

A

B D

C

Fig. 4  The frequency distributions of all possible pairwise distances in the space of rooted 1-labeled trees with seven nodes. A The distributions for 
the BD, 1-BD and 2-BD metrics.B The distributions for the AD, CASet and DISC measures. Here, all the pairwise distances were binned into 40 equal 
intervals 

(

i
40
, i+1
40

]

 , 0 ≤ i ≤ 39 . C The distribution for the TD measure. D The distribution for the MLTED measure. BD Bourque distance, AD ancestor 

distance, CASet common ancestor set distance, DISC distinctly inherited set, TD triplet-based distance, MLTED multi-label tree edit distance
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where u was an internal node. Here, a NNI just switched 
one subtree from the u side to v and one subtree from 
the v side to u if v was not a leaf and just moved a subtree 
from u to v if v was a leaf.

The generated random trees are unrooted 1-labeled 
trees on {0, 1, · · · , 29} . We rooted all the trees at Node 
0. To generate random tree with different label sets and/
or with multiple-labeled nodes, we first removed three 
nodes (27, 28, 29), two nodes (28, 29) or one node (29) 
with probability 1

200 , 
1

100 , 
1

100 , respectively, in each ran-
dom tree; we then decided to merge three/two nodes that 
are not equal Node 0 into one node with multiple labels 
with probability 1

150 and 2
150 , respectively. Here, nodes 

were removed from a tree one by one. When a node was 
removed, a neighbor of it was randomly selected and the 
other neighbors were reconnected to the selected one. 
When it was decided to merge t nodes in a tree, then t 
non-0 nodes ui ( 1 ≤ i ≤ t ) were randomly selected; 
u2, · · · ,ut were removed from the tree and u1 was rela-
beled with the subset {u1,u2, . . . ,ut}.

We computed the eight different distance values 
between T0 and the rest of 19,999, which are summa-
rized in Fig.  5. This produced two interesting findings. 
First, the BD distances from T0 to the random trees range 
from 0 to 58; the BD, correlated with 1-BD and 2-BD well 
with Pearson correlation coefficients (PCC) of 0.5769 
and 0.4882, respectively. In particular, when the Bour-
que distances ranged from 0 to 35, the PCC between BD 

and 1-BD (resp. 2-BD) is 0.92 (resp. 0.858) (top left panel, 
Fig.  5). Second, AD, DISC, MLTED and TD correlated 
with BD (and hence 1-BD and 2-BD) surprisingly well 
with Pearson correlation coefficients (PCC) from 0.38 to 
0.543 even though they are defined differently. However, 
CASet and BD poorly correlated (middle panel, second 
row) with PCC 0.103. Third, AS and DISC correlated well 
with PPC of 0.615.

The same analyses were also done on another dataset 
which was generated with higher removal and label-
merging probability. The probabilities that one, two and 
three are removed were set to 2/100, 2/100 and 1/100; 
the probabilities that three and two labels are merged 
were set to 2/100 and 4/100, The analyses show the same 
correlation patterns but with lower PCCs (Additional 
file  3: Figure S2). More precisely, BD correlated with 
1-BD, 2-BD, DISC, CASet, AD, TD and MLTED with 
PCCs 0.368, 0.316, 0.522, 0.108, 0.391, 0.545 and 0.498, 
respectively.

Applications to mutation trees
The distances between three leukemia mutation trees
Single-cell sequencing data are prone to errors. Mutation 
trees inferred by different methods from the single-cell 
sequencing data of a patient are often different in both 
topology and labels, which are mutated genes. Figure  6 
shows mutation trees inferred by SCITE [28], B-SCITE 
[31] and PhISCS [30] for Patient 2, who had childhood 

Fig. 5  The scatter plots of the Bourque vs the other distance measures between a rooted 1-labeled tree and 19,999 random trees with different 
label sets or multi-labeled nodes rooted at the same node. BD Bourque distance, AD ancestor distance, CASet common ancestor set distance, DISC 
distinctly inherited set, MLTED multi-label tree edit distance, TD triplet-based distance
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acute lymphoblastic leukemia, reported in [20]. Both the 
SCITE and B-SCITE trees (i.e. Tree A and Tree B) con-
tain 16 mutations, whereas the PhISCS tree (i.e. Tree C) 
contains only 13 of the 16 mutations.

The pairwise distances between the trees were calcu-
lated using the eight distance measures (Table  1). The 
difference between Tree A and Tree B is mainly the posi-
tions of Mutation 4 and Mutation 5 in the long chain on 
the left. They have the smallest pairwise distance among 
the three trees for each of the eight measures. Tree B and 
Tree C have the same topology and are different only in 
that Mutations 4, 11 and 12 are missing in the latter. For 
each measure, the distance between Tree B and Tree C is 
smaller than or nearly equal to the distance between Tree 
A and Tree C, consistent with intuition.

Distances between four simulated mutation trees
Figure  7 presents four simulated mutation trees down-
loaded from the OncoLib database for which the CASet 
and DISC disagreed significantly [35]. The pairwise dis-
tances between the four trees are given in Table 2. Note 
that the CASet and DISC distances between T5 and 
T20 and between T14 and T26 are different from those 
reported in [35]. This is because a mutation appearing in 
a tree node is not an ancestor of another mutation in the 
same node in our distance calculation. Regardless of the 
differences between the definitions, our distance com-
puting also shows the disagreement between the CASet 
and DISC distances. For example, the CASet distance 
between T5 and T20 is four times as large as the CASet 
distance between T14 and T26 , whereas the DISC distance 
between the former is smaller than the DISC distance 

Fig. 6  The mutation trees inferred by three different methods for Patient 2 with childhood acute lymphoblastic leukemia that was reported in 
[20]. A The tree inferred by SCITE [28], B The tree inferred by B-SCITE [31]. C The tree inferred by PhISCS [30]. The mutation trees contain 16 mutated 
genes: ATRNL1 (1), BDNF_AS (2), BRD7P3 (3), CMTM8 (4), FAM105A (5), FGD4 (6), INHA (7), LINXC00052 (8), PCDH7 (9), PLEC (10), RIMS2 (11), RRP8 (12), 
SIGLEC10 (13), TRRAP (14), XPO7 (15), ZC3H3 (16)
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between the latter. This disagreement is also observed on 
the tree pairs {T5,T14} and {T20,T26}.

Since these four different trees have only one internal 
edge, the Bourque distance between any two of them is 
2. The pairwise 1-BD distances are not much different. 
However, their differences are reflected in the pairwise 
2-BD distances.

Conclusions
We have introduced the Bourque and k-Bourque metrics 
for both unrooted labeled trees and mutation trees. These 
distances are natural generalizations of the RF distance 
(see Definitions  2 and  6). We demonstrate, through a 
simulation, that they correlate with the CASet, DISC and 
AD distance measures for similar trees, but have different 
distributions of pairwise distances between all 1-labeled 
trees with a fixed number of nodes. The advantages of the 
Bourque metric over CASet and DISC include that it is a 
distance metric and computable in linear time (Table 3). 
The k-Bourque metrics refine the Bourque metric.

Another contribution is a new connection between 
the RF and gNNI metrics on labeled trees. A few theo-
retical questions arise from the connection. Is computing 
the gNNI distance for labeled trees NP-complete? What 
is the maximum value of the NNI distance between two 
binary 1-labeled trees? Can the RF distance be used to 
define a polynomial time algorithm with approximation 
ratio < 2 for the gNNi distance?

General mathematical questions also arise from the 
development of new metrics for comparisons of mutation 
trees. One is investigating mathematical relationships 
between the proposed metrics. Another is determining 

Table 1  Pairwise distances between three mutation trees A, B, 
and C in Fig. 6 in different distance measures

The union extension of CASet and DISC were used to measure the difference 
between Tree A (or Tree B) and Tree C [35]

A & B A & C B & C

BD 12 19 16

1-BD 10 18 15

2-BD 27 36 32

MLTED 4 7 5

CASet 0.1079 0.5495 0.5302

DISC 0.2394 0.4331 0.3436

AD 0.1699 0.4874 0.4651

TD 0.2536 0.6393 0.5821

Fig. 7  Four simulated mutation trees T5, T14, T20 and T26 from the 
OncoLib database [43]

Table 2  Pairwise distances between trees in Fig.  6 in different 
distance measures

T5 & T14 T5 & T20 T5 & T26

BD 2 2 2

1-BD 9 10 10

2-BD 12 14 13

MLTED 6 10 6

CASet 0.0523 0.1830 0.0523

DISC 0.3807 0.2402 0.3807

AD 0.2500 0.1944 0.2500

TD 0.1961 0.4363 0.2120

T14 & T20 T14 & T26 T20 & T26
BD 2 2 2

1-BD 9 9 10

2-BD 13 12 13

MLTED 14 10 12

CASet 0.1961 0.0392 0.2157

DISC 0.2483 0.3529 0.3039

AD 0.2222 0.2222 0.2778

TD 0.4669 0.2659 0.4951
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the distributions of pairwise distances between all the 
1-labeled trees of the same size. For example, is the distri-
bution Poisson for the Bourque metrics?

Finally, further generalisations of the Bourque distance 
will be interesting to study in the future, in particular for 
mutation trees where labels may occur multiple times in 
different nodes [34]. The motivation for this generalisa-
tion comes from the observation that in tumours the 
same mutations can happen independently in multiple 
subclones and can also be lost again over time [42].
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