
Schaller et al. Algorithms Mol Biol           (2021) 16:19  
https://doi.org/10.1186/s13015-021-00196-3

RESEARCH

Heuristic algorithms for best match graph 
editing
David Schaller1,2*  , Manuela Geiß3, Marc Hellmuth4 and Peter F. Stadler1,2,5,6,7,8 

Abstract 

Background:  Best match graphs (BMGs) are a class of colored digraphs that naturally appear in mathematical phy-
logenetics as a representation of the pairwise most closely related genes among multiple species. An arc connects a 
gene x with a gene y from another species (vertex color) Y whenever it is one of the phylogenetically closest relatives 
of x. BMGs can be approximated with the help of similarity measures between gene sequences, albeit not without 
errors. Empirical estimates thus will usually violate the theoretical properties of BMGs. The corresponding graph edit-
ing problem can be used to guide error correction for best match data. Since the arc set modification problems for 
BMGs are NP-complete, efficient heuristics are needed if BMGs are to be used for the practical analysis of biological 
sequence data.

Results:  Since BMGs have a characterization in terms of consistency of a certain set of rooted triples (binary trees on 
three vertices) defined on the set of genes, we consider heuristics that operate on triple sets. As an alternative, we 
show that there is a close connection to a set partitioning problem that leads to a class of top-down recursive algo-
rithms that are similar to Aho’s supertree algorithm and give rise to BMG editing algorithms that are consistent in the 
sense that they leave BMGs invariant. Extensive benchmarking shows that community detection algorithms for the 
partitioning steps perform best for BMG editing.

Conclusion:  Noisy BMG data can be corrected with sufficient accuracy and efficiency to make BMGs an attractive 
alternative to classical phylogenetic methods.
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Background
A wide range of tasks in computational biology start 
by determining, for a given “query gene” x in a species 
A, one or all genes y in another species B that are most 
similar to x. Conceptually, these best matches y of the 
query gene x are meant to approximate the set of genes 
in B that are evolutionary most closely related to x. Best 
matches can be identified by comparing evolutionary 
distances [1], which in turn are usually obtained from 

sequence alignments [2]. In practice, fast approxima-
tion algorithms such as blast and its successors are 
often used for this purpose [3, 4]. Even if sequence simi-
larity is measured perfectly, deviations from a common 
molecular clock, i.e., differences in the evolutionary rates 
of different genes, cause discrepancies between best hits 
(most similar sequences) and best matches (evolution-
ary most closely related sequences), see [5] for a detailed 
discussion.

The idea of best matches in the sense of closest evo-
lutionary relatedness pre-supposes an underlying tree T 
that describes the phylogenetic relationships among the 
genes, which correspond to the leaves of T, and a map 
σ assigning to each gene x the species σ(x) in which it 
resides. Given such a leaf-colored tree (T , σ) , the best 
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match graph �G(T , σ) has as its vertex set the leaves of 
T, i.e., the set of genes, and as (directed) arcs the best 
matches. The latter are defined as the pairs (x,  y) for 
which the last common ancestor of x and y is at least as 
close to x as the last common ancestor of x and any other 
gene y′ from the same species σ(y′) = σ(y) . Best match 
graphs (BMGs), i.e., digraphs that are derived from a 
leaf-labeled tree (T , σ) in this manner (cf. Defs. 1 and 2 
below), form a very restrictive class of colored digraphs 
[6, 7]. Empirically determined best hit data therefore will 
in general not satisfy the defining properties of BMGs. 
They can be corrected in part, however, by consider-
ing the problem of editing a given digraph to the clos-
est BMG. We refer to this problem as BMG editing in 
line with the usual terminology to describe graph edit-
ing problems by the target class of graphs. Importantly, 
the input digraph will not be a BMG in general. In [8], it 
was shown that the arc modification problems for BMGs 
are NP-hard, but can be formulated as integer linear 
programs (ILPs) allowing practical solutions for small 
instances. However, in computational biology, applica-
tions to large gene families would be of particular inter-
est, creating the need for faster, approximate solutions 
for BMG editing. Before embarking to develop software 
for a BMG-based analysis of large sequence data sets, 
we need to understand whether the editing problem for 
BMGs is tractable in practice with satisfactory accuracy 
and for interestingly large instances. The purpose of this 
contribution is to establish that this is indeed the case.

Motivated by both theoretical and practical consid-
erations, we are mainly interested in heuristics that are 
consistent in the following sense: Let A be an algorithm 
that takes an arbitrary vertex-colored digraph ( �G, σ) as 
input and outputs a BMG A( �G, σ) . Then A is consistent 
if A( �G, σ) = ( �G, σ) whenever the input digraph ( �G, σ) is 
a BMG. Such an algorithm can be obtained trivially by 
adding an initial check whether the input is a BMG or 
not. All algorithms described here, however, are designed 
such that their edit-operations leave BMGs unchanged.

BMGs can be characterized in terms of their set of so-
called informative (rooted) triples R( �G, σ) defined on the 
set of genes. These are binary trees with three leaves that 
can be easily extracted from a vertex-colored digraph (cf. 
Def.  6). In particular, R( �G, σ) is consistent for a BMG 
( �G, σ) , i.e., there is a common supertree for all triples in 
R( �G, σ) . A formal definition of triple consistency will 
be provided in the next section. In [7], it was shown 
that a vertex-colored digraph ( �G = (V ,E), σ) is a BMG 
if and only if (a) the set of informative triples R( �G, σ) is 
consistent and (b) the BMG �G(T̂ , σ) of the correspond-
ing so-called Aho tree T̂ :=Aho (R( �G, σ),V ) coincides 
with ( �G, σ) . In general, the Aho tree Aho (R,V ) of a 
consistent set of triples R on a set V is a least resolved 

supertree of all the triples in R . However, there are well-
known examples for which the Aho tree is neither the 
unique least resolved supertree for R nor the tree with 
a minimal number of vertices [9]. For a BMG, on the 
other hand, T̂ :=Aho (R( �G, σ),V ) is the unique least 
resolved tree (LRT) that explains ( �G, σ) = �G(T̂ , σ) [6]. 
See Fig. 1 for an illustrative example of the construction 
of the LRT Aho (R( �G, σ),V ) of a BMG ( �G, σ) using the 
BUILD algorithm for supertree construction [10]. These 
close connections between recognizing BMGs and con-
structing supertrees suggest to adapt ideas from heuristic 
algorithms for triple consistency problems and supertree 
construction for BMG editing.

The simplest approach, therefore, is to extract a maxi-
mal consistent subset R∗ from R( �G, σ) and to use the 
BMG �G(Aho (R∗,V ), σ) as an approximation, see Alg. 1 
below. A more detailed analysis of arcs in ( �G, σ) that 
violate the property of being a BMG, however, will lead 
to a notion of “unsatisfiable relations” (UR), which can 
be used to count the arc modifications associated with 
a partition V of the vertex set V of �G . It also gives rise 
to a top-down algorithm in which the vertex set of �G is 
recursively edited and partitioned. A large class of heu-
ristics for BMG editing can be constructed depending 
on the construction of the partition V in each recursion 
step. We shall see that the arc edit sets in different steps 
of the recursion are disjoint. A main result of this con-
tribution, Thm.  23, links the partitions V appearing in 
BMG editing algorithms to the auxiliary graphs appear-
ing in the BUILD algorithm. This provides a guarantee 
that the BMG editing algorithms are consistent provided 
the choice of V is such that it does not enforce edits 
whenever an alternative partition with an empty UR is 
available. For BMGs, this is in particular the case for the 
partitions appearing in the BUILD algorithm. We pro-
ceed to show by reduction from Set Splitting that find-
ing a partition with a minimal number of unsatisfiable 
relations is NP-hard.

The theoretical results are complemented by com-
putational experiments on BMGs with randomly per-
turbed arc sets. To this end, we compare the arcs sets of 
the editing results with those of the perturbed digraphs 
and, since they are known in simulations, of the original 
BMGs. We focus on a comparison of different algorithms 
to construct the partitions V . Somewhat surprisingly, we 
find that minimizing the cardinality of the UR alone is 
not the best approach, since this tends to produce very 
unbalanced partitions and thus requires a large number 
of steps in the recursions whose costs add up. Instead, 
certain types of clustering or community detection 
approaches that favor more balanced partitions tend to 
perform well in terms of the usual measures for digraph 
comparison such as the (absolute) symmetric difference, 
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as well as recall, precision, and accuracy w.r.t. the arc 
sets. Finally, a brief analysis of the protein-coding genes 
of eleven Aquificales species suggests that our simulation 
results are a good representation of BMG editing in real-
life applications.

Theory
Notation and Preliminaries
Partitions. V = {V1,V2, . . . ,Vk} is a partition of a set V if 
(i) Vi  = ∅ , (ii) 

⋃k
i=1 Vi = V  and (iii) Vi ∩ Vj = ∅ for i  = j . 

A partition is non-trivial if |V| ≥ 2 . Consider two parti-
tions V = {V1, . . . ,Vk} and V ′ = {V ′

1, . . . ,V
′
l } of V. If for 

every 1 ≤ j′ ≤ l there is a j such that V ′
j′ ⊆ Vj , i.e., if every 

set in V ′ is completely contained in a set in V , then V ′ is a 
refinement of V , and V is a coarse-graining of V ′.

Graphs. Mostly, we consider simple directed graphs 
(digraphs) �G = (V ,E) with vertex set V and arc set 
E ⊆ V × V \ {(v, v) | v ∈ V } . We will frequently write 
V ( �G) and E( �G) to explicitly refer to the graph �G . For a 
vertex x ∈ V  , we say that (y, x) is an in-arc and (x, z) is 
an out-arc. The subgraph induced by a subset W ⊆ V  
is denoted by �G[W ] . Undirected graphs can be identi-
fied with symmetric digraphs, i.e., the undirected graph 
G underlying a digraph �G is obtained by dropping the 
direction of all arcs, or by symmetrizing the digraph, i.e., 
adding the arc (y, x) to E( �G) for every arc (x, y) ∈ E( �G) . 
When referring to an undirected graph G, we write xy 
for (x, y), (y, x) ∈ E(G) and call xy an edge. The (weakly) 

connected components of �G are the maximal connected 
subgraphs of the undirected graph underlying �G or, 
equivalently, the maximal strongly connected compo-
nents of the symmetrized digraph. Whenever the context 
is clear, we will also refer to the partition of V formed by 
the vertex sets of the maximal connected subgraphs as 
the set of connected components.

A vertex coloring is a map σ : V → S , where S is a non-
empty set of colors. A vertex coloring of �G is proper if 
σ(x)  = σ(y) whenever (x, y) ∈ E( �G) . We write ( �G, σ) for 
a vertex-colored digraph and denote by V[r] the subset 
of vertices of a graph ( �G = (V ,E), σ) that have color r. 
Moreover, we define σ(W ):={σ(x) | x ∈ W } for the sub-
set of colors present in a set W ⊆ V .

We write N(x) for the set of out-neighbors of 
a vertex x ∈ V ( �G) and N−(x) for the set of in-
neighbors of x. A digraph �G is called sink-free 
if N (x)  = ∅ holds for all x ∈ V ( �G) . We write 
A△B:=(A \ B) ∪ (B \ A) for the symmetric differ-
ence of two sets A and B, and define, for a digraph 
�G = (V ,E) and arc set F ⊆ (V × V ) \ {(v, v) | v ∈ V } , 
the digraph �G△ F :=(V ,E△ F) . Analogously, we write 
�G + F :=(V ,E ∪ F) and �G − F :=(V ,E \ F).

Phylogenetic trees. Consider an undirected, rooted tree 
T with leaf set L(T ) ⊆ V (T ) and root ρT ∈ V (T ) . Its 
inner vertices are given by the set V 0(T ) = V (T ) \ L(T ) . 
The ancestor order on V(T) is defined such that u �T v if 
v lies on the unique path from u to the root ρT , i.e., if v is 

Fig. 1  Construction of the LRT for a BMG (�G, σ) using the BUILD algorithm. Each recursion step (pink boxes) corresponds to a vertex of the 
resulting tree (trivial steps on single vertices are omitted in the drawing). The algorithm recurses on the connected components (gray dashed 
boxes) of the Aho graphs and the corresponding subsets of triples
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an ancestor of v. For brevity we set u ≺T v if u �T v and 
u  = v . If xy is an edge in T such that y ≺T x , then x is the 
parent of y and y the child of x. The set of children of a 
vertex x ∈ V (T ) is denoted by childT (x) . A tree is phylo-
genetic if all of its inner vertices have at least two children. 
All trees considered in this contribution will be phylo-
genetic. For a non-empty subset A ⊆ V (T ) , we define 
lca T (A) , the last common ancestor of A, to be the unique 
�T-minimal vertex of T that is an ancestor of every 
u ∈ A . Following e.g. [11], we denote by TL′ the restriction 
of T to a subset L′ ⊆ L(T ) , i.e. TL′ is obtained by identify-
ing the (unique) minimal subtree of T that connects all 
leaves in L′ , and suppressing all vertices with degree two 
except possibly the root ρTL′

= lca T (L
′) . We say that T 

displays or is a refinement of a tree T ′ , in symbols T ′ ≤ T  , 
if T ′ can be obtained from a restriction TL′ of T by a series 
of inner edge contractions. (T , σ) is a leaf-colored tree if 
σ : L(T ) → S is a map from the leaves of T into a non-
empty set of colors. We say that (T ′, σ ′) is displayed by 
(T , σ) if T ′ ≤ T  and σ(v) = σ ′(v) for all v ∈ L(T ′).

Rooted triples. A (rooted) triple is a tree on three 
leaves and with two inner vertices, and thus, it has 
a topology as the tree in Fig.  3(D). We write xy|z for 
the triple on the leaves x,  y and z if the path from x 
to y does not intersect the path from z to the root 
in T, i.e., if lca T (x, y) ≺T lca T (x, z) = lca T (y, z) . 
In this case we say that T displays xy|z. We write 
R|L′ :=

{

xy|z ∈ R : x, y, z ∈ L′
}

 for the restriction of a tri-
ple set R to a set L′ of leaves. A set R of triples is con-
sistent if there is a tree T with leaf set L :=

⋃

T ′∈R L(T ′) 

that displays every triple in R . The polynomial-time algo-
rithm BUILD decides for every triple set R whether it is 
consistent, and if so, constructs a particular tree, the Aho 
tree Aho (R, L) , that displays every triple in R [10]. The 
algorithm relies on the construction of an (undirected) 
auxiliary graph, the Aho graph, for a given triple set R on 
a set of leaves L. This graph, denoted by [R, L] , contains 
an edge xy if and only if xy|z ∈ R for some z ∈ L.

Fig. 2  Both arc insertions and deletions into a BMG (�G = (V , E), σ) can introduce inconsistencies into the set of informative triples. Top row: 
Leaf-colored tree (T , σ) explaining the BMG (�G, σ) . Its set of informative triples is R(�G, σ) = {ab1|b2, ab1|b3, c1b2|b1, c1b3|b1, c2b2|b1, c2b3|b1} 
giving the Aho graph H = [R(�G, σ), V ] . Bottom left: Insertion of the arc (a, b2) creates a new informative triple ab2|b3 ( ab1|b2 gets lost) resulting in a 
connected Aho graph H′ . Bottom right: Deletion of the arc (a, c1) creates a new triple ac2|c1 resulting in a connected Aho graph H′′

Fig. 3  Example for a digraph (A) where Alg. 1 does not lead to an 
optimal BMG editing. The set R(�G, σ) is empty and thus consistent. 
B The tree T = Aho (R(�G, σ), V(�G)) and (C) its corresponding BMG. 
The two arcs (b, a) and (b, a′) have been inserted. D A tree (T ′ , σ) and 
(E) its corresponding BMG �G(T ′ , σ) in which only the arc (b, a) has 
been inserted
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Best match graphs
Best matches formalize the notion of the evolutionarily 
closest relative(s) of a gene x in another species. Relat-
edness in this context is thought of as a phylogenetic 
concept and thus expressed in terms of last common 
ancestors in the gene tree T that describes the evolution-
ary relationships among a family of genes.

Definition 1  Let (T , σ) be a leaf-colored tree. A 
leaf y ∈ L(T ) is a best match of the leaf x ∈ L(T ) if 
σ(x)  = σ(y) and lca (x, y) �T lca (x, y′) holds for all 
leaves y′ of color σ(y′) = σ(y).

As a consequence, best matches in a pair of species 
in general form a many-to-many relationship and are 
not necessarily symmetric. Given (T , σ) , the digraph 
�G(T , σ) = (V ,E) with vertex set V = L(T ) , vertex-col-
oring σ , and with arcs (x, y) ∈ E if and only if y is a best 
match of x w.r.t. (T , σ) is called the best match graph 
(BMG) of (T , σ) [6], see Fig. 2 for an illustrative example.

Definition 2  An arbitrary vertex-colored digraph ( �G, σ) 
is a best match graph (BMG) if there exists a leaf-colored 
tree (T , σ) such that ( �G, σ) = �G(T , σ) . In this case, we say 
that (T , σ) explains ( �G, σ).

We say that ( �G = (V ,E), σ) is an ℓ-BMG if |σ(V )| = ℓ . 
By construction, there is at least one best match of x for 
every color s ∈ σ(V ) \ {σ(x)}:

Observation 3  For every vertex x and every color 
s  = σ(x) in a BMG ( �G, σ) there is some vertex y ∈ N (x) 
with σ(y) = s . Equivalently, the subgraph induced by 
every pair of colors is sink-free.

In particular, therefore, BMGs are sink-free whenever 
they contain at least two colors. We formalize this basic 
property of BMGs for colored digraphs in general:

Definition 4  Let ( �G = (V ,E), σ) be a colored digraph. 
The coloring σ is sink-free if it is proper and, for every 
vertex x ∈ V  and every color s  = σ(x) in σ(V ) , there is a 
vertex y ∈ N (x) with σ(y) = s . A digraph with a sink-free 
coloring is called sf-colored.

Given a tree T and an edge e, we denote by Te the tree 
obtained from T by contracting the edge e. We call an 
edge in (T , σ) redundant (w.r.t. ( �G, σ) ) if both (T , σ) and 
(Te, σ) explain ( �G, σ).

Definition 5  A tree (T , σ) is least resolved for a BMG 
( �G, σ) if (i) it explains ( �G, σ) and (ii) it does not contain 
any redundant edges w.r.t. ( �G, σ).

By [6, Thm. 8], every BMG has a unique least resolved 
tree (LRT). Moreover, a characterization of BMGs was 
given in [6] that makes use of a set of informative triples, 
which can be defined compactly as follows [12]:

Definition 6  Let ( �G, σ) be a vertex-colored digraph. 
Then the set of informative triples is

and the set of forbidden triples is

For the subclass of BMGs that can be explained by binary 
trees, we will furthermore need

By definition, a, b, b′ must be pairwise distinct 
whenever ab|b′ ∈ R( �G, σ) , ab|b′ ∈ F( �G, σ) , or 
ab|b′ ∈ RB( �G, σ).

We extend the notion of consistency to pairs of triple 
sets in

Definition 7  Let R and F  be sets of triples. The pair 
(R,F) is called consistent if there is a tree T that displays 
all triples in R but none of the triples in F  . In this case, 
we also say that T agrees with (R,F).

It can be decided in polynomial time whether such a 
pair (R,F) is consistent using the algorithm MTT, which 
was named after the corresponding mixed triplets prob-
lem restricted to trees and described in [13].

We continue with two simple observations concerning 
the restriction of triple sets. Since informative and for-
bidden triples xy|z are only defined by the presence and 
absence of arcs in the subgraph of �G induced by {x, y, z} , 
this leads to the following

Observation 8  [14] Let ( �G, σ) be a vertex-colored digraph 
and V ′ ⊆ V ( �G) . Then R( �G, σ)|V ′ = R( �G[V ′], σ|V ′) holds 
for every R ∈ {R,F ,RB}.

Moreover, any pair of triples (R′,F ′) such that R′ ⊆ R 
and F ′ ⊆ F  for a consistent pair (R,F) remains consist-
ent since any tree that agrees with (R,F) clearly displays 
all triples in R′ and none of the triples in F ′ . Hence, we 
have

R( �G, σ) :={ab|b′ : σ(a) �= σ(b) = σ(b′),

(a, b) ∈ E( �G), and (a, b′) /∈ E( �G)},

F( �G, σ) := {ab|b′ : σ(a) �= σ(b) = σ(b′),

b �= b
′
, and (a, b), (a, b′) ∈ E( �G)}.

RB( �G, σ) :=R( �G, σ)∪

{bb′|a : ab|b′ ∈ F( �G, σ), σ(b) = σ(b′)}.
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Observation 9  Let R′ ⊆ R and F ′ ⊆ F  for a consistent 
pair of triple sets (R,F) . Then (R′,F ′) is consistent.

We summarize two characterizations of BMGs given 
in [7, Thm. 15] and [8, Lemma 3.4 and Thm. 3.5] in the 
following

Proposition 10  Let ( �G, σ) be a properly colored digraph 
with vertex set L. Then the following three statements are 
equivalent:

1	 ( �G, σ) is a BMG.
2	 R( �G, σ) is consistent and �G(Aho (R( �G, σ), L), σ) = ( �G, σ).
3	 ( �G, σ) is sf-colored and (R( �G, σ),F( �G, σ)) is consist-

ent.

In this case, (Aho (R( �G, σ), L), σ) is the unique LRT for 
( �G, σ) , and a leaf-colored tree (T , σ) on L explains ( �G, σ) 
if and only if it agrees with (R( �G, σ),F( �G, σ)).

Prop.  10 states that the set of informative triples 
R( �G, σ) of a BMG ( �G, σ) is consistent. Therefore, it can 
be used to construct its LRT by means of the BUILD 
algorithm, see Fig. 1 for an example.

It is important to note that both arc insertions and 
deletions may lead to creation and loss of informative tri-
ples. In particular, when starting from a BMG, both types 
of modifications have the potential to make the triple set 
inconsistent as the example in Fig. 2 shows. This is indeed 
often the case even for moderate disturbances of a BMG 
as we shall see later.

We expect that empirically estimated best match rela-
tions will typically contain errors that correspond to both 
arc insertions and deletions w.r.t. the unknown underly-
ing “true” best match graph. This motivates the problem 
of editing a given vertex-colored digraph to a BMG:

Problem 1  (ℓ-BMG Editing)  

Input: A properly ℓ-colored digraph

(�G = (V , E), σ) and an integer k.

Question: Is there a subset

F ⊆ V × V \ {(v , v) | v ∈ V} such that

|F| ≤ k and (�G△ F , σ) is an ℓ-BMG?

Natural variants are ℓ-BMG Completion and ℓ-BMG 
Deletion where �G△ F  is replaced by �G + F  and �G − F  , 
respectively, i.e., only addition or deletion of arcs is 
allowed. Both ℓ-BMG Editing and its variants are NP-
complete [8].

The heuristic algorithms considered in this contri-
bution can be thought of as maps A on the set of finite 
vertex-colored digraphs such that A( �G, σ) is a BMG for 
every vertex-colored input digraph ( �G, σ) . In particular, 
the following property of such algorithms is desirable:

Definition 11  A (BMG-editing) algorithm is consistent 
if A( �G, σ) = ( �G, σ) whenever ( �G, σ) is a BMG.

A simple, triple‑based heuristic
The triple-based characterization summarized by 
Prop.  10 suggests a simple heuristic for BMG editing 
that relies on replacing the consistency checks for triple 
sets by the extraction of maximal sets of consistent tri-
ples (see Alg. 1). Both MaxRTC​, the problem of extract-
ing from a given set R of rooted triples a maximum-size 
consistent subset, and MinRTI, the problem of finding 
a minimum-size subset I  such that R \ I  is consistent, 
are NP-hard [15]. Furthermore, MaxRTC​ is APX-hard 
and MinRTI is �(ln n)-inapproximable [16]. However, 
because of their practical importance in phylogenetics, 
a large number of practically useful heuristics have been 
devised, see e.g. [17–19].

As a consequence of Prop. 10, Alg. 1 is consistent, i.e., 
( �G∗, σ) = ( �G, σ) if and only if the input digraph (G, σ) 
is a BMG, if a consistent heuristic is employed to solve 
MaxRTG​/MinRTI, i.e., if consistent triple sets remain 
unchanged by the method approximating MaxRTG​ / 
MinRTI.

The heuristic Alg.  1 is not always optimal, even if 
MaxRTC​/MinRTI is solved optimally. Fig.  3 shows an 
unconnected 2-colored digraph ( �G, σ) on three vertices 
that is not a BMG and does not contain informative tri-
ples. The BMG ( �G∗, σ) produced by Alg. 1 introduces two 
arcs into ( �G, σ) . However, ( �G, σ) can also be edited to a 
BMG by inserting only one arc.

A simple improvement is to start by enforcing obvious 
arcs: If v is the only vertex with color σ(v) , then by defi-
nition there must be an arc (x, v) for every vertex x  = v . 
The computation then starts from the sets of informa-
tive triples of the modified digraph. We shall see below 
that these are the only arcs that can safely be added to 
�G without other additional knowledge or constraints (cf. 
Thm. 19 below).
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Locally optimal splits
Finding an optimal BMG editing of a digraph 
( �G = (V ,E), σ) is equivalent to finding a tree (T , σ) on V 
that minimizes the cardinality of

Clearly, U( �G,T ) = ∅ implies that ( �G, σ) = �G(T , σ) is 
a BMG. However, finding a tree (T , σ) that minimizes 
|U( �G,T )| is intractable (unless P = NP ) since ℓ-BMG 
Editing, Problem 1 above, is NP-complete [8].

We may ask, nevertheless, if trees (T , σ) on V contain 
information about arcs and non-arcs in ( �G, σ) that are 
“unambiguously false” in the sense that they are con-
tained in every edit set that converts ( �G, σ) into a BMG. 
Denote by TV  the set of all phylogenetic trees on V. The 
set of these “unambiguously false” (non-)arcs can then be 
expressed as

Since there are in general exponentially many trees on V 
and thus, the problem of determining U∗( �G) seems to be 
quite challenging at first glance. We shall see in Thm. 19, 
however, that U∗( �G) can be computed efficiently. We 
start with a conceptually simpler construction, and con-
sider the set of trees T (V) ⊆ TV  for which the set of leaf 
sets of the children of the root equals the partition V . In 
other words, given V = {V1, . . . ,Vk} , then the root ρT of 
every T ∈ T (V) has exactly k children v1, . . . , vk such that 
Vi = L(T (vi)) for all 1 ≤ i ≤ k.

Definition 12  Let ( �G = (V ,E), σ) be a properly ver-
tex-colored digraph and V a partition of V with |V| ≥ 2 . 
Moreover, let T (V) be the set of trees T on V that satisfy 
V = {L(T (v)) | v ∈ childT (ρT )} . The set of unsatisfiable 
relations (UR), denoted by U( �G,V) , is defined as

The associated UR-cost is c( �G,V):=|U( �G,V)|.

The set of (phylogenetic) trees T (V) is non-empty 
since |V| ≥ 2 in Def.  12. Moreover, by construction, 
(x, y) ∈ U( �G,V) if and only if

(1)

U( �G,T ):={(x, y) ∈ V × V | (x, y) ∈ E and

(x, y) /∈ E( �G(T , σ)) , or

(x, y) /∈ E and

(x, y) ∈ E( �G(T , σ))}.

(2)U∗( �G):=
⋂

T∈TV

U( �G,T ).

(3)U( �G,V):=
⋂

T∈T (V)

U( �G,T ).

Intriguingly, the set U( �G,V) , and thus the UR-cost 
c( �G,V) , can be computed in polynomial time without any 
explicit knowledge of the possible trees to determine the 
set U( �G,V) . To this end, we define the three sets

Lemma 13  Let ( �G = (V ,E), σ) be a properly vertex-
colored digraph and let V = {V1, . . . ,Vk} be a partition of 
V with |V| = k ≥ 2 . Then

The proof of Lemma  13 relates the possible cases 
between V and the tree set T (V) in a straightforward 
manner. Since it is rather lengthy it is relegated to Appen-
dix. Fig. 4 gives examples for all three types of unsatisfi-
able relations, i.e., for U1( �G,V) , U2( �G,V) , and U3( �G,V) . 
In particular, we have (b′, a) ∈ U1( �G,V) since it is an 
arc in �G but V2 contains another red vertex a′ . Moreo-
ver, (b, c) ∈ U2( �G,V) since it is not an arc in �G but V1 
does not contain another green vertex. Finally, we have 
(a, b) ∈ U3( �G,V) since it is not an arc in �G but b is the 
only blue vertex in V1 . In the example, the digraph 
( �G△U( �G,V)) is already a BMG which, however, is not 
true in general.

Corollary 14  The set U( �G,V) can be computed in quad-
ratic time.

Proof  We first compute all numbers ni,A of vertices in Vi 
with a given color A. This can be done in O(|V|) if we do 
not explicitly store the zero-entries. Now, σ(y) ∈ σ(Vi) , 
i.e. ni,σ(y) > 0 , can be checked in constant time, and thus, 
it can also be decided in constant time whether or not 
a pair (x, y) is contained in U1( �G,V) or U2( �G,V) . Since, 
given y ∈ Vi , the condition Vi[σ(y)] = {y} is equivalent to 

(x, y) ∈ E and (x, y) /∈ E( �G(T , σ)) for all T ∈ T (V),

or

(x, y) /∈ E and (x, y) ∈ E( �G(T , σ)) for all T ∈ T (V).

U1( �G,V) =
⋃

Vi∈V

{(x, y) | (x, y) ∈ E, x ∈ Vi, y ∈ V \ Vi,

σ(y) ∈ σ(Vi)},

U2( �G,V) =
⋃

Vi∈V

{(x, y) | (x, y) /∈ E, x ∈ Vi, y ∈ V \ Vi,

σ(y) /∈ σ(Vi)}, and

U3( �G,V) =
⋃

Vi∈V

{(x, y) | (x, y) /∈ E, distinct x, y ∈ Vi,

Vi[σ(y)] = {y}}.
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ni,σ(y) = 1 , membership in U3( �G,V) can also be decided 
in constant time. Checking all ordered pairs x, y ∈ V  thus 
requires a total effort of O(|V |2) . 

 
Our discussion so far suggests a recursive top-down 
approach, made precise in Alg. 2. In each step, one deter-
mines a “suitably chosen” partition V and then recurses 
on the subgraphs of the edited digraph �G∗△U( �G∗[V ′],V) . 
More details on such suitable partitions V will be given 
in Thm. 23 below. The parts in the algorithm highlighted 
in color can be omitted. They are useful, however, if one 
is also interested in a tree (T , σ) that explains the editing 
result ( �G∗, σ) and to show that ( �G∗, σ) is indeed a BMG 
(see below). Alg. 2 is designed to accumulate the edit sets 
in each step, Line 5. In particular, the total edit cost and 
the scores c( �G∗[V ′],V) are closely tied together, which fol-
lows from the following result:

Lemma 15  All edit sets U( �G∗[V ′],V) constructed in 
Alg. 2 are pairwise disjoint.

The proof of Lemma 15 and a technical result on which 
it relies can be found in the Appendix. As an immediate 
consequence of Lemma 15, we have

Corollary 16  The edit cost of Alg. 2 is the sum of the UR 
-costs c( �G∗[V ′],V) in each recursion step.

It is important to note that the edits U( �G∗[V ′],V) must 
be applied immediately in each step (cf. Line 5 in Alg. 2). 
In particular, Lemma 15 and Cor. 16 pertain to the par-
titioning of the edited digraph �G∗ , not to the original 

�

digraph �G . We continue by proving the correctness of 
Alg. 2, i.e., that it returns a valid BMG and a correspond-
ing explaining tree.

Theorem  17  Every pair of edited digraph ( �G∗, σ) 
and tree T produced as output by Alg.  2 satisfies 
( �G∗, σ) = �G(T , σ) . In particular, ( �G∗, σ) is a BMG.

Proof  By construction, the tree T is phylogenetic and 
there is a one-to-one correspondence between the ver-
tices u ∈ V (T ) and the recursion steps, which oper-
ate on the sets V ′ = L(T (u)) . If |V ′| ≥ 2 (or, equiva-
lently, u is an inner vertex of T), we furthermore have 
V = {L(T (v)) | v ∈ childT (u)} for the partition V of V ′ 
chosen in that recursion step. In the following, we denote 
by ( �G∗, σ) the digraph during the editing process, and by 
( �G, σ) the input digraph, i.e., as in Alg. 2. For brevity, we 
write E∗ for the arc set of the final edited digraph and 
ET :=E( �G(T , σ)).

Let us assume, for contradiction, that there exists (a) 
(x, y) ∈ E∗ \ ET �= ∅ , or (b) (x, y) ∈ ET \ E∗ �= ∅ . In either 
case, we set u:= lca T (x, y) and consider the recursion 
step on V ′:=L(T (u)) with the corresponding partition 
V :={L(T (v)) | v ∈ childT (u)} chosen for V ′ . Note that 
x  = y , and thus u ∈ V 0(T ) . Moreover, let vx be the child 
of u such that x �T vx , and Vx:=L(T (vx)) ∈ V.

Case (a): (x, y) ∈ E∗ \ ET �= ∅ . Since (x, y) /∈ ET and by the 
definition of best matches, there must be a vertex y′ ∈ Vx 
of color σ(y) such that lca T (x, y

′) ≺T lca T (x, y) = u , and 
thus σ(y) ∈ σ(Vx) . Moreover, we have Vx ∈ V , x ∈ Vx 
and y ∈ V ′ \ Vx . Two subcases need to be considered, 
depending on whether or not (x, y) is an arc in �G∗ at the 
beginning of the recursion step. In the first case, the argu-
ments above imply that (x, y) ∈ U1( �G

∗[V ′],V) , and thus, 
(x, y) ∈ U( �G∗[V ′],V) by Lemma 13. Hence, we delete the 

Fig. 4  Example for unsatisfiable relations U(�G,V) of a vertex-colored 
digraph (�G = (V , E), σ) w.r.t. a partition V = {V1, V2} (indicated by the 
gray boxes). In the middle, the set of trees T (V) is illustrated, i.e., the 
triangles represent all possible phylogenetic trees on the respective 
subset of leaves. On the right, the arc modifications implied by V 
(i.e., U(�G,V) ) are illustrated where U1 , U2 , and U3 indicate the type 
according to Lemma 13
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arc (x, y) in this step. In the second case, it is an easy task 
to verify that none of the definitions of U1( �G

∗[V ′],V) , 
U2( �G

∗[V ′],V) , and U3( �G
∗[V ′],V) matches for (x,  y). 

Since this step is clearly the last one in the recursion hier-
archy that can affect the (non-)arc (x,  y), it follows for 
both subcases that (x, y) /∈ E∗ ; a contradiction.

Case  (b): (x, y) ∈ ET \ E∗ �= ∅ . Since (x, y) ∈ ET 
and by the definition of best matches, there can-
not be a vertex y′ ∈ Vx of color σ(y) such that 
lca T (x, y

′) ≺T lca T (x, y) = u , and thus σ(y) /∈ σ(Vx) . 
Moreover, we have Vx ∈ V , x ∈ Vx and y ∈ V ′ \ Vx . 
Again, two subcases need to be distinguished depend-
ing on whether or not (x, y) is an arc in �G∗ at the begin-
ning of the recursion step. In the first case, the arguments 
above make it easy to verify that none of the definitions 
of U1( �G

∗[V ′],V) , U2( �G
∗[V ′],V) , and U3( �G

∗[V ′],V) 
matches for (x,  y). In the second case, we obtain 
(x, y) ∈ U2( �G

∗[V ′],V) , and thus, (x, y) ∈ U( �G∗[V ′],V) 
by Lemma 13. Hence, we insert the arc (x, y) in this step. 
As before, the (non-)arc (x, y) remains unaffected in any 
deeper recursion step. Therefore, we have (x, y) ∈ E∗ in 
both subcases; a contradiction.

Finally, ( �G∗, σ) = �G(T , σ) immediately implies that 
( �G∗, σ) is a BMG. 

Cor. 16 suggests a greedy-like “local” approach. In each 
step, the partition V is chosen to minimize the score 
c( �G,V) in Line 4. The example in Fig. 5 shows, however, 
that the greedy-like choice of V does not necessarily yield 
a globally optimal edit set.

In order to identify arcs that must be contained in 
every edit set, we first clarify the relationship between 
the partitions P≥2 on V and the partitions defined by the 
phylogenetic trees on V.

Lemma 18  Let V be a set with |V | ≥ 2 . Let P≥2 be 
the set of all partitions V of V with |V| ≥ 2 . Then the 
set TV  of all phylogenetic trees with leaf set V satisfies 
TV =

⋃

V∈P≥2
T (V).

Proof  For every V ∈ P≥2 , T (V) is a set of phylogenetic 
trees on V. Hence, we conclude 

⋃

V∈P≥2
T (V) ⊆ TV  . 

Conversely, assume that T ∈ TV  . Since T (with root ρT ) 
is a phylogenetic tree and has at least two leaves, we have 
|childT (ρT )| ≥ 2 . Together with L(T (ρT )) = L(T ) = V  , 
this implies V∗:={L(T (v)) | v ∈ childT (ρT )} ∈ P≥2 . In 
particular, T satisfies T ∈ T (V∗) for some V∗ ∈ P≥2 , and 
is therefore contained in 

⋃

V∈P≥2
T (V) . 

�

�

Using Lemma 18 and given that |V | ≥ 2 , we can express 
the set of relations that are unsatisfiable for every parti-
tion as follows

i.e., it coincides with the set of relations that are unsatisfi-
able for every phylogenetic tree, and thus part of every 
edit set. Note that U∗( �G) is trivially empty if |V | < 2 . We 
next show that U∗( �G) can be computed without consid-
ering the partitions of V explicitly.

Theorem  19  Let ( �G = (V ,E), σ) be a properly vertex-
colored digraph with |V | ≥ 2 then

Proof  First note that |V | ≥ 2 ensures that P≥2 �= ∅ . 
Moreover, since |V| ≥ 2 for any V ∈ P≥2 , the sets 
T (V) are all non-empty as well. With the abbreviation 
Û( �G) for the right-hand side of Eq.  (5), we show that 
Û( �G) =

⋂

V∈P≥2
U( �G,V) which by Eq. (4) equals U∗( �G).

Suppose that (x, y) ∈ Û( �G) . Then x  = y and 
V [σ(y)] = {y} imply that σ(x)  = σ(y) . This together 
with the facts that (i) y is the only vertex of its color in 
V, and (ii) L(T ) = V  for each T ∈ T (V) and any V ∈ P≥2 
implies that y is a best match of x in every such tree T, 
i.e. (x, y) ∈ E( �G(T , σ)) . Since in addition (x, y) /∈ E by 
assumption, we conclude that (x, y) ∈ U∗( �G).

Now suppose that (x, y) ∈ U∗( �G) . Observe that 
σ(x)  = σ(y) (and thus x  = y ) as a consequence of 
Def. 12 and the fact that ( �G, σ) and all BMGs are prop-
erly colored. If V = {x, y} and thus {{x}, {y}} is the only 
partition in P≥2 , the corresponding unique tree T con-
sists of x and y connected to the root. In this case, we 
clearly have (x, y) ∈ E( �G(T , σ)) since σ(x)  = σ(y) . On 
the other hand, if {x, y} � V  , then we can find a partition 
V ∈ P≥2 such that Vi = {x, y} for some Vi ∈ V . In this 
case, every tree T ∈ T (V) has a vertex vi ∈ childT (ρT ) 
with the leaves x and y as its single two children. 
Clearly, (x, y) ∈ E( �G(T , σ)) holds for any such tree. In 

(4)

�

V∈P≥2

U( �G,V) =
�

V∈P≥2





�

T∈T (V)

U( �G,T )





[5pt] =
�

T∈
�

V∈P≥2
T (V)

U( �G,T )

=
�

T∈TV

U( �G,T ) = U∗( �G) ,

(5)
U∗( �G) =

{

(x, y) | (x, y) /∈ E, x �= y, V [σ(y)] = {y}
}

.
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summary, there always exists a partition V ∈ P≥2 such 
that (x, y) ∈ E( �G(T , σ)) for some tree T ∈ T (V) . There-
fore, by (x, y) ∈

⋂

V∈P≥2
U( �G,V) and Def.  12, we con-

clude that (x, y) /∈ E . In order to obtain (x, y) ∈ Û( �G) , 
it remains to show that V [σ(y)] = {y} . Since (x, y) /∈ E 
and (x, y) ∈

⋂

V∈P≥2
U( �G,V) , it must hold that 

(x, y) ∈ E( �G(T , σ)) for all T ∈ T (V) and all V ∈ P≥2 . 
Now assume, for contradiction, that there is a vertex 
y′ �= y of color σ(y′) = σ(y) . Since σ(x)  = σ(y) , the ver-
tices x, y, y′ must be pairwise distinct. Hence, we can 
find a partition V ∈ P≥2 such that Vi = {x, y′} for some 
Vi ∈ V . In this case, every tree T ∈ T (V) has a vertex 
vi ∈ childT (ρT ) with only the leaves x and y′ as its chil-
dren. Clearly, lca T (x, y

′) = vi ≺T ρT = lca T (x, y) , and 
thus (x, y) /∈ E( �G(T , σ)) ; a contradiction. Therefore, we 
conclude that y is the only vertex of its color in V, and 
hence, (x, y) ∈ Û( �G) . In summary, therefore, we have 
U∗( �G) = Û( �G) . 

As a consequence of Thm. 19 and by similar arguments 
as in the proof of Cor. 14, we observe

Corollary 20  The set U∗( �G) can be computed in quad-
ratic time.

�

By Thm. 19, U∗( �G) contains only non-arcs, more pre-
cisely, missing arcs pointing towards a vertex that is the 
only one of its color and thus, by definition, a best match 
of every other vertex irrespective of the details of the 
gene tree. By definition, furthermore, U∗( �G) is a subset 
of every edit set for ( �G, σ) . We therefore have the lower 
bound

for every V ∈ P≥2.
The following result shows that if ( �G, σ) is a BMG, 

then a suitable partition V can be chosen such that 
c( �G,V) = |U∗( �G)| = 0.

Lemma 21  Let ( �G = (V ,E), σ) be a BMG with |V | ≥ 2 
and V be the connected components of the Aho graph 
[R( �G, σ),V ] . Then the partition V of V satisfies |V| ≥ 2 
and c( �G,V) = 0.

Proof  Since ( �G, σ) is a BMG, we can apply Prop.  10 
to conclude that R:=R( �G, σ) is consistent and 
that (T , σ):=(Aho (R,V ), σ) explains ( �G, σ) , i.e., 
�G(T , σ) = ( �G, σ) . Hence, U( �G,T ) = ∅ . From |V | ≥ 2 
and consistency of R , it follows that [R,V ] has at least 
two connected components [10], and thus, by construc-
tion, |V| ≥ 2 . Moreover, we clearly have T ∈ T (V) by the 

(6)|U∗( �G)| ≤ c( �G,V)

Fig. 5  A Example for a colored digraph (�G, σ) in which the “locally” optimal (first) split does not result in a global optimal BMG editing. The minimal 
UR-cost equals 3 and is attained only for the partition V = {{a1, a2, a3, b1, b2, b3}, {a4, a5, a6, b4, b5, b6}} , which was verified by full enumeration of 
all partitions and Lemma 13. For this partition, U(�G,V) comprises the three purple arcs. B The two (isomorphic) induced subgraphs obtained by 
applying the locally optimal partition V . Each of them has a (global) optimal BMG editing cost of 4. Therefore, the overall symmetric difference of an 
edited digraph (using the initial split V as specified) comprises at least c(�G,V)+ 2 · 4 = 11 arcs. C An optimal editing removes the 8 green arcs and 
results in a digraph that is explained by the tree in D. The optimality of this solution was verified using an implementation of the ILP formulation for 
BMG editing given in [8]
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construction of T via BUILD. Together with U( �G,T ) = ∅ , 
the latter implies U( �G,V) = ∅ , and thus c( �G,V) = 0 . 

Lemma 22  Let ( �G = (V ,E), σ) be a BMG, and V a par-
tition of V such that c( �G,V) = 0 . Then the induced sub-
graph ( �G[V ′], σ|V ′) is a BMG for every V ′ ∈ V.

Proof  Set R:=R( �G, σ) and F :=F( �G, σ) for the sets of 
informative and forbidden triples of ( �G, σ) , respectively. 
Since ( �G, σ) is a BMG, we can apply Prop. 10 to conclude 
that (R,F) is consistent. Now we choose an arbitrary 
set V ′ ∈ V and set ( �G′, σ ′):=( �G[V ′], σ|V ′) . By Obs.  8, 
we obtain R( �G′, σ ′) = R|V ′ and F( �G′, σ ′) = F|V ′ . This 
together with the fact that R|V ′ ⊆ R and F|V ′ ⊆ F  and 
Obs.  9 implies that (R|V ′ ,F|V ′) = (R( �G′, σ ′),F( �G′, σ ′)) 
is consistent.

By Prop. 10, it remains to show that ( �G′, σ ′) is sf-colored 
to prove that it is a BMG. To this end, assume for contra-
diction that there is a vertex x ∈ V ′ and a color s ∈ σ(V ′) 
such that x has no out-neighbor of color s  = σ(x) in V ′ . 
However, since the color s is contained in σ(V ) and ( �G, σ) 
is a BMG, and thus sf-colored, we conclude that there 
must be a vertex y ∈ V \ V ′ of color s such that (x, y) ∈ E . 
In summary, we obtain (x, y) ∈ E , x ∈ V ′ , y ∈ V \ V ′ 
and σ(y) = s ∈ σ(V ′) . Thus, we have (x, y) ∈ U1( �G,V) . 
Hence, Lemma  13 implies that (x, y) ∈ U( �G,V) and, 
hence, c( �G,V) > 0 ; a contradiction. Therefore, ( �G′, σ ′) 
must be sf-colored, which concludes the proof. 

Lemma 21 and 22 allow us to choose the partition V in 
each step of Alg. 2 in such a way that Alg. 2 is consistent, 
i.e., BMGs remain unchanged.

Theorem  23  Alg.  2 is consistent if, in each step on V ′ 
with |V ′| ≥ 2 , the partition V in Line 4 is chosen according 
to one of the following rules:

1	 V has minimal UR-cost among all possible partitions 
V ′ of V ′ with |V ′| ≥ 2.

2	 If the Aho graph [R( �G∗[V ′], σ|V ′),V ′] is disconnected 
with the set of connected components VAho , and 
moreover c( �G∗[V ′],VAho ) = 0 , then V = VAho.

Proof  We have to show that the final edited digraph 
( �G∗, σ) returned in Line  13 equals the input digraph 
( �G = (V ,E), σ) whenever ( �G, σ) already is a BMG, i.e., 
nothing is edited. Thus suppose that ( �G, σ) is a BMG and 
first consider the top-level recursion step on V (where 
initially �G∗ = �G still holds at Line 1). If |V | = 1 , neither 

�

�

( �G, σ) nor ( �G∗, σ) contain any arcs, and thus, the edit 
cost is trivially zero. Now suppose |V | ≥ 2 . Since ( �G, σ) 
is a BMG, Lemma 21 guarantees the existence of a par-
tition V satisfying c( �G,V) = 0 , in particular, the con-
nected components VAho of the Aho graph [R( �G, σ),V ] 
form such a partition. Hence, for both rules  (1) and (2), 
we choose a partition V with (minimal) UR-cost 
c( �G,V) = 0 . Now, Lemma  22 implies that the induced 
subgraph ( �G[V ′], σ|V ′) is a BMG for every V ′ ∈ V . Since 
we recurse on these subgraphs, we can repeat the argu-
ments above along the recursion hierarchy to conclude 
that the UR-cost c( �G∗[V ′],V ′) vanishes in every recur-
sion step. By Cor. 16, the total edit cost of Alg. 2 is the 
sum of the UR-costs c( �G∗[V ′],V ′) in each recursion step, 
and thus, also zero. Therefore, we conclude that we still 
have ( �G∗, σ) = ( �G, σ) in Line 13. 

By Thm.  23, Alg.  2 is consistent whenever the choice 
of V minimizes the UR-cost of V in each step. We shall 
see below that minimizing c( �G,V) is a difficult optimi-
zation problem in general. Therefore, a good heuristic 
will be required for this step. This, however, may not 
guarantee consistency of Alg.  2 in general. The sec-
ond rule in Thm.  23 provides a remedy: the Aho graph 
[R( �G∗[V ′], σ|V ′),V ′] can be computed efficiently. 
Whenever [R( �G∗[V ′], σ|V ′),V ′] is not connected, the 
partition VAho defined by the connected components 
[R( �G∗[V ′], σ|V ′),V ′] is chosen provided it has UR-cost 
zero. This procedure is effectively a generalization of 
the algorithm BUILD using as input the set of informa-
tive triples R( �G, σ) of a properly vertex-colored digraph 
( �G, σ) . If ( �G, σ) is already a BMG, then the recursion in 
Alg. 2 is exactly the same as in BUILD: it recurses on the 
connected components of the Aho graph (cf. Prop.  10). 
We can summarize this discussion as

Corollary 24  ( �G, σ) is a BMG if and only if, in every 
step of the BUILD algorithm operating on R( �G, σ)|V ′ and 
V ′ , either |V ′| = 1 , or c( �G∗[V ′],VAho ) = 0 for the con-
nected component partition VAho of the disconnected Aho 
graph [R( �G∗[V ′], σ|V ′),V ′].

For recursion steps in which the Aho graph is con-
nected, and possibly also in steps with non-zero UR-cost, 
another (heuristic) rule has to be employed. As a by-
product, we obtain an approach for the case that R( �G, σ) 
is consistent: Following BUILD yields the approximation 
�G(Aho (R( �G, σ),V ( �G)), σ) as a natural choice.

�
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Binary‑explainable BMGs
Phylogenetic trees are often binary. Multifurcations are in 
many cases – but not always – the consequence of insuf-
ficient data [14, 20, 21]. It is therefore of practical interest 
to consider BMGs that can be explained by a binary tree:

Definition 25  A properly colored digraph ( �G, σ) is a 
binary-explainable best match graph (beBMG) if there is 
a binary tree T such that �G(T , σ) = ( �G, σ).

Correspondingly, it is of interest to edit a properly 
colored digraph to a beBMG, which translates to the fol-
lowing decision problem:

Problem  2  (ℓ-BMG Editing restricted to Binary-
Explainable Graphs (EBEG))  

Input: A properly ℓ-colored digraph

(�G = (V , E), σ) and an integer k.

Question: Is there a subset

F ⊆ V × V \ {(v , v) | v ∈ V} such that

|F| ≤ k and (�G△ F , σ) is a binary-

explainable ℓ-BMG?

We call the corresponding completion and deletion 
problem ℓ-BMG CBEG and ℓ-BMG DBEG, respectively. 
As their more general counterparts, all three variants are 
NP-complete as well, cf. [8, Cor. 6.2] and [14, Thm. 5].

Since the recursive partitioning in Alg. 2 defines a tree 
that explains the edited BMG, see Thm. 17, it is reason-
able to restrict the optimization of V in Line 17 to bipar-
titions. The problem still remains hard, however, since 
the corresponding decision problem (problem BPURC​
) is NP-complete as shown in Thm. 30 below. Similar to 
BMGs in general, beBMGs have a characterization in 
terms of informative triples:

Proposition 26  [14, Thm.  3.5] A properly vertex-
colored digraph ( �G, σ) with vertex set V is binary-explain-
able if and only if (i) ( �G, σ) is sf-colored, and (ii) the triple 
set RB( �G, σ) is consistent. In this case, the BMG ( �G, σ) is 
explained by every refinement of the binary refinable tree 
(Aho (RB( �G, σ),V ), σ).

Using Prop. 26, we can apply analogous arguments as 
in the proof of Lemma 21 for RB( �G, σ) instead of R( �G, σ) 
to obtain

Corollary 27  Let ( �G = (V ,E), σ) be a beBMG with 
|V | ≥ 2 and V be the connected components of the Aho 
graph [RB( �G, σ),V ] . Then the partition V of V satisfies 
|V| ≥ 2 and c( �G,V) = 0.

Since a beBMG ( �G, σ) is explained by every refinement 
of the Aho tree constructed from RB( �G, σ) (cf. Prop. 26), 
we can obtain a slightly more general result.

Lemma 28  Let ( �G = (V ,E), σ) be a beBMG with 
|V | ≥ 2 and V be the connected components of the Aho 
graph [RB( �G, σ),V ] . Then, every coarse-graining V ′ of V 
with |V ′| ≥ 2 satisfies c( �G,V ′) = 0.

Proof  First note that RB( �G, σ) is consistent by Prop. 26 
since ( �G, σ) is a beBMG. Therefore, |V | ≥ 2 implies |V| ≥ 2 
[10]. For the trivial coarse-graining V ′ = V , Cor.  27 
already implies the statement. Now assume V ′ �= V . 
Observe that the tree (T , σ):=(Aho (RB( �G, σ),V ), σ) 
exists and explains ( �G, σ) by Prop. 26. Moreover, there is, 
by construction, a one-to-one correspondence between 
the children vi of its root ρ and the elements in Vi ∈ V 
given by L(T (vi)) = Vi . We construct a refinement (tree) 
T ′ of T as follows: Whenever we have multiple sets Vi ∈ V 
that are subsets of the same set Vj ∈ V ′ , we remove the 
edges ρvi to the corresponding vertices vi ∈ childT (ρ) 
in T, and collectively connect these vi to a newly cre-
ated vertex wj . These vertices wj are then reattached to 
the root ρ . Since |V ′| ≥ 2 by assumption, the so-con-
structed tree T ′ is still phylogenetic. Moreover, it satisfies 
V ′ = {L(T ′(v)) | v ∈ childT ′(ρ)} , and thus, T ′ ∈ T (V ′) . 
It is a refinement of T since contraction of the edges ρwj 
again yields T. Hence, we can apply Prop. 26 to conclude 
that (T ′, σ) also explains ( �G, σ) . It follows immediately 
that U( �G,T ′) = ∅ . The latter together with T ′ ∈ T (V ′) 
implies U( �G,V ′) = ∅ , and thus c( �G,V ′) = 0 . 

We are now in the position to formulate an analogue of 
Thm. 23 for variants of Alg. 2 that aim to edit a properly-
colored digraph ( �G, σ) to a beBMG.

Theorem 29  Alg. 2 is consistent for beBMGs ( �G, σ) if, in 
each step on V ′ with |V ′| ≥ 2 , a bipartition V in Line 4 is 
chosen according to one of the following rules:

1	 V has minimal UR-cost among all possible biparti-
tions V ′ of V ′.

2	 If the Aho graph [RB( �G∗[V ′], σ|V ′),V ′] is discon-
nected with the set of connected components VAho , 

�
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and moreover c( �G∗[V ′],VAho ) = 0 , then V is a 
coarse-graining of VAho.

Proof  We have to show that the final edited digraph 
( �G∗, σ) returned in Line  13 equals the input digraph 
( �G = (V ,E), σ) whenever ( �G, σ) already is a beBMG, 
i.e., nothing is edited. Thus suppose that ( �G, σ) is a 
beBMG and first consider the top-level recursion step 
on V (where initially �G∗ = �G still holds at Line  1). If 
|V | = 1 , neither ( �G, σ) nor ( �G∗, σ) contain any arcs, and 
thus, the edit cost is trivially zero. Now suppose |V | ≥ 2 . 
Since ( �G, σ) is a beBMG, RB :=RB( �G, σ) is consist-
ent, and thus, the set of connected components VAho 
of the Aho graph [RB,V ] has a cardinality of at least 
two. If |VAho | = 2 , V :=VAho is a bipartition satisfying 
c( �G,V) = 0 by Cor.  27. If |VAho | > 2 , we can find an 
arbitrary bipartition V that is a coarse-graining of VAho . 
By Lemma  28, V also satisfies c( �G,V) = 0 in this case. 
Hence, for both rules (1) and (2), we choose a bipartition 
V with (minimal) UR-cost c( �G,V) = 0 . Now, Lemma 22 
implies that the induced subgraph ( �G[V ′], σ|V ′) is a BMG 
for every V ′ ∈ V . To see that ( �G[V ′], σ|V ′) is also binary-
explainable, first note that RB( �G[V ′], σ|V ′) = RB

|V ′ by 
Obs. 8. This together with the fact that RB

|V ′ ⊆ RB and 
Obs. 9 implies that RB( �G[V ′], σ|V ′) is consistent. More-
over, Prop.  10 and ( �G[V ′], σ|V ′) being a BMG together 
imply that ( �G[V ′], σ|V ′) is sf-colored. Hence, we can apply 
Prop. 26 to conclude that ( �G[V ′], σ|V ′) is a beBMG.

Since we recurse on the subgraphs ( �G[V ′], σ|V ′) , which 
are again beBMGs, we can repeat the arguments above 
along the recursion hierarchy to conclude that the UR-
cost c( �G∗[V ′],V ′) vanishes in every recursion step. By 
Cor.  16, the total edit cost of Alg.  2 is the sum of the 
UR-costs c( �G∗[V ′],V ′) in each recursion step, and thus, 
also zero. Therefore, we conclude that we still have 
( �G∗, σ) = ( �G, σ) in Line 13. 

Minimizing the UR‑cost c(�G,V)
The problem of minimizing c( �G,V) for a given properly 
colored digraph ( �G, σ) corresponds to the following deci-
sion problem.

Problem 3  ((Bi)Partition with UR-Cost ((B)PURC))  

Input: A properly ℓ-colored digraph

(�G = (V , E), σ) and an integer k ≥ 0.

Question: Is there a (bi)partition V of V

such that c(�G,V) ≤ k?

�

In the Appendix, we show that (B)PURC​ is NP-hard by 
reduction from Set Splitting, one of Garey and John-
son’s [22] classical NP-complete problems.

Theorem 30  BPURC​ is NP-complete.

Thm.  23 suggests to consider heuristics for (B)PURC​ 
that make use of the Aho graph in the following manner: 

1	 Construct the Aho graph H :=[R( �G, σ),V ] based on 
the set of informative triples R( �G, σ).

2	 If H has more than one connected component, we 
use the set of connected components as the partition 
V.

3	 If H is connected, a heuristic that operates on the 
Aho graph H is used to find a partition V with small 
UR-cost c( �G,V).

Plugging any algorithm of this type into Line 4 of Alg. 2 
reduces the algorithm to BUILD if a BMG is used as 
input and thus guarantees consistency (cf. Prop. 10). We 
note, however, that the connected components of a dis-
connected Aho graph are not guaranteed to correspond 
to an optimal solution for (B)PURC​ in the general case.

Methods
Construction of test instances
We test the heuristics described below on ensembles of 
perturbed BMGs that are constructed as follows: We 
first generate leaf-colored trees (T , σ) with a predefined 
number of vertices N and colors ℓ and then compute their 
BMGs �G(T , σ) . To construct the tree T, we start from a 
single vertex. We then repeatedly choose one of the exist-
ing vertices v randomly, and, depending on whether v is 
currently an inner vertex or a leaf, attach either a single 
or two new leaves to it, respectively. Hence, the number 
of leaves increases by exactly one and the tree remains 
phylogenetic in each step. We stop when the desired 
number N of leaves is reached. In the next step, colors 
are assigned randomly to the leaves under the constraint 
that each of the ℓ colors appears at least once. We note 
that trees created in this manner are usually not least 
resolved, and their BMGs are in general not binary-
explainable. Finally, we disturb these BMGs by inserting 
and deleting arcs according to a specified insertion and 
deletion probability, respectively. Since arcs between ver-
tices of the same color trivially cannot correspond to best 
matches, we do not insert arcs between such vertices, i.e., 
the input digraphs for the editing are all properly vertex-
colored digraphs.
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For the purpose of benchmarking the heuristics for 
the (B)PURC​ problem, we only retain perturbed BMGs 
( �G, σ) with a connected Aho graph H :=[R( �G, σ),V ( �G)] 
because the heuristics are not applied to instances with a 
disconnected Aho graph H. Depending on the insertion 
and deletion probabilities, we retained 93% to 100% of 
the initial sample, except in the case where arcs were only 
inserted to obtain a disturbed digraph. Here, the Aho 
graph H was connected in 60% of the initial sample. Thus, 
even moderate perturbation of a BMG introduces incon-
sistencies into the triple set R( �G, σ) and results in a con-
nected Aho graph H in the majority of cases. As shown 
in Fig. 2, both arc insertions and deletions can cause tri-
ple inconsistencies. For better comparison, the same set 
of test instances is used for all of the methods described 
below.

Heuristics for (B)PURC​
(B)PURC​ is a variation on graph partitioning problems. It 
seems reasonable, therefore, to adapt graph partitioning 
algorithms for our purposes.

MinCut. We solve the minimum edge cut problem for 
the connected undirected graph H, i.e., we want to find 
a bipartition V = {V1,V2} such that the number of edges 
between V1 and V2 is minimal in H. The problem can be 
solved exactly in polynomial time using the Stoer-Wag-
ner algorithm [23]. Note, however, that the minimum 
edge cut in H will in general not deliver an optimal solu-
tion of (B)PURC​.

Karger’s algorithm is a randomized algorithm that, in 
its original form, also aims to find a minimum edge cut 
[24]. In brief, it merges vertices of the graph by randomly 
choosing and contracting edges, until only two vertices 
remain, which induce a bipartition V according to the 
vertices that were merged into them. By repeating this 
process a sufficient number of times, a minimum edge 
cut can be found with high probability. Here, we use 
the UR-cost c( �G,V) instead of the size of the edge cut as 
objective function to select the best solution over multi-
ple runs.

A simple greedy approach starts with V = {V1 = ∅,V2 = V
′} 

and stepwise moves a vertex v ∈ V2 to V1 such that 
c( �G, {V1 ∪ {v},V2 \ {v}}) is optimized. Ties are broken at 
random. This produces |V | − 1 “locally optimal” biparti-
tions, from which the best one is selected.

Gradient walks. The space of all bipartitions 
V = {V1,V2} endowed with a “move set” and the objec-
tive function c( �G,V) forms a fitness landscape. Here, we 
consider adjacency between bipartitions by moving one 
vertex from V1 to V2 or vice versa. Gradient walks [25], 
also called “gradient adaptive walk” [26] or “greedy adap-
tive walks” [27], form the discrete analog of gradient 
descent methods. We start with a random but balanced 

bipartition V = {V1,V2} and then repeatedly execute a 
move to an adjacent bipartition that maximally improves 
the objective function; a gradient walk stops when a local 
optimum is reached.

Louvain method. This method for community detec-
tion in graphs greedily optimizes the so-called modular-
ity of a vertex partition V [28]. Its objective function is 
q(V) =

∑

W∈V

∑

u,v∈W (auv − dudv/(2m)) , where auv are 
the entries of the (possibly weighted) adjacency matrix of 
a graph H, du =

∑

v auv the vertex degrees, and m is the 
sum of all edge weights in the graph. This favors so-called 
communities or modules W that are highly connected 
internally but have only few edges between them. The 
Louvain method operates in two phases starting from the 
discrete partition V = {{u} |u ∈ V } . In the first phase, it 
repeatedly iterates over all vertices x and moves x into the 
community of one of its neighbors that leads to the high-
est gain in modularity as long as a move that increases 
q(V) can be found. The second phase repeats the first one 
on the weighted quotient graph H/V whose vertices are 
the sets of V and whose edge weights are the sum of the 
original weights between the communities. In addition to 
maximizing the modularity, we also investigate a variant 
of the Louvain method that moves vertices into the com-
munity of one of their neighbors if this results in a lower 
UR-cost c( �G,V) , and otherwise proceeds analogously. 
We exclude the merging of the last two vertices to ensure 
that a non-trivial partition is returned. Since the Louvain 
method is sensitive to the order in which the vertex set is 
traversed, we randomly permute the order of vertices to 
allow multiple runs on the same input.

With the exception of the Stoer-Wagner algorithm for 
solving the minimum edge cut problem, all of these par-
titioning methods include random decisions. One may 
therefore run them multiple times and use the partition 
corresponding to the best objective value, i.e., the lowest 
UR-cost c( �G,V) or the highest modularity. If not stated 
otherwise, we apply five runs for each of these methods 
in each recursion step (with a connected Aho graph) in 
the following analyses.

Heuristics for BMG editing
We will explore the performance of several variants 
of Alg. 1 and 2 for BMG editing. The variants of Alg. 2 
correspond to using the heuristics for (B)PURC​ dis-
cussed above for processing a connected Aho graph 
H :=[R( �G∗[V ′], σ|V ′),V ′] for the triples R( �G∗[V ′], σ|V ′) 
in each step of the recursion. We note that Alg.  2 in 
combination with any of the heuristics for (B)PURC​ also 
serves as a heuristic for MaxRTC​ because the choice 
of the partition V in each recursion step determines 
a set of included triples xy|z, namely those for which x 
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•	 In the Aho graphs, RB( �G, σ) is used instead of 
R( �G, σ).

•	 If we encounter a partition V of cardinality greater 
than two in some recursion step, we use a coarse-
graining V ′ of V such that |V ′| = 2 instead. This mod-
ification is necessary whenever [RB( �G, σ)[V ′],V ′] 
itself has more than two connected components, and 
for the partitions with |V| ≥ 3 returned by the Lou-
vain method.

By Thm.  29, this procedure is consistent for binary-
explainable BMGs. Thm. 29, moreover, guarantees some 
freedom in the choice of a coarse-graining V ′ = {V1,V2} 
whenever V is not a bipartition. We therefore aim to pro-
duce (locally) balanced trees in such situations, i.e., we 
seek to minimize the difference of |V1| and |V2| . Formally, 
this corresponds to the well-known Number Partition-
ing problem with the multiset {|Vi| | Vi ∈ V} as input. 
We use the efficient heuristic described in [30], which in 
general appears to yield very good solutions of the Num-
ber Partitioning problem [31].

To construct the second binary tree T ∗ based on sub-
set of triples R∗ ⊆ RB( �G, σ) that are displayed by T, we 
employ an analogous coarse-graining in an otherwise 
unmodified BUILD algorithm. We note, however, that 
one could incorporate more sophisticated approaches 
which e.g. use some greedy coarse-graining method 
based on the UR-cost.

Computational results
In this section, we compare different heuristics for the 
(B)PURC​ Problem and their performance in the context 
of BMG editing. Somewhat unexpectedly, but in accord-
ance with Fig. 5, our results suggest that a good (or bad) 
performance of (B)PURC​ is not directly linked to a good 
(or bad) performance for BMG editing. Moreover, we 
find that, even for noisy data, all analyzed methods are 
able to capture the tree structure of the underlying “true” 
BMG at least to some extent. As we shall see, community 
detection approaches in combination with the UR-cost 
appear to be more promising for BMG editing than opti-
mal solutions of (B)PURC​ alone.

In order to better understand the behavior of the 
repeated application of the partitioning heuristics of 
Alg. 2, it is instructive to consider not only the score but 
also the structure of partitions. We observe a strong ten-
dency of some of the partitioning methods to produce 
single-leaf splits, i.e., (bi)partitions V in which at least one 
set W ∈ V is a singleton (i.e., |W | = 1 ). Single-leaf splits 
in general seem to have relatively low UR-costs. Further 
details on the propensity of the partitioning heuristics to 
produce single-leaf splits are given in Appendix C.

and y are contained in one set of V while z is contained 
in another. Another way of expressing that same fact is 
that an approximation to MaxRTC​ is given by the sub-
set R∗ ⊆ R( �G, σ) of the informative triples of the input 
digraph ( �G, σ) that are displayed by the tree T con-
structed in Alg. 2. In particular, Alg. 2 together with the 
MinCut method has been described as a heuristic for 
MaxRTC​ in earlier work [16, 17]. For comparison, we 
will also consider the following bottom-up approach as a 
component of Alg. 1:

Best-Pair-Merge-First (BPMF) was described in [18], 
and constructs a tree from a set of triples R in a bottom-
up fashion. We use here a modified version introduced in 
[16]. BPMF operates similar to the well-known UPGMA 
clustering algorithm [29]. Starting with each vertex x ∈ V  
as its own cluster, pairs of clusters are merged iteratively, 
thereby defining a rooted binary tree with leaf set V. The 
choice of the two clusters to merge depends on a similar-
ity score with the property that any triple xy|z with x, y, 
and z lying in distinct clusters Sx , Sy , and Sz contributes 
positively to score(Sx, Sy) and negatively to score(Sx, Sz) 
and score(Sy, Sz) . Since BPMF constructs the tree T 
from the bottom, it does not imply a vertex partitioning 
scheme that could be plugged into the top-down pro-
cedure of Alg.  2. Importantly, BPMF is not a consistent 
heuristic for MaxRTC​, i.e. it does not necessarily rec-
ognize consistent triples sets. Hence, consistency in the 
application to BMG editing is also not guaranteed, see 
Fig. 15 in Appendix B for an example.

In summary, we have two distinct ways to obtain an 
edited BMG: We may take either 

1	 �G(T , σ) , where T is the output tree of Alg.  2 or 
BPMF, respectively, or

2	 �G(T ∗, σ) , where T ∗ = Aho (R∗,V ( �G)) is con-
structed from the consistent triple subset of triples 
R∗ . This corresponds to Alg. 1.

Somewhat surprisingly, the results in Fig. 7 below suggest 
that it is in general beneficial to extract the triple set R∗ 
and rerun the BUILD algorithm, i.e., to use �G(T ∗, σ).

Heuristics for binary‑explainable BMG Editing
In order to test the heuristics for the slightly different 
task of obtaining a binary-explainable BMG ( �G∗, σ) , we 
constructed a similar set of test instances. The only dif-
ference is that we ensured that Torig is binary by modi-
fying the attachment procedure above such that in each 
growth step we only choose among the vertices that 
are currently leaves for attaching two new leaves. Thus, 
( �Gorig, σ) = �G(Torig, σ) is binary-explainable. The edit-
ing heuristics are analogous, with two straightforward 
modifications:
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Results for (B)PURC​
Fig.  6 suggests that the Simple Greedy approach is best 
suitable for the minimization of the UR-cost c( �G,V) for 
any of the considered parameters for BMG disturbance. 
The Louvain method based on graph modularity (Lou-
vain (m)) appears to have by far the worst performance 
which, moreover, quickly produces higher UR-costs with 
an increasing intensity of the perturbations.

Results for BMG editing
To assess the performance of the various heuristics 
for BMG editing, we consider the differences between 
the editing result (G∗, σ) from both the original BMG 
(Gorig , σ) and the perturbed input digraphs (G, σ) . In 
Fig. 7, we summarize the absolute values of the symmet-
ric differences of the arc sets dorig :=|E(G∗)△E(Gorig )| 
and d:=|E(G∗)△E(G)| , respectively. These results are 
translated to usual normalized performance indicators 
(recall, precision, specificity, and accuracy; all defined in 
terms of the arc sets) in Fig. 8.

Comparing the distances dorig (blue boxplots) and d 
(green boxplots) of the editing result (G∗, σ) to original 
unperturbed BMG and the input digraph, resp., we find 
that, for the methods investigated here, on average dorig is 
smaller than d. This indicates that all methods are able to 
capture the underlying tree structure of the original BMG 
at least to some extent. The discrepancy between dorig 
and d tends to increase with the level of perturbation, a 
trend that is most pronounced for Louvain (c). This result 
is encouraging for practical applications of BMG modi-
fication to correcting noisy best match data, where the 
eventual goal is to obtain a good estimate of the underly-
ing true BMG.

Intriguingly, the extraction of consistent informative 
triples R∗ from the reconstructed tree T and rerunning 
BUILD, i.e., using �G(T ∗, σ) , in general improves the esti-
mation results for the majority of methods. In particu-
lar, this increases the recall without a notable negative 
impact on precision and specificity (cf. Fig.  8). A better 
recall, corresponding to a higher proportion of correctly 
inferred arcs, is not surprising in this context, since this 
additional step in essence reduces the number of tri-
ples. We therefore expect the tree T ∗ = Aho (R∗,V ( �G)) 
to be on average less resolved than T. The BMGs of less 
resolved trees tend to have more arcs than BMGs of 

highly resolved tree (cf. [12, Lemma 8]). In good accord-
ance with this prediction, BPMF, which shows a strong 
increase of recall, always constructs a binary, i.e., fully-
resolved, tree T – whereas the corresponding tree T ∗ in 
general is much less resolved.

Somewhat surprisingly, a good or bad performance 
for minimizing the UR-cost in individual steps appar-
ently does not directly translate to the performance in the 
overall editing procedure. In particular, the modularity-
based Louvain (m) method seems to be a better choice 
than the Simple Greedy approach. The methods MinCut 
and Karger do not seem to be suitable components for 
Alg.  2, with the exception of the case where perturba-
tions are arc deletions only (Fig.  7, bottom row). Here, 
MinCut produces reasonable estimates that compare 
well with other methods. The bottom-up method for the 
MaxRTC​ problem BPMF also produces relatively good 
results. It appears to be robust at high levels of perturba-
tion. For most of the parameter combinations, we obtain 
the best results with the UR-cost-based Louvain method 
(Louvain (c)). Here, we often observe a symmetric differ-
ence (w.r.t. the arcs sets) that is better than the difference 
between the original and the perturbed digraph. This 
trend is illustrated by the red median lines in Fig. 7 and 
8 . Hence, we achieve two goals of BMG editing: (i) the 
resulting digraph ( �G∗, σ) is a BMG, i.e., it satisfies Def. 1, 
and (ii) it is closer to the original BMG than the per-
turbed digraph. We note that we observed similar trends 
across all investigated combinations for the numbers of 
leaves N (ranging from 10 to 40) and of colors ℓ ( ℓ < N  
ranging from 2 to at most 20).

Our results show that minimization of the UR-cost 
in each step is not the best approach to BMG editing 
because this often produces very unbalanced partitions. 
As a consequence, more recursion steps are needed in 
Alg.  2 resulting in higher accumulated number of arc 
edits. Figure  9 shows that better solutions to the BMG 
editing problem are not necessarily composed of vertex 
partitions with minimal UR-cost in each step. The per-
turbed digraph ( �G, σ) in Fig.  9 was obtained from the 
randomly simulated BMG ( �Gorig, σ) as described above 
using equal insertion and deletion probabilities of 0.1. 
As an example, the partitions V1 and V2 as constructed 
by the MinCut and the Louvain  (c) method in the first 
iteration step of Alg.  2 are shown as pink and green 

Fig. 6  Performance of partitioning methods for minimizing c(�G,V) on perturbed BMGs (�G, σ) . The rows correspond to different insertion and 
deletion probabilities (indicated in the l.h.s. panels) used to disturb the original BMGs. The l.h.s. panels show the distribution of the no. of arc 
modifications in total, arc insertions and arc deletions of the disturbed digraphs w.r.t. the original BMGs. The r.h.s. panels show the distribution 
of UR-costs c(�G,V) (red) obtained for each method, and of the no. of arcs in U1(�G,V) , U2(�G,V) , and U3(�G,V) (i.e., the sets that contribute to 
the UR-cost). Example plot for |V | = 30 vertices and |σ(V)| = 10 colors in each digraph. Among the 200 generated digraphs, only those with a 
connected Aho graph [R(�G, σ), V(�G)] are included in each of the five rows (93%, 100%, 100%, 60%, 95%)

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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frames, respectively. MinCut produces a single-leaf split 
V1 with an isolated vertex b2 and UR-cost c( �G,V1) = 1 
deriving from U1( �G,V1) = {(b2, a2)} . Louvain  (c) identi-
fies the partition V2 with c( �G,V2) = 3 originating from 
U2( �G,V1) = {(b3, a1), (c2, a1), (c2, b1)} , which corre-
sponds to the connected components of the Aho graph 
Horig of the unperturbed BMG and thus identifies the 
split in the original tree (T , σ) . Here, the correct parti-
tion V2 has a strictly larger UR-cost than the misleading 
choice of V1 . However, MinCut results in a higher total 
edit cost than Louvain (c) for ( �G, σ).

In order to account for the issue of unbalanced parti-
tions, we performed a cursory analysis on maximizing 
a gain function rather than minimizing the UR-cost. In 
analogy to c( �G,V) , we defined g( �G,V) as the number of 
arcs and non-arcs that are satisfied by the BMGs of all 
trees in T (V) . Recapitulating the arguments in the proof 
of Lemma 13, one can show that these relations can also 
be determined as the union of three sets by replacing 
“ (x, y) ∈ E ” with “ (x, y) /∈ E ” and vice versa in the defini-
tions of U1( �G,V) , U2( �G,V) , and U3( �G,V) . The gain func-
tion g( �G,V) can be used instead of the UR-cost with 
Karger, Simple Greedy, Gradient Walk, and in a gain-
function-based Louvain method. For all these algorithms, 
however, maximizing g( �G,V) leads to partitions that 
appear to be too balanced, and a performance for BMG 
editing that is worse than the use of the UR-cost. A pos-
sible explanation for both unbalanced and too balanced 
partitions as produced with a cost and gain function, 
resp., is the fact that U1( �G,V) and U2( �G,V) (and their 
gain function counterparts) contain pairs of vertices (x, y) 
that lie in distinct sets of V . Hence, both single-leaf splits 
and perfectly balanced partitions minimize (maximize, 
resp.) the number of pairs that could potentially be con-
tained in these arc sets.

All methods for BMG editing were implemented and 
compared using Python on an off-the-shelf laptop (Intel� 
CoreTM i7-4702MQ processor, 16  GB RAM, Ubuntu 
20.04, Python 3.7). They are available as a Python library 
at https://​github.​com/​david-​schal​ler/​bmg-​edit. Figure 10 
summarizes the running times. The right panel shows 
that all methods appear to scale polynomially in the size 
|V| of the vertex set of the input digraph. The methods 

that explicitly rely on the UR-cost are much slower than 
the other methods. We suspect that this is largely due to 
the repeated O(|V ′|2)-computation of c( �G,V) whenever a 
vertex is moved between the sets/communities in V . This 
could possibly be improved by an incremental algorithm.

Results for binary‑explainable BMG Editing
The results for beBMG editing in essence recapitulate 
the observations for general BMG editing, see Fig.  11. 
Alg. 2 in combination with Louvain (c) appears to be the 
best choice for the majority of parameter combinations. 
However, it is outperformed by the BPMF heuristic at 
high levels of perturbation (insertion and deletion prob-
ability 0.2). As in the general case, construction of T ∗ 
and using ( �G∗, σ):= �G(T ∗, σ) as editing result appears to 
be advantageous. Moreover, the difference of the editing 
result ( �G∗, σ) to the original beBMG ( �Gorig, σ) is on aver-
age smaller than the difference of ( �G∗, σ) to the perturbed 
digraph ( �G, σ).

Real‑life data
Assessing the performance of BMG editing for real-life 
data is not a trivial task because no reliable gold standard 
data sets are available. Moreover, we expect that software 
pipelines for best match inference would benefit from a 
pre-processing step that eliminates systematic errors aris-
ing as a consequence of unequal evolution rates in differ-
ent branches of a gene family [5]. The implementation of 
such a pipeline is beyond the scope of this contribution. 
Nevertheless, we include a brief analysis of a small set of 
eubacterial genomes to obtain a first impression of the 
practical applicability of the methods described in this 
contribution. In particular, we provide an empirical justi-
fication for the level of error introduced in the simulated 
digraphs.

We consider the genomes of the eleven species of 
Aquificales species that have been studied previously in 
[32]. Starting from the protein sequences of these spe-
cies, we use ProteinOrtho [33] to obtain estimates 
for best matches. ProteinOrtho is a tool for orthol-
ogy inference that, in a first step, constructs a digraph ϒ 
on the set of genes/proteins from all species. The digraph 
contains an arc (x,  y) whenever x and y stem from 

(See figure on next page.)
Fig. 7  Performance comparison of several BMG editing heuristics based on the no. of arc differences. The rows correspond to different insertion 
and deletion probabilities (indicated in the second column panels) used to perturb the original BMGs. The l.h.s. panels show the distribution of 
the no. of arcs in the original BMG and in the perturbed digraph. The second column panels show the distribution of the no. of arc modifications 
in total, arc insertions and arc deletions of the perturbed digraphs w.r.t. the original BMGs. The red lines mark the median values of the total no. 
of modifications. The r.h.s. panels show the total no. of arc differences w.r.t. the original random BMGs (blue) and the perturbed digraphs (green). 
The light colors indicate the “direct” performance of each method, i.e., the digraph �G(T , σ) where T is the tree that is directly constructed by each 
method. The darker colors indicate the results if the methods are used as heuristic for MaxRTC​ in Alg. 1. Example plot for |V | = 30 vertices and 
|σ(V)| = 10 colors in each digraph, 100 digraphs per row

https://github.com/david-schaller/bmg-edit
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distinct species X and Y, respectively, and the sequence 
of y is among the most similar sequences in Y to that 
of x. Sequence similarity is measured here in terms of 
bitscores obtained from the hits in an all-versus-all com-
parison of the sequences using blast or a fast local 
alignment tool. Moreover, cutoffs for the E-value and 
the sequence identify are set to avoid an overabundance 
of spurious hits. Here, we use the default settings of the 
current ProteinOrtho version, i.e., DIAMOND [34] is 
employed for the all-versus-all comparison and we only 
include hits with an E-value smaller than 10−5 and a pair-
wise sequence identity exceeding 25%. To better account 
for the fact that multiple best matches of x in species Y 
are possible, we choose a more inclusive relative thresh-
old f = 0.8 for the bitscores (as compared to the default 
value f = 0.95 ), i.e., an arc (x, y) is included in ϒ when-
ever the respective hit reaches a bitscore of at least 0.8 
times the bitscore of the best hit of x in species Y. To infer 
orthologous genes, i.e., related genes that arose from spe-
ciation events, ProteinOrtho proceeds to construct 
the symmetric part ϒ of ϒ followed by spectral cluster-
ing to eliminate false orthology edges [33]. Since we are 
interested in the directed best match graph rather than 
orthology, we use ϒ as an estimate of the best match rela-
tion and forego the rest of the pipeline.

The resulting digraph ϒ for the Aquificales data set 
comprises 16630 vertices and 2001 (weakly) connected 
components. The distribution of the order of these 
components is shown in Fig. 12. We obtained 9 compo-
nents with more than 100 vertices (with a maximum of 
775 vertices), which are not included in the plot. We use 
each connected component ( �G, σ) of ϒ , where σ is deter-
mined by the species to which a gene/protein belongs, as 
input for our editing heuristics. We distinguish three size 
classes (bins) as indicated in Fig. 12 to discuss the results. 
It is worth noting that in particular the large compo-
nents may still be composites of genes that are not true 
homologs but only share certain protein domains. For 
routine applications, additional data preprocessing steps 
are advisable. Gene family classification, i.e., the cluster-
ing of proteins in families [36], is itself by no means a 
completely solved problem in computational biology.

Figure  13 summarizes the number of arc differences 
between the editing results and the input digraphs. As 
in the simulations, the input digraphs are in general not 

valid BMGs. Indeed, we found that only 5.9% in bin  (I) 
comprising small instances and none of the digraphs in 
bins  (II) and  (III) were BMGs. The comparison of the 
different methods recapitulates the results on simulated 
data. Differences in the performance are on average more 
prominent for input digraphs with more vertices. The 
methods BPMF and Louvain (c) again show good results. 
However, here, the simple MinCut heuristic is also 
among the best-performing methods. As before, the edit-
ing can be slightly improved by additionally constructing 
T ∗ and its BMG �G(T ∗, σ) . Comparing e.g. the top panel 
in Fig.  7 ( |V ( �G)| = 30 for all digraphs) and bin  (II) in 
Fig. 13 shows that the number of arc edits performed by 
the heuristics is comparable for simulated and real-life 
data. Even though the true BMG and thus the amount of 
errors is not known in the Aquificales data set, this sug-
gests that simulation results provide a realistic view of 
BMG editing in real-life applications.

Summary and discussion
In this contribution, we have described a large class of 
heuristics for BMG editing that operate in a recursive 
top-down fashion to (at least implicitly) construct a tree 
(T , σ) capturing the underlying BMG-structure of an 
arbitrary input digraph ( �G, σ) . We have shown that this 
is closely related to a specific notion of locally good edits, 
which we assess using the UR-cost. The UR-cost counts 
the minimum number of arc insertions and deletions of 
the BMG-editing for ( �G, σ) that are linked to each inner 
node (and thus to their corresponding leaf partitions) in 
(T , σ) and cannot be reversed in subsequent recursion 
steps. In particular, we showed that an optimal solution 
among all possible partitions guarantees consistency 
of this class of heuristics (cf. Thm.  23 and 29). Unfor-
tunately, the corresponding problem BPURC​ is itself 
NP-complete.

We therefore suggested a number of approximation 
methods for finding suitable partitions, and compared 
their performances in the context of Alg. 2. We find that, 
even though good solutions for (B)PURC​ alone do not 
seem to be the most adequate approach, the value of the 
UR-costs appears most clearly in a combination with a 
method for community detection, more precisely, a mod-
ification of the Louvain method [28].

Fig. 8  Performance comparison of several BMG editing heuristics based on recall, precision, specificity, and accuracy (rows 1 to 4). The l.h.s. panels 
show the respective measure for the perturbed digraph w.r.t. the original random BMG. The red lines marks the median values of the latter. The 
r.h.s. panels show the results for the edited digraphs w.r.t. the original BMGs (blue) and the perturbed digraphs (green). The light colors indicate 
the “direct” performance of each method, i.e., the digraph �G(T , σ) where T is the tree that is directly constructed by each method. The darker colors 
indicate the results if the methods are used as heuristic for MaxRTC​ in Alg. 1. Example plot for |V | = 30 vertices and |σ(V)| = 10 colors in each 
digraph, insertion and deletion probability 0.1, and 100 digraphs

(See figure on next page.)
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Fig. 9  Example of an instance where the Louvain method performs better due to more balanced partitions. The (least resolved) tree (T , σ) explains 
the BMG (�Gorig, σ) with vertex set V. The graph Horig = [R(�Gorig, σ), V ] is the Aho graph corresponding to the informative triple set R(�Gorig, σ) . The 
perturbed digraph (�G, σ) is obtained from (�Gorig, σ) by inserting the arcs (b3, a1) , (c2, a1) , and (c2, b1) and deletion of (a1, b2) . The corresponding 
Aho graph H = [R(�G, σ), V ] is connected because the perturbation introduced the additional informative triple c2b1|b2 . The green and pink frames 
correspond to the partitions V1 and V2 of V constructed by the methods Louvain (c) and MinCut, respectively

Fig. 10  Running times of the different methods for BMG editing. The time only includes the construction of the tree T, i.e., Alg. 2 or BPMF, resp., but 
not the extraction of the triple set R∗ followed by rerunning BUILD. For each number of leaves N ∈ {10, 20, 30, 40} and each number of colors ℓ 
(taken from {2, 5, 10, 20} such that ℓ < N ), 100 perturbed BMGs were generated using equal insertion and deletion probabilities of 0.1. In the right 
panel, the median values are shown with logarithmic axes
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Fig. 11  Performance comparison of several beBMG editing heuristics based on the no. of arc differences. See Fig. 7 for further description. Example 
plot for |V | = 30 vertices and |σ(V)| = 10 colors in each digraph, 100 digraphs per row
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For all of the methods investigated here, we found that 
the Aho graph H :=[R( �G, σ)[V ′],V ′] serves as a useful 
starting point for finding a suitable partition. This choice 
is based on the idea that, due to the properties of BMGs 
and in particular the construction of the tree (T , σ) from 
informative triples of the BMG ( �G, σ) = �G(T , σ) , arc 
insertions and deletions in ( �G, σ) should not add too 
many new edges between the connected components 
of the originally disconnected Aho graph of R( �G, σ) (cf. 
Fig.  2). Therefore, we suggest that there is a correlation 
between good partitions V of V ′ , i.e. partitions linked to 
few edits, and the minimization of the number of edges 
in H connecting vertices in distinct sets of V.

For the general BMG editing problem, we did not make 
use of the information contained in the set of forbidden 
triples F( �G, σ) of the input digraph ( �G, σ) . It might be 
possible to adapt the algorithm MTT [13], which identi-
fies consistent pairs (R,F) , instead of BUILD. MTT con-
structs a coarse-graining VMTT of the set of connected 
components of the Aho graph (on R ) in order to account 
for the forbidden triples in F  in each recursion step. Pos-
sibly, VMTT (or some suitable graph representation) yields 
a further improvement. However, in case of beBMG edit-
ing, the extended triple set RB( �G, σ) and thus the cor-
responding Aho graphs by construction already cover 
the information contained in F( �G, σ) . Since no substan-
tial improvement over the general case was observed 
in this case (cf. Fig. 11), we opted against more detailed 

benchmarking of VMTT in comparison to partitions based 
on the Aho graph.

Another source of information that we have not con-
sidered here are values of confidence for best matches 

Fig. 12  Summary of the data set of protein-coding gene families 
from 11 genomes of Aquificales, see [35] for details. We show 
the distribution of the number of vertex-colored digraphs (�G, σ) 
(histogram) and the median number of arcs |E(�G)| ( ⋄ symbols) for the 
estimated BMGs as a function of the number of genes V |(�G)| in each 
family. The bins (I) 15 ≤ |V(�G)| < 25 , (II) 25 ≤ |V(�G)| < 35 , and (III) 
35 ≤ |V(�G)| < 45 are used for the comparison of the BMG editing 
methods, see text for details

Fig. 13  Performance of the BMG editing heuristics for the Aquificales 
data, measured as the number of arc differences between input 
digraphs and editing results. As above, the light green indicates the 
“direct” performance of each method, i.e., the digraph �G(T , σ) where 
T is the tree that is directly constructed by each method, whereas the 
dark green indicates the results if the methods are used as heuristic 
for MaxRTC​ in Alg. 1. The three panels show the results for the bins (I) 
15 ≤ |V(�G)| < 25 , (II) 25 ≤ |V(�G)| < 35 , and (III) 35 ≤ |V(�G)| < 45 , 
respectively, as indicated in Fig. 12



Page 25 of 32Schaller et al. Algorithms Mol Biol           (2021) 16:19 	

e.g. derived from pairwise sequence alignment. These can 
naturally be provided as weights assigned to the arcs of 
an input digraph ( �G = (V ,E), σ) . Since every informative 
triple ab|b′ ∈ R( �G, σ) stems from an arc (a, b) ∈ E (and a 
“non-arc” (a, b′) /∈ E ), such arc weights can be propagated 
to the triples in R( �G, σ) . Assuming that larger weights 
mean higher confidence, a simple approach to weighting 
the edges xy in an Aho graph H :=[R( �G, σ)[V ′],V ′] is to 
sum up the weights of all triples xy|z ∈ R( �G, σ)[V ′] that 
induce the edge xy ∈ E(H) . Now the heuristics for finding 
a (bi)partition V in Alg. 2 may operate on this weighted 
graph H. Methods such as the Stoer-Wagner algorithm 
[23] and the (modularity-based) Louvain method [28] 
natively support weighted graphs. If the UR are used to 
find V , the situation appears more complicated. The cost 
contributed by an arc (x, y) ∈ U1( �G,V) ⊆ E can be set 
to the weight of (x, y) in ( �G, σ) . However, since U2( �G,V) 
and U3( �G,V) contain elements that are not in E, one 
also would require weights for these “non-arcs”. Since, 
in the simplest case, “non-arcs” correspond to pairs of 
sequences that do not reach a certain similarity thresh-
old (see e.g. [35]), the task of assigning weights to them 
does not seem trivial. In any case, whether incorporating 
such values of confidence is helpful needs to be assessed 
in practice.

The purpose of this contribution is to establish a 
sound theoretical foundation for practical approaches 
to BMG editing and to demonstrate that the problem 
can be solved for interestingly large instances at reason-
able accuracy. In computational biology, however, much 
larger problems than the ones considered here would 
also be of interest. Less emphasis has been placed here 
on computational efficiency and scalability of different 
algorithmic variants. We leave this as topic for future 
research. Given the performance advantage of commu-
nity detection over minimization of the UR-cost in each 
step, it seems most promising to focus on community 
detection methods that scale well for very large systems. 
The Louvain method seems to be a promising candi-
date, since it has been applied successfully to large net-
works in the past [28]. This is largely due to the fact that 
the change of modularity in response to moving a vertex 
between modules can be computed efficiently. We sus-
pect that a comparably fast computation of the UR-cost 
may also be possible; this does not appear to be trivial, 
however. Moreover, the method could probably be accel-
erated by moving vertices into the community of the first 
neighbor such that this results in a (not necessarily opti-
mal) improvement of the UR-cost. A similar randomiza-
tion approach has already shown to only slightly affect 
the clustering quality in terms of modularity [37].

Since the restriction of a (be)BMG to a subset of colors 
is again a (be)BMG, it may also be possible to remove 
large parts of the noise by editing induced subgraph on 
a moderate number of colors, possibly using informa-
tion of the phylogeny of the species to select species (= 
color) sets. Presumably, color sets with sufficient overlaps 
will need to be considered. A systematic analysis of this 
idea, however, depends on scalable BMG editing for large 
instances and goes beyond the scope of this contribution.

A potential shortcoming of the empirical analysis 
above is the simplistic error model, i.e., the independent 
perturbation of arcs (and non-arcs). Better models will 
depend on the investigation of BMGs derived from real-
life sequence data. Such data is often burdened with sys-
tematic errors arising e.g. from the fact that a common 
ancestry often cannot be detected for very large evolu-
tionary distances and from unequal mutation rates dur-
ing the evolution of gene families, see e.g. [5, 38, 39] for 
more in-depth discussions of these issues. Benchmarking 
using real-life data, however, is a difficult task because the 
ground truth is unknown and large, well-curated data sets 
are not available. Our results so far suggest that a good 
performance w.r.t. the input digraph is also an indicator 
for a good performance w.r.t. the true digraph (cf. Figs. 7 
and 8, green vs. blue boxplots). Moreover, they at least sug-
gest that realistic BMG data can be processed with suffi-
cient accuracy and efficiency to make BMGs an attractive 
alternative to classical phylogenetic methods. We indeed 
obtained promising results in a first application of our 
editing heuristics to the protein-coding genes of eleven 
Aquificales species. The construction of bioinformatics 
workflows to process best hit data, e.g. at the first process-
ing stage of ProteinOrtho [35], is a logical next step.

Appendix
Proofs
Proof of Lemma 13
Lemma 13  13 Let ( �G = (V ,E), σ) be a properly vertex-
colored digraph and let V = {V1, . . . ,Vk} be a partition of 
V with |V| = k ≥ 2 . Then

 
Proof  We first note that U1:=U1( �G,V) , U2:=U2( �G,V) 
and U3:=U3( �G,V) are pairwise disjoint. Further-
more, we have x  = y and σ(x)  = σ(y) for every 

 and every (x, y) ∈ U( �G,V) . Moreo-
ver, recall that T (V) is the set of trees T on V that sat-
isfy V = {L(T (v)) | v ∈ childT (ρT )} . Therefore, there 
is a one-to-one correspondence between the k ≥ 2 sets 
in V and the children childT (ρT ) of the root ρT for any 
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T ∈ T (V) . We denote by vi the child corresponding to 
Vi ∈ V ; thus Vi = L(T (vi)).

We first show that  implies 
(x, y) ∈ U( �G,V) . Let T ∈ T (V) be chosen arbitrarily, and 
let ρ be its root. Suppose that (x, y) ∈ U1 . Thus, we have 
(x, y) ∈ E , σ(y) ∈ σ(L(T (vi))) , x �T vi and y �T v′ for 
some v′ ∈ childT (ρ) \ {vi} . Moreover, σ(y) ∈ σ(L(T (vi))) 
implies that there is a vertex y′ �T vi with σ(y′) = σ(y) . 
Taken together, we obtain lca T (x, y

′) �T vi ≺T ρ = lca T (x, y) , 
and thus (x, y) /∈ E( �G(T , σ)) . If (x, y) ∈ U2 , we have 
(x, y) /∈ E , σ(y) /∈ σ(L(T (vi))) , x �T vi and y �T v′ for 
some v′ ∈ childT (ρ) \ {vi} . Moreover, σ(y) /∈ σ(L(T (vi))) 
implies that there is no vertex y′ �T vi with σ(y′) = σ(y) . 
Thus, lca T (x, y

′) = lca T (x, y) = ρ holds for all y′ of color 
σ(y′) = σ(y) , and thus (x, y) ∈ E( �G(T , σ)) . Finally, sup-
pose (x, y) ∈ U3 . We have (x, y) /∈ E and y is the only leaf 
of its color in L(T (vi)) . Therefore, there is no vertex y′ 
with σ(y′) = σ(y) and lca T (x, y

′) ≺T lca T (x, y) , and thus 
(x, y) ∈ E( �G(T , σ)) . In summary, one of the conditions in 
Def.  12 is satisfied for T in all three cases. Since T was 
chosen arbitrarily, we conclude 

In order to show that 
, we dis-

tinguish Case (a): (x, y) ∈ E and (x, y) /∈ E( �G(T , σ)) 
holds for all T ∈ T (V) , and Case (b): (x, y) /∈ E and 
(x, y) ∈ E( �G(T , σ)) holds for all T ∈ T (V).

Case (a). (x, y) ∈ E implies σ(x)  = σ(y) . Moreo-
ver, there is a vertex y′ with σ(y′) = σ(y) , and 
lca T (x, y

′) ≺T lca T (x, y) for every T ∈ T (V) because 
(x, y) /∈ E( �G(T , σ)) . Since this is true for all trees in T (V) , 
there must be a set Vi ∈ V such that x, y′ ∈ Vi , and in 
particular σ(y′) = σ(y) ∈ σ(Vi) . Now suppose, for con-
tradiction, that y ∈ Vi and thus x, y, y′ ∈ Vi . In this case, 
we can choose a tree T ∈ T (V) such that x, y ≺T vi for 
some child vi ∈ childT (ρT ) and lca T (x, y) � lca T (x, y

′) 
hold for all y′ of color σ(y′) = σ(y) . Hence, we obtain 
(x, y) ∈ E( �G(T , σ)) for this tree; a contradiction. There-
fore, we conclude that y ∈ V \ Vi . In summary, all condi-
tions for U1 are satisfied, and thus (x, y) ∈ U1.

Case (b). We have (x, y) /∈ E and (x, y) ∈ E( �G(T , σ)) for all 
T ∈ T (V) . Let Vi ∈ V such that x ∈ Vi . We distinguish the 
two cases (i) y /∈ Vi , and (ii) y ∈ Vi . In Case (i), suppose, 
for contradiction, that σ(y) ∈ σ(Vi) . Then, for every tree 
T ∈ T (V) , there must be a vertex y′ of color σ(y) such 
that lca T (x, y

′) �T vi ≺T ρT = lca T (x, y) , contradicting 
(x, y) ∈ E( �G(T , σ)) . Therefore, we conclude σ(y) /∈ σ(Vi) . 

It follows that (x, y) ∈ U2 . In Case  (ii), assume, for con-
tradiction, that there is a vertex y′ ∈ Vi of color σ(y) 
such that y  = y′ . This together with σ(y′) = σ(y) �= σ(x) 
implies that all three vertices x, y, y′ are pairwise dis-
tinct. Since in addition x, y, y′ ∈ Vi , we can choose a 
tree T ∈ T (V) such that x, y, y′ ≺T vi for some child 
vi ∈ childT (ρT ) and lca T (x, y

′) ≺T lca T (x, y) ; a contra-
diction to (x, y) ∈ E( �G(T , σ)) for all T ∈ T (V) . Therefore, 
we conclude that y is the only vertex of its color in Vi . It 
follows that (x, y) ∈ U3 . 

Proof of Lemma 15
In order to prove Lemma 15, we first need the following 
technical result which shows that the editing of an arc in 
Alg.  2 will not be reversed in the subsequent recursion 
step.

Lemma 31  Let ( �G = (V ,E), σ) be a properly ver-
tex-colored digraph, V = {V1, . . . ,Vk} a partition of V 
with |V| = k ≥ 2 , and Vi = {Vi,1, . . . ,Vi,l} , 1 ≤ i ≤ k , 
a partition of Vi with |Vi| = l ≥ 2 . Moreover, let 
( �G′:= �G△U( �G,V), σ) be the colored digraph that is 
obtained by applying the edits in U( �G,V) to ( �G, σ) . Then 
U( �G,V) ∩ U( �G′[Vi],Vi) = ∅.

Proof  Let �G′
i:=

�G′[Vi] . The sets of unsatisfiable rela-
tions U( �G,V) and U( �G′

i ,Vi) are given by the (dis-
joint) unions  and 

, respectively (cf. 
Lemma  13). First, let (x, y) ∈ U1( �G,V) . Since, by defini-
tion of U1( �G,V) , x and y are contained in different sets of 
the partition V , they cannot be both contained in Vi and 
thus, U1( �G,V) ∩ U( �G′

i ,Vi) = ∅ . One analogously argues 
that U2( �G,V) ∩ U( �G′

i ,Vi) = ∅ . Now, assume for contra-
diction that (x, y) ∈ U3( �G,V) ∩ U( �G′

i ,Vi) . By definition 
of U( �G′

i ,Vi) , this implies x, y ∈ Vi . Moreover, by defini-
tion of U3( �G,V) , we have (x, y) /∈ E , which immediately 
implies (x, y) ∈ E( �G′

i) . By Lemma  13, we therefore con-
clude (x, y) ∈ U1( �G

′
i ,Vi) . Let Vi,j be the set of the parti-

tion Vi which contains x. Then, by definition of U1( �G
′
i ,Vi) , 

the color of y is contained in both Vi,j and Vi \ Vi,j , i.e., 
Vi contains at least two vertices of color σ(y) . However, 
(x, y) ∈ U3( �G,V) and y ∈ Vi together imply that y is the 
only vertex of its color in Vi ; a contradiction. 

We are now in the position to prove the more general

Lemma 15  15 All edit sets U( �G∗[V ′],V) constructed in 
Alg. 2 are pairwise disjoint.

�

�
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Proof  First note that, by Lemma 13, we have σ(x)  = σ(y) 
for all (x, y) ∈ U( �G∗[V ′],V) . Hence, the digraph ( �G∗, σ) 
remains properly colored during the whole recursion. 
Moreover, recursive calls on a set V ′ with |V ′| = 1 trivi-
ally contribute with a UR-cost of zero.

By construction, the partitions in consecutive calls of 
Edit() form a hierarchical refinement such that in each 
recursive call a single element of Vi ∈ V is refined. Clearly 
edit sets encountered in independent branches of the 
recursion tree are disjoint because they pertain to disjoint 
vertex sets. For directly consecutive calls of Edit(), 
Lemma 31 states that the edits sets are disjoint. Now con-
sider two recursive call on V ′ and V ′′ with V ′′ ⊂ V ′ that 
are not directly consecutive. Let V ′ and V ′′ , resp., be the 
partitions chosen for the vertex sets V ′ and V ′′ of �G′ and 
�G′′ at the beginning of the two recursion steps. We can 
apply the same arguments as in the proof of Lemma 31 
to conclude that Ui( �G

′[V ′],V ′) ∩U( �G′′[V ′′],V ′′) = ∅ , 
i ∈ {1, 2} . Finally, assume, for contradiction, that 
(x, y) ∈ U3( �G

′[V ′],V ′) ∩ U( �G′′[V ′′],V ′′) . By definition 
of U( �G′′[V ′′],V ′′) , this implies x, y ∈ V ′′ . Moreover, by 
definition of U3( �G

′[V ′],V ′) , we have (x, y) /∈ E( �G′) , which 
immediately implies (x, y) ∈ E( �G′△U( �G′[V ′],V ′)) , i.e., 
(x,  y) is an arc after the editing in this step. Since both 
x, y are contained in V ′′ , it follows from Lemma 13 that 
all edit steps on the way from �G′[V ′′] to �G′′[V ′′] must 
be performed by the set U3 , i.e., they exclusively corre-
spond to arc insertions. Therefore, (x,  y) is still an arc 
in �G′′[V ′′] . By Lemma  13, we therefore conclude that 
(x, y) ∈ U1( �G

′′[V ′′],V ′′) . Let Vx be the set of the partition 
V ′′ that contains x. Then, by definition of U1( �G

′′[V ′′],V ′′) , 
the color of y is contained in both Vx and V ′′ \ Vx , i.e., 
V ′′ contains at least two vertices of color σ(y) . How-
ever, (x, y) ∈ U3( �G

′[V ′],V ′) and y ∈ V ′′ ⊂ Vx,y for some 
Vx,y ∈ V ′ together imply that y is the only vertex of its 
color in V ′′ ; a contradiction. 

Proof of Theorem 30
In this section, we show that (B)PURC​ is NP-hard by 
reduction from Set Splitting.

Problem 4  (Set Splitting)  

Input: A collection C of subsets of a finite setS,

denoted by (C, S).

Question: Is there a bipartition of S into two subsets

S1 and S2 such that no subset in C is

entirely contained in either S1 or S2?

�

Proposition 32  [40]  Set Splitting is NP-complete.

Theorem 30  BPURC​ is NP-complete.

Proof  Given a properly colored digraph ( �G = (V ,E), σ) 
and a bipartition V of V, the set U( �G,V) and thus the 
UR-cost c( �G,V) = |U( �G,V)| can be computed in poly-
nomial time according to Cor.  14. Therefore, BPURC​ is 
contained in NP. To show NP-hardness, we use reduction 
from Set Splitting.

Let (C, S) be an instance of Set Splitting. We may 
assume w.l.o.g. that |C| ≥ 2 holds for all C ∈ C , since 
otherwise there is no solution at all for Set Split-
ting. In addition, we assume that 

⋃

C∈C C = S . To see 
that this does not yield a loss of generality, suppose that 
⋃

C∈C C = S′ � S . If {S′1, S
′
2} is a solution for (C, S′) then 

no subset in C is entirely contained in either S′1 or S′2 . 
Therefore, we can construct a solution (S1, S2) for (C, S) 
by arbitrarily adding the elements in S \ S′ to either S′1 or 
S′2 . In contrast, {S1 ∩ S′, S2 ∩ S′} is a solution for (C, S′) 
provided that {S1, S2} is a solution for (C, S).

Now, let (C, S) be an instance of Set Splitting and 
define, for all s ∈ S , the set C(s):={C | C ∈ C, s ∈ C} as 
the subset of C that comprises all elements C ∈ C that 
contain s. Note that C(s)  = ∅ for all s ∈ S , since we have 
assumed 

⋃

C∈C C = S , i.e., every s ∈ S is contained in 
some element of C.

We construct a digraph ( �G = (V ,E), σ) that serves as 
input for BPURC​ as follows: 

Step 1:	� For all s ∈ S , construct an s-gadget Gs as 
follows: 

	� (i)	�For all C ∈ C(s) , add four new vertices 
to Gs of which two are colored with 
(C, 1) and the other two with (C, 2).

(ii)	� Add arcs (x,  y),  (y,  x) between all 
x, y ∈ V (Gs) with σ(x)  = σ(y).

Step 2:	� Set ,  and pre-
serve the coloring of the vertices within the 
s-gadgets to obtain the digraph ( �G, σ).
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 By construction, we have |V (Gs)| = 4|C(s)| and 
|V | =

∑

s∈S 4|C(s)| ≤ 4|C||S| . Hence, the construction of 
( �G, σ) can be achieved in polynomial time. Moreover, by 
construction, {V (Gs) | s ∈ S} forms a partition of V and 
there are no arcs between vertices of distinct s-gadgets. 
Furthermore, σ(V ) = C× {1, 2} . An illustrative exam-
ple of such a constructed digraph ( �G, σ) is provided in 
Fig. 14.

We continue by showing that an instance (C, S) of Set 
Splitting has a yes-answer if and only if BPURC​ has 
a yes-answer for the input digraph ( �G = (V ,E), σ) con-
structed above and k = 0 . In particular, we will show that 
{S1, S2} is a solution of (C, S) if and only if V = {V1,V2} 
with Vi = ∪s∈SiV (Gs) , i ∈ {1, 2} is a solution for ( �G, σ) 
where c( �G,V) = 0.

Recall that the set of unsatisfiable relations U( �G,V) 
of a bipartition V of V is given by the (disjoint) 
union  of the three sets U1:=U1( �G,V) , 
U2:=U2( �G,V) and U3:=U3( �G,V) (cf. Lemma 13).

First suppose that Set Splitting with input (C, S) 
has a yes-answer and let {S1, S2} be one of its solutions. 
Hence, no subset in C is entirely contained in either S1 
or S2 , and both sets must be non-empty. Consider the 
set V = {V1,V2} with Vi = ∪s∈Si V (Gs) , i ∈ {1, 2} . Since 
{S1, S2} is a bipartition of S and {V (Gs) | s ∈ S} is a parti-
tion of V, we conclude that V is a bipartition of V and that 
V (Gs) is entirely contained in either V1 or V2 for all s ∈ S . 
Together with the fact that there are no arcs in �G between 
vertices of distinct s-gadgets this implies that U1 = ∅.

In order to verify that U2 = U3 = ∅ , we first show that 
σ(V1) = σ(V2) = σ(V ) and that V1 and V2 contain at least 
two vertices of every color, respectively. Consider two 
arbitrary pairs (C , 1), (C , 2) ∈ σ(V ) = C× {1, 2} . Since 
{S1, S2} is a solution for Set Splitting with input (C, S) , 
there are vertices s ∈ C ∩ S1 and s′ ∈ C ∩ S2 and thus, 
V (Gs) ⊆ V1 and V (Gs′) ⊆ V2 . By construction, each of the 
sets V (Gs) and V (Gs′) contains two vertices of color (C, 1) 
and two vertices of color (C,  2). Since V (Gs) ⊆ V1 and 
V (Gs′) ⊆ V2 , the sets V1 and V2 each contain two vertices 
of both colors (C, 1) and (C, 2). Since (C , 1), (C , 2) ∈ σ(V ) 
are arbitrary and σ(V ) = C× {1, 2} , we can conclude 
that σ(V1) = σ(V2) = σ(V ) , and that V1 and V2 contain 
at least two vertices of every color. Now, σ(V1) = σ(V2) 
implies that U2 = ∅ . Moreover, since V1 and V2 contain 
at least two vertices of every color, we also have that 
U3 = ∅ . In summary, we have 
, and thus, c( �G,V) = 0 . Therefore, BPURC​ with input 
( �G, σ , k = 0) has a yes-answer.

Now suppose BPURC​ with input ( �G, σ , k = 0) has a 
yes-answer and thus, a solution V = {V1,V2} . Conse-
quently, . We first show that 
both V1 and V2 must contain a vertex of every color in 
σ(V ) = C× {1, 2} . To this end, we assume for contra-
diction that w.l.o.g. V1 contains no vertex of color (C, 1) 
for some C ∈ C . Since |C| ≥ 2 , C contains two distinct 
elements s, s′ ∈ S . Note that C ∈ C(s) and C ∈ C(s′) . 
By construction in Step 1, there are vertices y ∈ V (Gs) 
and y′ ∈ V (G′

s) of color σ(y) = σ(y′) = (C , 1) . Since 
(C , 1) /∈ σ(V1) , it must hold that y, y′ ∈ V2 . Now con-
sider an arbitrary vertex x ∈ V1 . Note that (C , 1) /∈ σ(V1) 
implies σ(x)  = (C , 1) . Since Gs and Gs′ are, by construc-
tion, vertex disjoint, x cannot belong two both gadg-
ets Gs and Gs′ . Therefore, we can choose ỹ ∈ {y, y′} such 
that x and ỹ belong to distinct gadgets, and we obtain 
(x, ỹ) /∈ E by construction. This together with x ∈ V1 , 
ỹ ∈ V2 = V \ V1 and σ(ỹ) = (C , 1) /∈ σ(V1) implies 
(x, ỹ) ∈ U2 . Hence, U2  = ∅ ; a contradiction. Therefore, we 
conclude that both V1 and V2 contain vertices of all colors 
in σ(V ) = C× {1, 2}.

Fig. 14  Example for the reduction from an instance (C, S) of Set 
Splitting to an instance (�G, σ) with k = 0 of BPURC​, as specified 
in the proof of Thm. 30. In this example, we have S = {a, b, c, d} 
and C = {C1, C2, C3} . By construction, all arcs are bidirectional and 
thus, arrow heads are omitted in the drawing of (�G, σ) . A solution 
for (C, S) is S1 = {a, d} and S2 = {b, c} . The latter is equivalent to 
a solution of BPURC​ by “separating” the a- and d-gadget from the 
b- and c-gadget as indicated by the dashed line. The latter yields 
a bipartition V = {V1, V2} of V(�G) that solves BPURC​ with input 
(�G, σ , k = 0) . Note, slight changes of the input (C, S) to S′ = S \ {d} 
and C′ = {C1, C2, C3 \ {d}} would yield an instance of Set Splitting that 
has no yes-answer. In this case, the d-gadget would disappear from 
(�G, σ) resulting in the digraph (�G′ , σ ′) . It is easy to see that there is no 
bipartition V = {V1, V2} of V(�G′) such that σ(V1) = σ(V2) = σ(V(�G′)) 
and no gadget gets split up between V1 and V2 ; two necessary 
properties to obtain a solution for BPURC​ with input (�G′ , σ ′) and 
k = 0 (cf. proof of Thm. 30)
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We continue by showing that V (Gs) is entirely con-
tained in either V1 or V2 for all s ∈ S . To this end, assume 
for contradiction that there is a gadget Gs such that 
W1:=V1 ∩ V (Gs) and W2:=V2 ∩ V (Gs) are both non-
empty. Since V (Gs) forms a connected component in 
( �G, σ) and all arcs are bidirectional by construction, 
we can find two vertices x ∈ W1 and y ∈ W2 such that 
(x, y) ∈ E . This together with the facts that x and y are in 
distinct sets V1 and V2 and that both V1 and V2 contain all 
colors of σ(V ) , implies that (x, y) ∈ U1 . Hence, U1  = ∅ ; a 
contradiction. Therefore, the vertex set of each s-gadget 
is entirely contained in either V1 or V2.

We can construct a well-defined partition {S1, S2} of S 
such that s ∈ Si if and only if V (Gs) ⊆ Vi , i ∈ {1, 2} . By 

construction, there are vertices of color (C, 1) and (C, 2) 
in Gs if and only if s ∈ C . This together with the fact that 
both V1 and V2 contain vertices of all colors C× {1, 2} 
implies that S1 ∩ C and S2 ∩ C are both non-empty for 
every C ∈ C . Hence, {S1, S2} is a solution for Set Split-
ting with input (C, S) . 

B BPMF is not a consistent heuristic for MaxRTC​
The example in Fig. 15 shows that Alg. 1 in combination 
with the Best-Pair-Merge-First (BPMF) heuristic [16, 
18] is not a consistent heuristic for BMG editing. In par-
ticular, BPMF is not consistent for MaxRTC​. The input 

�

Fig. 15  Example showing that BPMF is not a consistent heuristic for MaxRTC​, and that Alg. 1 with BPMF is not a consistent heuristic for BMG editing. 
See the text for a detailed description
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digraph ( �Gorig = (V ,E), σ) is a BMG and explained by 
(Torig, σ) . Therefore, its set of informative triples

is consistent (cf. Prop.  10). On the right-hand side of 
Fig. 15, the first three cluster merging steps in BPMF with 
input R are shown where the numbers are the scores 
score(Si, Sj) for each pair of clusters Si and Sj as defined in 
[16]. The pink arrows link inner vertices of the resulting 
binary tree (T , σ) and the corresponding cluster merg-
ing step based on the maximal score. The tree (T , σ) does 
not display the triple ab1|b2 . As a consequence, its BMG 
�G(T , σ) contains the additional arc (a, b2) , and the triple 
set R∗ extracted from T in Alg.  1 is a proper subset of 
R . In particular, the final editing result �G(T ∗, σ) with 

R:=R( �Gorig, σ) ={ab1|b2, ac1|c2, ac1|c3,

b1c1|c2, b1c1|c3, b2c1|c2,

b2c1|c3, c1b2|b1}

T ∗ = Aho (R∗,V ) also contains the arc (a, b2) which was 
not present in the original BMG.

C Analysis of single‑leaf splits
Fig.  16 quantifies the abundance of single-leaf splits on 
the same instances as in Fig. 6. We distinguish between 
single-leaf splits that are correct w.r.t. the Aho graph 
Horig of the original unperturbed digraph, and single-
leaf splits that are not present in the unperturbed tar-
get. MinCut, Karger, Simple Greedy and Gradient Walk 
frequently produce single-leaf splits that are not present 
in Horig . The modularity-based Louvain method, in con-
trast, never returned a single-leaf split, even if it was pre-
sent in Horig . The modified Louvain method is most often 
in good agreement with Horig as far as single-leaf splits 
are concerned, at least for perturbation levels of 10% of 
insertions and deletions.

Fig. 16  Abundance of single-leaf splits for pairs of BMGs (�Gorig, σ) and disturbed digraphs (�G, σ) (both with vertex set V). The partition Vorig 
corresponds to the connected components of the Aho graph Horig:=[R(�Gorig, σ), V ] and, hence, to the partition induced by the subtrees of the 
children of the root of the LRT (T , σ) of (�Gorig, σ) (cf. Prop. 10). The partition Vheur corresponds to the partition of V as determined by one of the 
partitioning methods (based on H:=[R(�G, σ), V ] ). The gray parts of the bars comprise those instances for which H is disconnected. The light and 
dark red bars indicate the amount of digraphs for which only Vorig or Vheur , resp., is a single-leaf split, while light and dark green bars represent 
instances for which both and none of the two partitions, resp., are single-leaf splits. Note that the partitions were not compared explicitly, in 
particular, the identified singletons in Vheur in the light green instances may deviate from those in Vorig in some cases. Example plot for |V | = 30 
vertices and |σ(V)| = 10 colors in each digraph. 200 generated digraph pairs per combination of arc insertion (ins.) and deletion (del.) probabilities
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