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Abstract 

Background:  Repetitive elements contribute a large part of eukaryotic genomes. For example, about 40 to 50% of 
human, mouse and rat genomes are repetitive. So identifying and classifying repeats is an important step in genome 
annotation. This annotation step is traditionally performed using alignment based methods, either in a de novo 
approach or by aligning the genome sequence to a species specific set of repetitive sequences. Recently, Li (Bioinfor-
matics 35:4408–4410, 2019) developed a novel software tool dna-brnn to annotate repetitive sequences using a 
recurrent neural network trained on sample annotations of repetitive elements.

Results:  We have developed the methods of dna-brnn further and engineered a new software tool DeepGRP. 
This combines the basic concepts of Li (Bioinformatics 35:4408–4410, 2019) with current techniques developed for 
neural machine translation, the attention mechanism, for the task of nucleotide-level annotation of repetitive ele-
ments. An evaluation on the human genome shows a 20% improvement of the Matthews correlation coefficient for 
the predictions delivered by DeepGRP, when compared to dna-brnn. DeepGRP predicts two additional classes of 
repeats (compared to dna-brnn) and is able to transfer repeat annotations, using RepeatMasker-based training data 
to a different species (mouse). Additionally, we could show that DeepGRP predicts repeats annotated in the Dfam 
database, but not annotated by RepeatMasker. DeepGRP is highly scalable due to its implementation in the Tensor-
Flow framework. For example, the GPU-accelerated version of DeepGRP is approx. 1.8 times faster than dna-brnn, 
approx. 8.6 times faster than RepeatMasker and over 100 times faster than HMMER searching for models of the Dfam 
database.

Conclusions:  By incorporating methods from neural machine translation, DeepGRP achieves a consistent improve-
ment of the quality of the predictions compared to dna-brnn. Improved running times are obtained by employing 
TensorFlow as implementation framework and the use of GPUs. By incorporating two additional classes of repeats, 
DeepGRP provides more complete annotations, which were evaluated against three state-of-the-art tools for repeat 
annotation.
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Introduction
As of May 2021, the Genomes OnLine Database (GOLD) 
[1] lists about 35 000 eukaryotic genome sequencing 
projects. Completion of eukaryotic genome sequencing 
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projects is a difficult task, due to the large size of the 
genomes and the abundance of repeats in the genomes. 
For example, in the genomes of rat, mouse and human 
approximately 40 to 50% of the DNA consists of repeats 
[2] and these are divided into many different and partly 
not easily distinguishable classes.

The function of repetitive elements has been discussed 
for a long time [3] and only recently has the importance 
of repeats in cellular processes begun to open up [4]. 
Repetitive elements are important as binding regions 
for proteins, for example, involved in cellular replication 
[5] and they contain signals for transcription, chromatin 
assembly, nuclear localization [6] or influence expression 
of coding sequences [7]. Additionally, repetitive elements 
seem to have an impact on cell replication and genome 
structure evolution [8]. A recent overview of functions 
and the evolution of repetitive elements can be found in 
[9].

Due to these important roles of repeats, their annota-
tion and classification in assembled eukaryotic genomes 
is an essential part of a genome project. In turn, a com-
plete annotation of repeats allows to focus gene predic-
tion on the remaining parts of the genome, like it is done 
in the Ensembl genome annotation system [10]. In this 
work we focus on four repeat classes for which we pro-
vide more details in the following paragraphs. While [11] 
mainly describes structural properties of two of the four 
repetitive element classes, we additionally highlight the 
biological importance and, if possible, function of spe-
cific repetitive elements.

Alphoid repeats or human alpha satellites are a human 
specific subclass of satellite DNA, which are long 
sequences of non-coding DNA appearing in tandems, i.e. 
the repeat instances follow each other without long gaps. 
They are mainly found in centromeric regions and usually 
have a length of around 171 bp [12]. Alphoid repeats are 
involved in the cell replication process by binding a pro-
tein for de novo centromere chromatin assembly [5]. In 
our RepeatMasker annotations of the reference assembly 
GRCh38 2.2% of the positions are annotated as alphoid 
repeats.

Human satellite type II and III (HSAT2,3) are another 
class of simple satellite DNA [13]. Repeats of this class 
have no consistent repeat unit reference sequence. 
In [11] HSAT2,3 repeats are characterized as diverse 
variations of the ATTCC​ motif. In [14] a slightly dif-
ferent characterization of HSAT2,3 repeats is used. 
According to [14] and references therein HSAT2,3 
abundance varies between populations and cases are 
documented where instances of this repeat class cover 
at least 1× 107 bp . [13] remarks that HSAT2,3 repeats 
only cover a small part ( ≈ 1.5%) of a complete human 
genome of a single male donor. In our annotation, 

HSAT2,3 repeats only cover ≈ 0.08% of the GRCh38 
assembly (cf. Section  Data sets). It is known that 
HSAT2,3 repeats are involved in centromere mainte-
nance, genome stability and cancer development [13], 
but their detailed function is poorly understood. The 
subclass of HSAT3 repeats play a role in cellular stress 
response, e.g. against genotoxic chemicals or oxida-
tive stress [15]. HSAT2,3 repeats are human specific by 
definition. However, repetitive elements with a similar 
structural pattern are present in other eukaryotes [2] 
as well. The repeats of class HSAT2,3 are much shorter 
than the other repeat classes considered here and lack 
a consistent repeat unit reference [13]. So fewer posi-
tions on the DNA sequence can be utilized for predic-
tion, which makes them harder to learn. Furthermore, 
the occurrence of repeats of the different repeat IDs of 
HSAT2,3 is very imbalanced [16] and therefore the ref-
erence annotation of the chromosomes probably does 
not represent all repeat IDs equally well.

Alu elements are non-autonomous retrotransposons, 
usually classified as short interspersed nuclear ele-
ments. Retrotransposons are sequence elements, able 
to change their location in the genome through RNA 
intermediates [17]. In this context, non-autonomous 
means, that they are not able to catalyze retrotrans-
position independently. Instead, for retrotransposi-
tion [18], they use LINE-1 repeats, explained below. In 
our annotation of GRCh38, Alu elements consist of 
approximately 300 bp and cover 9.7% of the base pairs. 
It has been shown that Alu elements are involved in 
gene expression regulation [17]. Furthermore, they are 
relevant in evolutionary biology [19], to, for example, 
narrow down geographical ancestry of primates [20]. 
They are used in forensics to determine evolutionary 
relationships [21]. Alu elements are specific to primates 
[22], but several short interspersed nuclear elements 
with similarity to Alu elements also exist in rodents 
[23].

Long interspersed nuclear elements type 1 (LINE-1, 
for short) are autonomous retrotransposons present in 
most mammalian genomes [24]. However, most of them 
lost their ability to retrotranspose [25]. LINE-1 repeats 
are sequences of approximately 6000  bp containing two 
open reading frames. They form a very diverse class of 
repetitive elements. In the RepeatMasker annotation 
of GRCh38 there are 194 different repeat IDs of LINE-1 
repeats covering 14.6% of the base pairs. The protein 
encoded by the first open reading frame has RNA inter-
action and protein-protein binding capabilities. The 
protein encoded by the second open reading frame is 
involved in retrotransposition [25]. Furthermore, LINE-1 
retrotransposition has an impact on human health, 
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because retrotranspositions into important locations, e.g. 
genes, can be linked to inheritable disease, like Haemo-
philia A [26].

Repeat annotation
Several tools for repeat annotation have been developed. 
The most widely known tool for this task is Repeat-
Masker [2], which follows a sequence alignment-based 
approach. It relies on a well-curated collection of repeti-
tive sequences, called Repbase [27]. Annotation is per-
formed by computing local alignments of the genomic 
sequences and the repetitive sequences from Repbase, 
using standard alignment methods. Due to the high qual-
ity of Repbase and the use of sensitive alignment meth-
ods, RepeatMasker provides the current gold standard 
for repeat annotation. However, Repbase is not commer-
cially free and RepeatMasker is slow due to the time-con-
suming alignment process [11].

A more recent approach to repeat annotation is based 
on profile Hidden Markov Models (pHMMs). The open 
access database Dfam [28] provides a large collection of 
multiple sequence alignments of families of repetitive 
sequences and pHMMs derived from these. Sequences 
are annotated based on hits of the pHMMs in the 
sequences. The hits are computed using the HMMER 
software [29]. As Dfam provides a comprehensive collec-
tion of repetitive elements of high quality, is freely avail-
able and easy to use, it is likely to become the state of the 
art for repetitive element annotation in the near future 
[28].

Recently, Li [11] described an approach to annotate 
repeats using recurrent neural networks (RNNs), and 
showed that it works well for HSAT2,3 and Alphoid 
repeats. In contrast to conventional feed-forward net-
works, in an RNN the status of the hidden layer also 
depends on the input of some previous time steps [30]. 
This allows the RNN to develop a simple kind of memory 
and process sequences of variable length [31]. The most 
widely used RNNs are gated RNNs [32], like the long 
short-term memory (LSTM) [33] and the gated recur-
rent unit (GRU) [34]. Both, LSTMs and GRUs, are based 
on the idea of creating a path through time where the 
gradients neither explode nor vanish. This allows gated 
RNNs to accumulate information over long timescales. 
Additionally they have the capability to forget parts of 
their internal memory. GRUs are simplified versions of 
LSTMs, with less parameters to be trained. So LSTMs 
usually slightly outperform GRUs in terms of prediction 
performance [35]. However, GRUs are faster in training 
and prediction compared to LSTMs [36]. Besides their 
use in machine translation [35], polyphonic music mod-
eling [37] and natural speech modeling [38], recurrent 
architectures are also applied to solve problems related 

to biological data, for example in the field of genom-
ics [39]. Singh et al. [40] proposes a recurrent model for 
prediction of gene regulation based on a technique called 
attention. This technique was first employed for neu-
ral machine translation [41]. The attention mechanism 
scales the input of the next layer using the hidden state of 
the input layer, and thus allows the network to focus on 
important regions and sequence motifs during prediction 
[40].

Maximum scoring segments algorithm
Since most sequence classification problems require the 
same classification category per segment, several algo-
rithms for this task have been developed. A segment 
is here defined as an interval in a sequence of scores. 
The algorithm for finding all maximum scoring seg-
ments (MSS) by [42] is used in many different applica-
tions in bioinformatics. Li [11] extended this algorithm 
by incorporating a minimum score threshold and an 
X-drop parameter. Such techniques have a long tradi-
tion in sequence analysis and were, e.g., already used in 
Blast [43]. MSSs with a score smaller than the minimum 
score threshold are ignored. If the current score drops 
too much (as specified by the X-drop parameter) below 
the maximum score reached so far, all previous segments 
encountered in the extension are not considered when 
extending the next segments. So the X-drop parameter 
influences how many contiguous negative scores are tol-
erated in the extension process. A more detailed descrip-
tion of the MSS algorithm, including pseudocode and an 
example application, can be found in Additional file  1: 
Section 1.

Contribution
We have developed the Deep Learning based method 
dna-brnn of Li [11] further. Our main contribution is 
the engineering and implementation of a new software 
tool DeepGRP. By engineering we mean the reimple-
mentation and enhancement of the architecture of dna-
brnn in the widely adopted machine learning framework 
TensorFlow. This approach has several advantages: 
The use of TensorFlow allows to profit from the regular 
improvements incorporated into TensorFlow by a large 
active community of developers. For example, it allowed 
us to seamlessly integrate the attention mechanism into 
the network architecture and makes it possible to exploit 
the high computational speed of GPUs. Additionally, it 
leads to a generalization of the approach of Li [11] and 
improves usability of the resulting software tool. dna-
brnn has no dependencies on other software (except 
for a C-compiler), which makes it easy to install. On the 
other hand, the dependency of DeepGRP on TensorFlow 
is not a large hurdle given the fact that in May 2020 the 
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number of downloads of TensorFlow reached 100 million 
[44].

In contrast to [11] we have systematically explored the 
latitude of the model by applying a well-tested hyper-
parameter optimization technique to determine seven 
hyperparameters used in DeepGRP. These and more 
details of the training are well documented to allow 
reproducing our results.

In addition to these technical contributions, we show 
that the RNN-based approach of DeepGRP can handle 
two additional classes of repeats, one of which Li [11] 
considered not accessible by this approach. Furthermore, 
we show that DeepGRP, trained on RepeatMasker anno-
tations, delivers accurate predictions of repeats anno-
tated by Dfam and not overlapping with RepeatMasker 
annotations.

Methods and data sets
Network architecture
Our new software tool DeepGRP uses a similar network 
architecture as dna-brnn but with an additional atten-
tion layer. The layer improves the ability of the network 
to learn motifs including gaps and stretching over long 
ranges of the DNA sequence.

The input of the neural network is the DNA sequence 
for which repeats are to be predicted. In a first step, ini-
tial and terminal stretches of Ns are eliminated. In the 
second step, the forward strand and the reverse comple-
ment strand of the remaining sequence are both one-hot 
encoded by 5 integers per position, where the fifth inte-
ger is used for handling occurrences of Ns. The one-hot 
encoding is fed into a bidirectional GRU. While these 
bidirectional inputs are widely used for sequential tasks, 
like text translation [45], here the reverse complement 
strand is fed into the network to learn orientation-inde-
pendent features. To let the network focus on short term 
relations and to have multiple predictions per sequence 
position, the DNA sequence is processed in a sliding win-
dow approach. The windows of length 342 are slid over 
the DNA sequence with a step size of 50. For each nucle-
otide in the window, the GRU-model predicts a probabil-
ity with respect to all considered repetitive classes. As 
the windows are overlapping, the model produces mul-
tiple predictions for each position. These are maximized 
to obtain the final predictions (see next subsection). The 
length of the windows was determined by hyperparam-
eter optimization and is fixed for training and evaluation. 
The step size for each window can be chosen at predic-
tion time. This enables a trade off between running time 
and prediction accuracy.

To reduce the number of parameters to be trained and 
to allow the network to learn the features independently 
of the orientation of the sequence, the forward and the 

reverse GRU layer share weights. In [46] it was shown, 
that sharing of weights in such bidirectional model 
improves the model prediction performance and con-
siderably reduces the number of learnable parameters. 
The output of the GRU layers is averaged and, together 
with the last hidden state, it is fed into the attention layer. 
The hidden state is also averaged over the forward and 
reverse layer.

The attention mechanism is implemented as proposed 
by [41]. It helps the network to utilize information from 
the complete sequence in a window, compressed as hid-
den state representation, at all sequence positions in 
that window. This improves the prediction of repetitive 
elements at the beginning of the genomic sequence and 
enhances the learning of more complex features. The out-
put of the attention layer is fed, position by position, to 
a feed-forward network (Dense layer) with the Softmax 
activation function to obtain probabilities for each class 
of repetitive elements. The complete network is depicted 
in Fig. 1. One advantage of this approach is that all repet-
itive element classes can be handled at once and thus the 
number of repetitive elements has only a marginal influ-
ence on the running time.

From probabilities to segments
Due to the window based approach with overlapping 
windows, for each nucleotide position and each repeti-
tive class (including the no-repeat class) one obtains 
multiple probabilities of class memberships. For each 
position and each repetitive class we only keep the maxi-
mum of all such probabilities. This strategy of aggregat-
ing the information over different sliding windows leads 
to shorter running times and reduced space requirement, 
while still allowing for accurate predictions.

Let C be the set of possible labels (each represent-
ing a repeat class) plus label 0 for class no repeat. Let 
pci  be the probability derived by the model that position 
i , 1 ≤ i ≤ n has label c ∈ C , where n is the length of the 
sequence subject to the prediction of repeats. To derive 
predictions for segments of the input sequence, we first 
convert these probabilities to scores as follows: Calculate 
qi = min{max{pci | c ∈ C}, 0.99} and determine ci ∈ C 
such that qi = min{p

ci
i , 0.99} . Finally, convert qi to a score 

si defined as follows [11]:

This scoring is a modified version of the logit-function, 
which is well known for its application in logistic regres-
sion [47]. The upper bounding to 0.99 prevents division 
by zero and −10 is multiplied for case ci = 0 to punish 
large extensions of segments. For this scoring approach 

si =

{

−10 · log
qi

1−qi
if ci = 0

log
qi

1−qi
otherwise.
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we consider only the maximum probability per position 
over all repeat classes, as in the gold standard there are 
only few positions (i.e. 814 648 of 716 335 847  bp) for 
which the assignment to one of the four repeat classes 
considered here is not unique, see "Data sets" section. So 
applying the MSS algorithm to scores obtained from the 
probabilities for all classes of repetitive elements, would 
likely only lead to small improvements in accuracy, but 
mean a considerable increase of the computational effort. 
Therefore, the MSS algorithm is applied to the sequence 
s1 , s2 , ..., sn of scores obtained from the maximum prob-
abilities. It delivers non-overlapping segments of con-
tinuous positions and for each position we have tracked 
the corresponding repeat class of maximum probability. 
No repeat positions inherit the repeat class which occurs 
most often in the segment. In this way, all positions of a 
segment are considered as part of an instance of one of 
the four considered repeat classes.

Afterwards, segments which contain more than one 
repetitive element class are split into several segments, 
each only containing one repetitive element class. Finally, 
the coordinates for all segments with a length greater 
than some user defined threshold (default 50, as also used 
in dna-brnn), are output.

Implementation
The base network was implemented in Python (Version 
3) using TensorFlow 2.1 [48] and is available as Python 
package deepgrp (https://​github.​com/​fhaus​mann/​
deepg​rp). Several time consuming steps are written in 
C. All C-codes including the the implementation of the 
MSS algorithm of [11] are integrated with DeepGRP via 
Cython.

Fig. 1  Sketch of the neural network architecture of DeepGRP. The architecture is similar to that of [11], but has an additional attention layer. The 
input flows along the black arrows, while the hidden states pass information along the dashed lines. The first input is the DNA sequence while the 
second input is the Watson-Crick complement of the sequence. Both sequences are one-hot encoded

https://github.com/fhausmann/deepgrp
https://github.com/fhausmann/deepgrp
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Data sets
Our evaluation is based on the reference assemblies 
GRCh19 and GRCh38 of the human genome (abbrevi-
ated as hg19 and hg38 in the following) and GRCm38 of 
the mouse genome (abbreviated as mm10). Details are 
given in Additional file 1: Table S2. To simplify notation, 
a specific chromosome c of an assembly a is denoted by 
a/c.

As the pre-annotated human genomes from the 
RepeatMasker website  (http://​www.​repea​tmask​er.​org/) 
are outdated, we computed the annotations of hg19 (all 
autosomal chromosomes) and hg38/chr1 ourselves, 
using Repbase 24.01 and RepeatMasker  4.1.0  (git-
hash:41848148) [2], based on the cross_match [49] soft-
ware computing the local alignments. The source code 
of cross_match was obtained from the author [50]. The 
annotations obtained in this way are considered as the 
gold standard for human. We found that 716 335 847 bp 
of the gold standard (i.e. 24.86% of hg19) are covered by 
a repeat of one of the four considered repeat classes. Of 
these 716 335 847  bp only 0.11% (814 648  bp) cannot 
uniquely be assigned to a repeat class.

As gold standard for mouse we used a pre-annota-
tion of mm10/chr1 (cf. Additional file  1: Table  S2). The 
main focus of using mouse data was to evaluate whether 
DeepGRP is able to make use of features learned from 
human sequences for annotating a different, but not too 
distant species which has specific repetitive elements. If 
not stated otherwise, the notation gold standard in singu-
lar means the gold standard for human.

From both gold standards we extracted all annota-
tions of repeats of class HSAT2, Alphoid, Alu and LINE-
1. A complete list of the repeat IDs of these classes (for 
human) can be found in Additional file 1: Table S3. Anno-
tations for class HSAT3 were computed as described in 
[11]. As in [11] and [13], HSAT2 and HSAT3 were com-
bined due to their similarity. All models were trained on 
hg19/chr11. For validation and early stopping hg19/chr20 
was used. The true class labels were derived from the 
gold standard.

We selected hg19/chr11 for training for two reasons: 
On the one hand it was (besides other chromosomes) 
also used in [11] and on the other hand it is a medium 
sized chromosome ( ≈ 4% of the bp. of hg19) and there-
fore represents a setting in which the size of the training 
data is small compared to the test data.

We selected hg19/chr20 for validation, since it is small 
( ≈ 2% of the bp. of hg19) allowing hyperparameter opti-
mization in reasonable time. Early stopping was imple-
mented in such a way that training is stopped, once the 
validation loss does not decrease in the last 10 epochs.

A Dfam-based annotation of repeats of the four repeat 
classes was obtained by extracting from Dfam release 3.3, 

November  2020, the related repetitive element classes 
from the pre-annotated hg38 genome. When determin-
ing the running time of HMMER, we used a subset of the 
Dfam HMM library (release 3.3) comprised of all classes 
of repetitive elements which were also present in the sub-
set of the RepeatMasker annotations used in this study 
(cf. Additional file  1: Table  S3). We applied dfamscan 
using HMMER (v3.2.1) [29], faithfully following the rec-
ipe of https://​dfam.​org/​help/​tools.

Training details
While the basic network architecture we used is similar 
to the one proposed in [11], our training largely differs 
from the training of dna-brnn.

Training, retraining and evaluation were performed on 
Linux-based computers. The hyperparameter optimiza-
tion was run on an Intel® Xeon® Gold 6142 CPU using 
12 inter-operation and 12 intra-operation threads using 
Hyperopt with the Tree of Parzen Estimators algorithm 
[51]. Model performance is measured by the multi-class 
Matthews correlation coefficient, denoted by MCCk 
where k is the number of classes [52]. MCCk is a single 
value characterizing a complete confusion table [52] even 
if the classes are very imbalanced [53]. In our application 
we have four different classes of repeats and the no repeat 
class, so k is 5. We chose the model maximizing MCC5 . 
This model is termed best model.

The retraining of the best model and all evaluations, 
including training and evaluation of both tools, were 
performed on an Intel®  Core®  7-5820K CPU using 10 
threads. DeepGRP additionally utilized a GPU on a 
Nvidia Geforce GTX 960 graphics card using the XLA 
domain-specific compiler, see [54] for details. Training of 
DeepGRP required 6 to 15 minutes (median 11min) per 
model.

During the training, the composition of the batches is 
adjusted by a hyperparameter r ∈ [0, 1] . A batch of size n 
is constructed such that it contains at least ⌊n · r⌋ 
sequence windows, each of which has at least one posi-
tion annotated as repetitive elements. This is further 
restricted such that from these ⌊n · r⌋ sequence windows 
for the set of all repetitive element classes C , 

⌊

n·r
|C|

⌋

 
sequence windows per repetitive element class are pre-
sent in one batch. Therefore, repeats which are less pre-
sent in the training data are sampled more often during 
training to account for the imbalance of the occurrence 
of different repeat classes.
DeepGRP was compared to dna-brnn [11], which is 

implemented in C using its own neural network frame-
work. Both programs use, as far as possible, the same 
hyperparameter values. dna-brnn does not provide 

http://www.repeatmasker.org/
https://dfam.org/help/tools
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an interface to perform hyperparameter tuning. Moreo-
ver, several parameters and flags of dna-brnn are hard 
coded or are ignored even if they have been specified on 
the command line. We concluded that hyperparameter 
tuning for dna-brnn would require modifications of its 
source code and the development of wrappers. As a con-
sequence, we did not perform hyperparameter tuning for 
dna-brnn. For training and prediction the same hyper-
parameters were used.
dna-brnn uses a fixed number of epochs and a user 

defined random seed, whereas DeepGRP uses early 
stopping and a varying random seed. To the best of our 
knowledge, dna-brnn is not able to use validation data 
and the training cannot be resumed in previously saved 
states. So, it seems not possible to apply early stopping 
to prevent overfitting of parameters in dna-brnn. For 
DeepGRP we trained five models. Using different ran-
dom seeds, we also trained five models for dna-brnn, 
in contrast to [11], in which only one model was trained.

Results and discussion
In our initial experiments, DeepGRP and dna-brnn 
were evaluated based on the false positive rate (FPR) 
and the false negative rate (FNR). These rates describe 

easy to understand and relevant metrics. As in [11], 
these metrics refer to the base pair level: Let G be the 
set of all positions in the considered sequence. Let Pc be 
the set of positions in all predicted repeats of class c and 
P¬c = G \ Pc be the set of positions predicted as another 
repeat class or as no repeat. Define Ac and A¬c in an anal-
ogous way for annotated repeats from the gold stand-
ard. Then (|Pc \ Ac|)/|A¬c| is the false positive rate and 
|Ac \ Pc|/|Ac| is the false negative rate for class c.

The FPRs and FNRs of the five models obtained for 
DeepGRP and for dna-brnn were determined for 
hg19/chr1, hg38/chr1 and mm10/chr2, which are the 
chromosomes of maximum sizes in the corresponding 
assemblies. The FPRs and FNRs of DeepGRP and dna-
brnn are shown in Figs. 2 and 3, respectively. The FPRs 
of DeepGRP are very small (median < 0.03 ) for all three 
data sets and all classes of repeats (cf. Fig. 2). The smallest 
FPRs are achieved for the classes HSAT2,3 and Alphoid 
(maximum FPR is 0.01). For the classes Alu and LINE-1, 
dna-brnn achieves slightly smaller FPRs than Deep-
GRP. As expected, the FNRs for hg19/chr1 and hg38/
chr1 are smaller than for mm10/chr2, where the small-
est FNRs are around 0.4. It is obvious that DeepGRP is 
able to predict repeats for all three chromosomes and 

Fig. 2  False positive rates (FPRs) for DeepGRP and dna-brnn, both for five models applied to hg19/chr1, hg38/chr1 and mm10/chr2. Training 
and validation of these models was performed on hg19/chr11 and hg19/chr20, respectively

Fig. 3  False negative rates (FNRs) for DeepGRP and dna-brnn, both for five models applied to hg19/chr1, hg38/chr1 and mm10/chr2. As 
Alphoid repeats are not annotated in mm10, the corresponding data is omitted
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all four considered classes. DeepGRP achieves smaller 
FNRs than dna-brnn. Except for Alu repeats, the FNRs 
of DeepGRP are much smaller than those of dna-brnn. 
According to the results of [11], dna-brnn is able to 
predict repeats of class HSAT2,3 for the assembly CHM1 
of the human genome, achieving FNRs of ≈ 0.3%. But this 
result was achieved when considering only two classes of 
repeats (Alphoid and HSAT2,3). In our more challenging 
experiment with two additional classes (LINE-1 and Alu), 
dna-brnn achieved an FNR of 1.0 for HSAT2,3 repeats, 
i.e. it completely failed to predict repeats of this class. 
Another reason why our results concerning HSAT2,3 
repeats differ from those reported in [11] may be due 
to the fact that for training of dna-brnn Li used addi-
tional annotated data. For three repeat classes (Alphoid, 
Alu, LINE-1) the FNRs for hg19/chr1 and hg38/chr1 are 
almost identical and very small. For hg38/chr1 and with 
respect to HSAT2,3, the median FNR is only slightly 
larger than 0.5, an issue considered below when we dis-
cuss misclassifications.

All models for dna-brnn and DeepGRP were trained 
on a single chromosome of hg19, which is much more 
similar to hg38 than to mm10. In particular, in mm10 one 
repeat class (Alphoid) is not present and some repeats 
(from class Alu and LINE-1) are specific for mm10 and 
do not occur in hg19/chr11 which served as training 
data. As a consequence, features of repeats learned from 
hg19/chr11 are much more likely to lead to correct pre-
dictions for hg38/chr1 than for mm10/chr2. Neverthe-
less, DeepGRP is able to correctly identify several repeats 
in mm10/chr2, for which it achieves considerably smaller 

FNRs than dna-brnn. This shows that DeepGRP is able 
to generalize across species.

To study misclassifications of the models in more 
detail, we have created confusion matrices for the 
same five models applied to hg19/chr1 and hg38/chr1, 
see Fig. 4. Most misclassifications of repeat classes are 
related to LINE-1 repeats. In particular, DeepGRP clas-
sifies 23% of the LINE-1 repeats as no repeat (for hg19/
chr1 and hg38/chr1) and 11% of HSAT2,3 repeats as 
LINE-1 repeats (for hg19/chr1). For hg38/chr1, 51% of 
the HSAT2,3 repeats are classified as LINE-1 repeats, 
i.e. DeepGRP is hardly able to correctly separate 
HSAT2,3 and LINE-1 repeats. To better understand the 
degradation in classification performance, we system-
atically determined sequence regions which are almost 
identical in both assemblies.

In particular, we computed colinear chains of approx-
imate matches of hg19/chr1 and hg38/chr1. They make 
up 94.7% of hg19/chr1 and 92.6% of hg38/chr1 when 
not counting occurrences of Ns in the genomes. A 
detailed definition on how these chains are computed 
can be found in Additional file 1: Section 5. Consider-
ing only repeats in these common sequence regions, 
we obtain a highly improved accuracy for prediction of 
HSAT2,3 repeats, see Additional file  1: Figure S1. For 
the other three repeat classes there was virtually no dif-
ferences in the prediction performance, but the num-
ber of base pairs in hg38/chr1 annotated as HSAT2,3 
reduces to ≈ 6.6% (10 041  bp of 151 442  bp) accord-
ing to gold standard annotation for hg38/chr1. This 
shows that regions annotated as HSAT2,3 are mainly 
in regions of hg38/chr1 differing from hg19/chr1. Also 
the total number of nucleotides annotated as HSAT2,3 
(and Alphoid) differ considerably between regions com-
mon to hg19 and hg38, compared to regions unique to 
hg38, see Additional file 1: Figure S2. Due to this differ-
ence we cannot expect a good prediction performance 
for DeepGRP, especially for regions which are unique 
for hg38. Nevertheless, the results indicate that Deep-
GRP is able to learn sequences with no clear reference 
sequence without the need to be trained on exactly 
those sequences. RepeatMasker on hg19/chr1 com-
pared to RepeatMasker on hg38/chr1 (see, Additional 
file  1: Figure S3) based on data from hgLiftOver [55] 
shows large overlaps of those annotations, for which 
the coordinates could be “lifted over” from hg38 to 
hg19. This provides additional evidence that DeepGRP 
performs well on regions common in different genome 
assemblies.

While the results reported above were obtained for 
single chromosomes from the reference assemblies, we 
now report results obtained when applying the same 
five models to all autosomal chromosomes of hg19 (i.e. 

Fig. 4  Confusion matrices for DeepGRP predicting repeats of four 
different classes for hg19/chr1 and hg38/chr1. The gold standard 
annotation was computed by RepeatMasker. Values are averaged 
over five models and absolute counts are divided by the true number 
(with respect to the gold standard) of annotated base pairs per repeat 
class. Values smaller than 0.01 are omitted. The models used for this 
evaluation are the same as for the other evaluations, i.e. trained on 
hg19/chr11
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chr1, ..., chr22). The comparison is based on MCC5-val-
ues (cf. Fig.  5). While DeepGRP achieves consistently 
high MCC5-values for Alphoid, Alu and LINE-1, the 
MCC5-values for HSAT2,3 varies. It seems more dif-
ficult for DeepGRP to learn elements of this class of 
repeats. This is likely due to the fact that repeats of class 
HSAT2,3 are much shorter and less conserved on the 
sequence level1 than repeats of the other three classes. 
The weaker performance of DeepGRP for HSAT2,3 and 
the complete failure of dna-brnn to predict HSAT2,3 
repeats, as was already visible from the FNRs for 
selected chromosomes (see Fig.  3) is confirmed for all 
chromosomes of hg19. But at least, DeepGRP achieves 
MCC5-values ≥ 0.8 for three chromosomes of hg19. So 
one may conclude that DeepGRP is able to learn some 
repeats of class HSAT2,3 in a setting where only limited 
training data (i.e. 4% of hg19) is used.

For the prediction of Alu repeats dna-brnn slightly 
outperforms DeepGRP. This may be due to the fact, that 
during the training process, dna-brnn remains in a 
local minimum which allows to successfully predict Alu 
repeats, but delivers unreliable predictions of repeats of 
the other classes. In fact, for hg19/chr1 in almost all cases 
dna-brnn predicts the no repeat class or Alu repeats, 
see the confusion matrix of Additional file 1: Figure S4.

For Alphoid repeats DeepGRP clearly outperforms 
dna-brnn on all chromosomes and it shows much less 
variation between different models than dna-brnn (cf. 
Additional file  1: Figure S5). Interestingly, for Alphoid 
repeats on hg19/chr13 and hg19/chr22, the MCC5-value 
drops for DeepGRP as well as for dna-brnn. As there is 
no difference in the number of segments or the number 
of annotated positions for Alphoid repeats for the two 
chromosomes compared to all other chromosomes, the 
reason for this behavior remains unclear.

For LINE-1 repeats DeepGRP achieves MCC5-values 
(overall mean ≈ 0.747 ) nearly twice as large as the MCC5

-values of dna-brnn (overall mean ≈ 0.397 ). But the 
results for LINE-1 repeats are not as good as for Alphoid 
and Alu repeats. This is likely due to the fact that LINE-1 
repeats have longer reference sequences (around 6000 bp 
[25]) than Alu and Alphoid repeats (<300 bp [13]). More-
over, LINE-1 repeats have a complex structure which is 
reflected by the division of LINE-1 elements into 194 
different repeat IDs in Repbase. Nevertheless, LINE-1 
repeats share a common structure and similar sequences. 
DeepGRP seems to be able to learn these much better 
than dna-brnn.

To evaluate whether DeepGRP is able to learn repeat 
annotations obtained by powerful models derived from 
sequence families, we compared its predictions to anno-
tations of hg38 provided by the Dfam-database of trans-
posable elements. While DeepGRP was trained on a gold 
standard computed by RepeatMasker, the confusion 

Fig. 5  MCC2 for DeepGRP and dna-brnn for all chromosomes of the human genome assembly hg19. For both tools five independently trained 
models were used. dna-brnn was trained with the same hyperparameter as DeepGRP for 50 epochs. All repeat classes where predicted with a 
single model, but the MCC2-values where calculated in an one-vs-rest scheme, e.g. HSAT2,3 against not-HSAT2,3. The models used for this evaluation 
are the same as for the other evaluations, i.e. trained on hg19/chr11

1  This may be the reason why Dfam  (release  3.3, November  2020) does not 
contain any repeats of class HSAT3 and relatively few of class HSAT2, see 
Additional file 1: Table S4.
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matrix of Additional file 1: Figure S6 shows that Deep-
GRP can predict repeats of class Alphoid, Alu and 
HSAT2,3 annotated in Dfam with an accuracy similar 
to the accuracy obtained when comparing with the gold 
standard. For LINE-1 repeats the accuracy in comparison 
to the Dfam annotation is lower than in the comparison 
to the gold standard. DeepGRP performs well in compar-
ison to Dfam (cf. Additional file  1: Figure S7), although 
the overlap of the annotations of Dfam and RepeatMas-
ker is only around 50% (cf. Additional file 1: Figure S3). 
Interestingly, DeepGRP can correctly predict repeti-
tive elements annotated by Dfam, which are not present 
in the gold standard (Additional file  1: Figure S8). For 
example, DeepGRP correctly annotates 77% of Alphoid 
repeats, which are specific to Dfam.

Comparing only the boundaries of repeats (instead of 
all nucleotide positions of repetitive elements) to the gold 
standard delivered by RepeatMasker, shows a less con-
vincing performance of DeepGRP. That is, only in rare 
cases, the boundary positions of repeats are precisely 
predicted. For example, for Alu repeats, maximum dif-
ference of boundaries of 50 bp. leads to a sensitivity of ≈ 
60% and a specificity of ≈ 20%. The results for the other 
repeat classes are even worse, see Additional file 1: Figure 
S11 for details. We consider three main reasons for these 
results: The quality measures we apply hardly tolerate 
any misclassifications of single positions, see Additional 
file 1: Section 4. Thus a single false prediction has a much 
larger impact on the quality measures for repeat bound-
aries than on the quality measures based on nucleotide 
positions. Furthermore, boundaries of repetitive ele-
ments in the gold standard are ambiguous as they heav-
ily depend on the number of allowed mismatches and 
indels when matching reference repeat sequences against 
a genome. Finally, in the training of DeepGRP all posi-
tions of repetitive elements are treated in the same way 
and no special emphases is laid on the boundary posi-
tions of the repeats, while RepeatMasker likely applies 
polishing techniques on the ends of “raw” repeats. So, 
additional enhancements with focus on polishing bound-
aries of repetitive elements and their integration into the 
current DeepGRP-model seems an interesting topic for 
further research. Of course, the relevance of these results 
on boundary predictions must be considered in the con-
text of a concrete downstream analysis task for predicted 
repeats.

One of the main goals when developing DeepGRP was 
to reduce the running time when annotating repeats. To 
prove that this goal was achieved, we measured the run-
ning time of the different software tools when annotating 
repeats of the four classes in hg19. Again, for dna-brnn 
and DeepGRP we used five trained models. Due to the 
long running time of HMMER [29] it was applied only to 

the five smallest autosomal chromosomes of hg19 (chr18, 
chr19, ..., chr22; total length 299 666 212 bp). For all three 
software tools, the running time for predicting repeats 
is linear (cf. Fig. 6). DeepGRP is approx. 8.6 times faster 
than RepeatMasker, approx. 1.8 times faster than dna-
brnn (which runs on CPU only) and > 100 times faster 
than HMMER. So DeepGRP, using a fairly old (6 years in 
2021) GPU available on a standard graphics card outper-
forms all other methods.

Conclusion
RepeatMasker [2] based on Repbase [27] and cross_
match [49] for local alignment provides the current 
gold standard for annotation of repetitive elements in 
genomes. However, cross_match as well as Repbase are 
not commercially free and Repbase requires a paid license 
even for academic research. Dfam [28] and HMMER 
[29] are another powerful combination for annotating 
repetitive elements. While Dfam provides a comprehen-
sive, well curated and free to use collection of HMMs 
for repeat identification and pre-annotated genomes 
for several genomes, the long running time of HMMER 
is a major hurdle when annotating repeats for complete 
genomes. dna-brnn and DeepGRP follow a new strat-
egy to annotate repeats. The strategy is based on learning 
from already available repeat annotations and efficiently 
transferring this knowledge to new genome assemblies. 
Of course, this strategy is based on high quality repeat 
annotations (likely delivered by RepeatMasker), but it is 

Fig. 6  Prediction time of RepeatMasker, dna-brnn, DeepGRP and 
HMMER as a function of the sequence length in Mbp. For dna-brnn 
and DeepGRP five independently trained models and chromosomes 
from hg19 were used. dna-brnn was trained with the same 
hyperparameter as DeepGRP for 50 epochs with varying seed. The 
running time of dna-brnn and of DeepGRP shows almost no 
variance
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independent of restrictions imposed by the license condi-
tions of Repbase.

With the development of dna-brnn Li [11] showed 
how to implement the said strategy based on neural 
networks. Here we extend this idea further in several 
directions:

•	 By incorporating two new repetitive element 
classes, we provide more complete annotations.

•	 By employing TensorFlow as implementation 
framework for DeepGRP, we allow training and 
evaluation of the model to be executed on all widely 
used platforms including GPUs to reduce running 
times.

•	 By adding methods from neural machine translation, 
we achieve a consistent improvement of the quality 
of the predictions, compared to dna-brnn.

For the model with four classes of repeats, Deep-
GRP delivers considerably improved predictions 
( MCC5 ≈ 0.82± 0.02 ) compared to dna-brnn 
MCC5 ≈ 0.68± 0.06 . For the two class model consid-
ered in [11], dna-brnn provides slightly better results 
( MCC3 ≈ 0.85 ), but one should keep in mind that the 
simultaneous prediction of four classes of repeats is much 
more difficult. Our results obtained for relatively small 
amounts of training data (only 4% of the bp. of hg19) pro-
vide evidence that DeepGRP is able to generalize features 
learned from one genome assembly and transfer them 
to another assembly of the same species, but also with 
reduced precision to another related species.

Generally DeepGRP delivers conservative predictions, 
i.e. an annotation is rather missed than falsely predicted. 
This is an advantage in contexts where repeat masking is 
used for preprocessing sequences, before applying other 
tools to the unmasked part of the sequences for further 
annotation. In such a context a missed repeat would 
increase the number of base pairs to be annotated and 
thus lead to longer running times. A falsely predicted 
repeat would lead to masking regions possibly contain-
ing functional elements and thus have a negative effective 
of the sensitivity of the downstream annotation pipeline. 
A quantitative evaluation of the masking performance of 
DeepGRP can be found in Additional file 1: Figure S10.
DeepGRP is robust with respect to the training data. 

That is, when trained on different builds of the human 
genome, DeepGRP delivers the same prediction perfor-
mance on all tested human genome assemblies, see Addi-
tional file 1: Figure S9. So, by training it directly on Dfam 
annotations could lead to an improved sensitivity of the 
prediction, in comparison to models that were trained 

only on RepeatMasker annotations. This could especially 
be useful in cases where high sensitivity is needed, but 
the running time is limited. Such an application could be 
subject for future research.

These properties and its improved running time makes 
DeepGRP a useful tool for annotating repetitive elements 
in eukaryotic genomes.
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