
Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20
https://doi.org/10.1186/s13015-021-00199-0

SOFTWARE ARTICLE

DeepGRP: engineering a software tool
for predicting genomic repetitive elements
using Recurrent Neural Networks with attention
Fabian Hausmann1 and Stefan Kurtz2*   

Abstract 

Background:  Repetitive elements contribute a large part of eukaryotic genomes. For example, about 40 to 50% of
human, mouse and rat genomes are repetitive. So identifying and classifying repeats is an important step in genome
annotation. This annotation step is traditionally performed using alignment based methods, either in a de novo
approach or by aligning the genome sequence to a species specific set of repetitive sequences. Recently, Li (Bioinfor-
matics 35:4408–4410, 2019) developed a novel software tool dna-brnn to annotate repetitive sequences using a
recurrent neural network trained on sample annotations of repetitive elements.

Results:  We have developed the methods of dna-brnn further and engineered a new software tool DeepGRP.
This combines the basic concepts of Li (Bioinformatics 35:4408–4410, 2019) with current techniques developed for
neural machine translation, the attention mechanism, for the task of nucleotide-level annotation of repetitive ele-
ments. An evaluation on the human genome shows a 20% improvement of the Matthews correlation coefficient for
the predictions delivered by DeepGRP, when compared to dna-brnn. DeepGRP predicts two additional classes of
repeats (compared to dna-brnn) and is able to transfer repeat annotations, using RepeatMasker-based training data
to a different species (mouse). Additionally, we could show that DeepGRP predicts repeats annotated in the Dfam
database, but not annotated by RepeatMasker. DeepGRP is highly scalable due to its implementation in the Tensor-
Flow framework. For example, the GPU-accelerated version of DeepGRP is approx. 1.8 times faster than dna-brnn,
approx. 8.6 times faster than RepeatMasker and over 100 times faster than HMMER searching for models of the Dfam
database.

Conclusions:  By incorporating methods from neural machine translation, DeepGRP achieves a consistent improve-
ment of the quality of the predictions compared to dna-brnn. Improved running times are obtained by employing
TensorFlow as implementation framework and the use of GPUs. By incorporating two additional classes of repeats,
DeepGRP provides more complete annotations, which were evaluated against three state-of-the-art tools for repeat
annotation.

Keywords:  Supervised Learning, Artificial Intelligence, Computational Predictions, Machine Learning Algorithms,
Performance, Recurrent Neural Networks, Gated recurrent units, Attention, Repetitive elements, RepeatMasker,
Satellite, DNA Sequences

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Algorithms for
Molecular Biology

*Correspondence: stefan.kurtz@uni-hamburg.de
2 ZBH ‑ Center for Bioinformatics, MIN‑Fakultät, Universität Hamburg,
Bundesstrasse 43, 20146 Hamburg, Germany
Full list of author information is available at the end of the article

Introduction
As of May 2021, the Genomes OnLine Database (GOLD)
[1] lists about 35 000 eukaryotic genome sequencing
projects. Completion of eukaryotic genome sequencing

http://orcid.org/0000-0001-5783-0054
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00199-0&domain=pdf

Page 2 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20

projects is a difficult task, due to the large size of the
genomes and the abundance of repeats in the genomes.
For example, in the genomes of rat, mouse and human
approximately 40 to 50% of the DNA consists of repeats
[2] and these are divided into many different and partly
not easily distinguishable classes.

The function of repetitive elements has been discussed
for a long time [3] and only recently has the importance
of repeats in cellular processes begun to open up [4].
Repetitive elements are important as binding regions
for proteins, for example, involved in cellular replication
[5] and they contain signals for transcription, chromatin
assembly, nuclear localization [6] or influence expression
of coding sequences [7]. Additionally, repetitive elements
seem to have an impact on cell replication and genome
structure evolution [8]. A recent overview of functions
and the evolution of repetitive elements can be found in
[9].

Due to these important roles of repeats, their annota-
tion and classification in assembled eukaryotic genomes
is an essential part of a genome project. In turn, a com-
plete annotation of repeats allows to focus gene predic-
tion on the remaining parts of the genome, like it is done
in the Ensembl genome annotation system [10]. In this
work we focus on four repeat classes for which we pro-
vide more details in the following paragraphs. While [11]
mainly describes structural properties of two of the four
repetitive element classes, we additionally highlight the
biological importance and, if possible, function of spe-
cific repetitive elements.

Alphoid repeats or human alpha satellites are a human
specific subclass of satellite DNA, which are long
sequences of non-coding DNA appearing in tandems, i.e.
the repeat instances follow each other without long gaps.
They are mainly found in centromeric regions and usually
have a length of around 171 bp [12]. Alphoid repeats are
involved in the cell replication process by binding a pro-
tein for de novo centromere chromatin assembly [5]. In
our RepeatMasker annotations of the reference assembly
GRCh38 2.2% of the positions are annotated as alphoid
repeats.

Human satellite type II and III (HSAT2,3) are another
class of simple satellite DNA [13]. Repeats of this class
have no consistent repeat unit reference sequence.
In [11] HSAT2,3 repeats are characterized as diverse
variations of the ATTCC​ motif. In [14] a slightly dif-
ferent characterization of HSAT2,3 repeats is used.
According to [14] and references therein HSAT2,3
abundance varies between populations and cases are
documented where instances of this repeat class cover
at least 1× 107 bp . [13] remarks that HSAT2,3 repeats
only cover a small part ( ≈ 1.5%) of a complete human
genome of a single male donor. In our annotation,

HSAT2,3 repeats only cover ≈ 0.08% of the GRCh38
assembly (cf. Section Data sets). It is known that
HSAT2,3 repeats are involved in centromere mainte-
nance, genome stability and cancer development [13],
but their detailed function is poorly understood. The
subclass of HSAT3 repeats play a role in cellular stress
response, e.g. against genotoxic chemicals or oxida-
tive stress [15]. HSAT2,3 repeats are human specific by
definition. However, repetitive elements with a similar
structural pattern are present in other eukaryotes [2]
as well. The repeats of class HSAT2,3 are much shorter
than the other repeat classes considered here and lack
a consistent repeat unit reference [13]. So fewer posi-
tions on the DNA sequence can be utilized for predic-
tion, which makes them harder to learn. Furthermore,
the occurrence of repeats of the different repeat IDs of
HSAT2,3 is very imbalanced [16] and therefore the ref-
erence annotation of the chromosomes probably does
not represent all repeat IDs equally well.

Alu elements are non-autonomous retrotransposons,
usually classified as short interspersed nuclear ele-
ments. Retrotransposons are sequence elements, able
to change their location in the genome through RNA
intermediates [17]. In this context, non-autonomous
means, that they are not able to catalyze retrotrans-
position independently. Instead, for retrotransposi-
tion [18], they use LINE-1 repeats, explained below. In
our annotation of GRCh38, Alu elements consist of
approximately 300 bp and cover 9.7% of the base pairs.
It has been shown that Alu elements are involved in
gene expression regulation [17]. Furthermore, they are
relevant in evolutionary biology [19], to, for example,
narrow down geographical ancestry of primates [20].
They are used in forensics to determine evolutionary
relationships [21]. Alu elements are specific to primates
[22], but several short interspersed nuclear elements
with similarity to Alu elements also exist in rodents
[23].

Long interspersed nuclear elements type 1 (LINE-1,
for short) are autonomous retrotransposons present in
most mammalian genomes [24]. However, most of them
lost their ability to retrotranspose [25]. LINE-1 repeats
are sequences of approximately 6000 bp containing two
open reading frames. They form a very diverse class of
repetitive elements. In the RepeatMasker annotation
of GRCh38 there are 194 different repeat IDs of LINE-1
repeats covering 14.6% of the base pairs. The protein
encoded by the first open reading frame has RNA inter-
action and protein-protein binding capabilities. The
protein encoded by the second open reading frame is
involved in retrotransposition [25]. Furthermore, LINE-1
retrotransposition has an impact on human health,

Page 3 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20 	

because retrotranspositions into important locations, e.g.
genes, can be linked to inheritable disease, like Haemo-
philia A [26].

Repeat annotation
Several tools for repeat annotation have been developed.
The most widely known tool for this task is Repeat-
Masker [2], which follows a sequence alignment-based
approach. It relies on a well-curated collection of repeti-
tive sequences, called Repbase [27]. Annotation is per-
formed by computing local alignments of the genomic
sequences and the repetitive sequences from Repbase,
using standard alignment methods. Due to the high qual-
ity of Repbase and the use of sensitive alignment meth-
ods, RepeatMasker provides the current gold standard
for repeat annotation. However, Repbase is not commer-
cially free and RepeatMasker is slow due to the time-con-
suming alignment process [11].

A more recent approach to repeat annotation is based
on profile Hidden Markov Models (pHMMs). The open
access database Dfam [28] provides a large collection of
multiple sequence alignments of families of repetitive
sequences and pHMMs derived from these. Sequences
are annotated based on hits of the pHMMs in the
sequences. The hits are computed using the HMMER
software [29]. As Dfam provides a comprehensive collec-
tion of repetitive elements of high quality, is freely avail-
able and easy to use, it is likely to become the state of the
art for repetitive element annotation in the near future
[28].

Recently, Li [11] described an approach to annotate
repeats using recurrent neural networks (RNNs), and
showed that it works well for HSAT2,3 and Alphoid
repeats. In contrast to conventional feed-forward net-
works, in an RNN the status of the hidden layer also
depends on the input of some previous time steps [30].
This allows the RNN to develop a simple kind of memory
and process sequences of variable length [31]. The most
widely used RNNs are gated RNNs [32], like the long
short-term memory (LSTM) [33] and the gated recur-
rent unit (GRU) [34]. Both, LSTMs and GRUs, are based
on the idea of creating a path through time where the
gradients neither explode nor vanish. This allows gated
RNNs to accumulate information over long timescales.
Additionally they have the capability to forget parts of
their internal memory. GRUs are simplified versions of
LSTMs, with less parameters to be trained. So LSTMs
usually slightly outperform GRUs in terms of prediction
performance [35]. However, GRUs are faster in training
and prediction compared to LSTMs [36]. Besides their
use in machine translation [35], polyphonic music mod-
eling [37] and natural speech modeling [38], recurrent
architectures are also applied to solve problems related

to biological data, for example in the field of genom-
ics [39]. Singh et al. [40] proposes a recurrent model for
prediction of gene regulation based on a technique called
attention. This technique was first employed for neu-
ral machine translation [41]. The attention mechanism
scales the input of the next layer using the hidden state of
the input layer, and thus allows the network to focus on
important regions and sequence motifs during prediction
[40].

Maximum scoring segments algorithm
Since most sequence classification problems require the
same classification category per segment, several algo-
rithms for this task have been developed. A segment
is here defined as an interval in a sequence of scores.
The algorithm for finding all maximum scoring seg-
ments (MSS) by [42] is used in many different applica-
tions in bioinformatics. Li [11] extended this algorithm
by incorporating a minimum score threshold and an
X-drop parameter. Such techniques have a long tradi-
tion in sequence analysis and were, e.g., already used in
Blast [43]. MSSs with a score smaller than the minimum
score threshold are ignored. If the current score drops
too much (as specified by the X-drop parameter) below
the maximum score reached so far, all previous segments
encountered in the extension are not considered when
extending the next segments. So the X-drop parameter
influences how many contiguous negative scores are tol-
erated in the extension process. A more detailed descrip-
tion of the MSS algorithm, including pseudocode and an
example application, can be found in Additional file 1:
Section 1.

Contribution
We have developed the Deep Learning based method
dna-brnn of Li [11] further. Our main contribution is
the engineering and implementation of a new software
tool DeepGRP. By engineering we mean the reimple-
mentation and enhancement of the architecture of dna-
brnn in the widely adopted machine learning framework
TensorFlow. This approach has several advantages:
The use of TensorFlow allows to profit from the regular
improvements incorporated into TensorFlow by a large
active community of developers. For example, it allowed
us to seamlessly integrate the attention mechanism into
the network architecture and makes it possible to exploit
the high computational speed of GPUs. Additionally, it
leads to a generalization of the approach of Li [11] and
improves usability of the resulting software tool. dna-
brnn has no dependencies on other software (except
for a C-compiler), which makes it easy to install. On the
other hand, the dependency of DeepGRP on TensorFlow
is not a large hurdle given the fact that in May 2020 the

Page 4 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20

number of downloads of TensorFlow reached 100 million
[44].

In contrast to [11] we have systematically explored the
latitude of the model by applying a well-tested hyper-
parameter optimization technique to determine seven
hyperparameters used in DeepGRP. These and more
details of the training are well documented to allow
reproducing our results.

In addition to these technical contributions, we show
that the RNN-based approach of DeepGRP can handle
two additional classes of repeats, one of which Li [11]
considered not accessible by this approach. Furthermore,
we show that DeepGRP, trained on RepeatMasker anno-
tations, delivers accurate predictions of repeats anno-
tated by Dfam and not overlapping with RepeatMasker
annotations.

Methods and data sets
Network architecture
Our new software tool DeepGRP uses a similar network
architecture as dna-brnn but with an additional atten-
tion layer. The layer improves the ability of the network
to learn motifs including gaps and stretching over long
ranges of the DNA sequence.

The input of the neural network is the DNA sequence
for which repeats are to be predicted. In a first step, ini-
tial and terminal stretches of Ns are eliminated. In the
second step, the forward strand and the reverse comple-
ment strand of the remaining sequence are both one-hot
encoded by 5 integers per position, where the fifth inte-
ger is used for handling occurrences of Ns. The one-hot
encoding is fed into a bidirectional GRU. While these
bidirectional inputs are widely used for sequential tasks,
like text translation [45], here the reverse complement
strand is fed into the network to learn orientation-inde-
pendent features. To let the network focus on short term
relations and to have multiple predictions per sequence
position, the DNA sequence is processed in a sliding win-
dow approach. The windows of length 342 are slid over
the DNA sequence with a step size of 50. For each nucle-
otide in the window, the GRU-model predicts a probabil-
ity with respect to all considered repetitive classes. As
the windows are overlapping, the model produces mul-
tiple predictions for each position. These are maximized
to obtain the final predictions (see next subsection). The
length of the windows was determined by hyperparam-
eter optimization and is fixed for training and evaluation.
The step size for each window can be chosen at predic-
tion time. This enables a trade off between running time
and prediction accuracy.

To reduce the number of parameters to be trained and
to allow the network to learn the features independently
of the orientation of the sequence, the forward and the

reverse GRU layer share weights. In [46] it was shown,
that sharing of weights in such bidirectional model
improves the model prediction performance and con-
siderably reduces the number of learnable parameters.
The output of the GRU layers is averaged and, together
with the last hidden state, it is fed into the attention layer.
The hidden state is also averaged over the forward and
reverse layer.

The attention mechanism is implemented as proposed
by [41]. It helps the network to utilize information from
the complete sequence in a window, compressed as hid-
den state representation, at all sequence positions in
that window. This improves the prediction of repetitive
elements at the beginning of the genomic sequence and
enhances the learning of more complex features. The out-
put of the attention layer is fed, position by position, to
a feed-forward network (Dense layer) with the Softmax
activation function to obtain probabilities for each class
of repetitive elements. The complete network is depicted
in Fig. 1. One advantage of this approach is that all repet-
itive element classes can be handled at once and thus the
number of repetitive elements has only a marginal influ-
ence on the running time.

From probabilities to segments
Due to the window based approach with overlapping
windows, for each nucleotide position and each repeti-
tive class (including the no-repeat class) one obtains
multiple probabilities of class memberships. For each
position and each repetitive class we only keep the maxi-
mum of all such probabilities. This strategy of aggregat-
ing the information over different sliding windows leads
to shorter running times and reduced space requirement,
while still allowing for accurate predictions.

Let C be the set of possible labels (each represent-
ing a repeat class) plus label 0 for class no repeat. Let
pci be the probability derived by the model that position
i , 1 ≤ i ≤ n has label c ∈ C , where n is the length of the
sequence subject to the prediction of repeats. To derive
predictions for segments of the input sequence, we first
convert these probabilities to scores as follows: Calculate
qi = min{max{pci | c ∈ C}, 0.99} and determine ci ∈ C
such that qi = min{p

ci
i , 0.99} . Finally, convert qi to a score

si defined as follows [11]:

This scoring is a modified version of the logit-function,
which is well known for its application in logistic regres-
sion [47]. The upper bounding to 0.99 prevents division
by zero and −10 is multiplied for case ci = 0 to punish
large extensions of segments. For this scoring approach

si =

{

−10 · log
qi

1−qi
if ci = 0

log
qi

1−qi
otherwise.

Page 5 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20 	

we consider only the maximum probability per position
over all repeat classes, as in the gold standard there are
only few positions (i.e. 814 648 of 716 335 847 bp) for
which the assignment to one of the four repeat classes
considered here is not unique, see "Data sets" section. So
applying the MSS algorithm to scores obtained from the
probabilities for all classes of repetitive elements, would
likely only lead to small improvements in accuracy, but
mean a considerable increase of the computational effort.
Therefore, the MSS algorithm is applied to the sequence
s1 , s2 , ..., sn of scores obtained from the maximum prob-
abilities. It delivers non-overlapping segments of con-
tinuous positions and for each position we have tracked
the corresponding repeat class of maximum probability.
No repeat positions inherit the repeat class which occurs
most often in the segment. In this way, all positions of a
segment are considered as part of an instance of one of
the four considered repeat classes.

Afterwards, segments which contain more than one
repetitive element class are split into several segments,
each only containing one repetitive element class. Finally,
the coordinates for all segments with a length greater
than some user defined threshold (default 50, as also used
in dna-brnn), are output.

Implementation
The base network was implemented in Python (Version
3) using TensorFlow 2.1 [48] and is available as Python
package deepgrp (https://​github.​com/​fhaus​mann/​
deepg​rp). Several time consuming steps are written in
C. All C-codes including the the implementation of the
MSS algorithm of [11] are integrated with DeepGRP via
Cython.

Fig. 1  Sketch of the neural network architecture of DeepGRP. The architecture is similar to that of [11], but has an additional attention layer. The
input flows along the black arrows, while the hidden states pass information along the dashed lines. The first input is the DNA sequence while the
second input is the Watson-Crick complement of the sequence. Both sequences are one-hot encoded

https://github.com/fhausmann/deepgrp
https://github.com/fhausmann/deepgrp

Page 6 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20

Data sets
Our evaluation is based on the reference assemblies
GRCh19 and GRCh38 of the human genome (abbrevi-
ated as hg19 and hg38 in the following) and GRCm38 of
the mouse genome (abbreviated as mm10). Details are
given in Additional file 1: Table S2. To simplify notation,
a specific chromosome c of an assembly a is denoted by
a/c.

As the pre-annotated human genomes from the
RepeatMasker website (http://​www.​repea​tmask​er.​org/)
are outdated, we computed the annotations of hg19 (all
autosomal chromosomes) and hg38/chr1 ourselves,
using Repbase 24.01 and RepeatMasker 4.1.0 (git-
hash:41848148) [2], based on the cross_match [49] soft-
ware computing the local alignments. The source code
of cross_match was obtained from the author [50]. The
annotations obtained in this way are considered as the
gold standard for human. We found that 716 335 847 bp
of the gold standard (i.e. 24.86% of hg19) are covered by
a repeat of one of the four considered repeat classes. Of
these 716 335 847 bp only 0.11% (814 648 bp) cannot
uniquely be assigned to a repeat class.

As gold standard for mouse we used a pre-annota-
tion of mm10/chr1 (cf. Additional file 1: Table S2). The
main focus of using mouse data was to evaluate whether
DeepGRP is able to make use of features learned from
human sequences for annotating a different, but not too
distant species which has specific repetitive elements. If
not stated otherwise, the notation gold standard in singu-
lar means the gold standard for human.

From both gold standards we extracted all annota-
tions of repeats of class HSAT2, Alphoid, Alu and LINE-
1. A complete list of the repeat IDs of these classes (for
human) can be found in Additional file 1: Table S3. Anno-
tations for class HSAT3 were computed as described in
[11]. As in [11] and [13], HSAT2 and HSAT3 were com-
bined due to their similarity. All models were trained on
hg19/chr11. For validation and early stopping hg19/chr20
was used. The true class labels were derived from the
gold standard.

We selected hg19/chr11 for training for two reasons:
On the one hand it was (besides other chromosomes)
also used in [11] and on the other hand it is a medium
sized chromosome ( ≈ 4% of the bp. of hg19) and there-
fore represents a setting in which the size of the training
data is small compared to the test data.

We selected hg19/chr20 for validation, since it is small
( ≈ 2% of the bp. of hg19) allowing hyperparameter opti-
mization in reasonable time. Early stopping was imple-
mented in such a way that training is stopped, once the
validation loss does not decrease in the last 10 epochs.

A Dfam-based annotation of repeats of the four repeat
classes was obtained by extracting from Dfam release 3.3,

November 2020, the related repetitive element classes
from the pre-annotated hg38 genome. When determin-
ing the running time of HMMER, we used a subset of the
Dfam HMM library (release 3.3) comprised of all classes
of repetitive elements which were also present in the sub-
set of the RepeatMasker annotations used in this study
(cf. Additional file 1: Table S3). We applied dfamscan
using HMMER (v3.2.1) [29], faithfully following the rec-
ipe of https://​dfam.​org/​help/​tools.

Training details
While the basic network architecture we used is similar
to the one proposed in [11], our training largely differs
from the training of dna-brnn.

Training, retraining and evaluation were performed on
Linux-based computers. The hyperparameter optimiza-
tion was run on an Intel® Xeon® Gold 6142 CPU using
12 inter-operation and 12 intra-operation threads using
Hyperopt with the Tree of Parzen Estimators algorithm
[51]. Model performance is measured by the multi-class
Matthews correlation coefficient, denoted by MCCk
where k is the number of classes [52]. MCCk is a single
value characterizing a complete confusion table [52] even
if the classes are very imbalanced [53]. In our application
we have four different classes of repeats and the no repeat
class, so k is 5. We chose the model maximizing MCC5 .
This model is termed best model.

The retraining of the best model and all evaluations,
including training and evaluation of both tools, were
performed on an Intel® Core® 7-5820K CPU using 10
threads. DeepGRP additionally utilized a GPU on a
Nvidia Geforce GTX 960 graphics card using the XLA
domain-specific compiler, see [54] for details. Training of
DeepGRP required 6 to 15 minutes (median 11min) per
model.

During the training, the composition of the batches is
adjusted by a hyperparameter r ∈ [0, 1] . A batch of size n
is constructed such that it contains at least ⌊n · r⌋
sequence windows, each of which has at least one posi-
tion annotated as repetitive elements. This is further
restricted such that from these ⌊n · r⌋ sequence windows
for the set of all repetitive element classes C ,

⌊

n·r
|C|

⌋

sequence windows per repetitive element class are pre-
sent in one batch. Therefore, repeats which are less pre-
sent in the training data are sampled more often during
training to account for the imbalance of the occurrence
of different repeat classes.
DeepGRP was compared to dna-brnn [11], which is

implemented in C using its own neural network frame-
work. Both programs use, as far as possible, the same
hyperparameter values. dna-brnn does not provide

http://www.repeatmasker.org/
https://dfam.org/help/tools

Page 7 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20 	

an interface to perform hyperparameter tuning. Moreo-
ver, several parameters and flags of dna-brnn are hard
coded or are ignored even if they have been specified on
the command line. We concluded that hyperparameter
tuning for dna-brnn would require modifications of its
source code and the development of wrappers. As a con-
sequence, we did not perform hyperparameter tuning for
dna-brnn. For training and prediction the same hyper-
parameters were used.
dna-brnn uses a fixed number of epochs and a user

defined random seed, whereas DeepGRP uses early
stopping and a varying random seed. To the best of our
knowledge, dna-brnn is not able to use validation data
and the training cannot be resumed in previously saved
states. So, it seems not possible to apply early stopping
to prevent overfitting of parameters in dna-brnn. For
DeepGRP we trained five models. Using different ran-
dom seeds, we also trained five models for dna-brnn,
in contrast to [11], in which only one model was trained.

Results and discussion
In our initial experiments, DeepGRP and dna-brnn
were evaluated based on the false positive rate (FPR)
and the false negative rate (FNR). These rates describe

easy to understand and relevant metrics. As in [11],
these metrics refer to the base pair level: Let G be the
set of all positions in the considered sequence. Let Pc be
the set of positions in all predicted repeats of class c and
P¬c = G \ Pc be the set of positions predicted as another
repeat class or as no repeat. Define Ac and A¬c in an anal-
ogous way for annotated repeats from the gold stand-
ard. Then (|Pc \ Ac|)/|A¬c| is the false positive rate and
|Ac \ Pc|/|Ac| is the false negative rate for class c.

The FPRs and FNRs of the five models obtained for
DeepGRP and for dna-brnn were determined for
hg19/chr1, hg38/chr1 and mm10/chr2, which are the
chromosomes of maximum sizes in the corresponding
assemblies. The FPRs and FNRs of DeepGRP and dna-
brnn are shown in Figs. 2 and 3, respectively. The FPRs
of DeepGRP are very small (median < 0.03 ) for all three
data sets and all classes of repeats (cf. Fig. 2). The smallest
FPRs are achieved for the classes HSAT2,3 and Alphoid
(maximum FPR is 0.01). For the classes Alu and LINE-1,
dna-brnn achieves slightly smaller FPRs than Deep-
GRP. As expected, the FNRs for hg19/chr1 and hg38/
chr1 are smaller than for mm10/chr2, where the small-
est FNRs are around 0.4. It is obvious that DeepGRP is
able to predict repeats for all three chromosomes and

Fig. 2  False positive rates (FPRs) for DeepGRP and dna-brnn, both for five models applied to hg19/chr1, hg38/chr1 and mm10/chr2. Training
and validation of these models was performed on hg19/chr11 and hg19/chr20, respectively

Fig. 3  False negative rates (FNRs) for DeepGRP and dna-brnn, both for five models applied to hg19/chr1, hg38/chr1 and mm10/chr2. As
Alphoid repeats are not annotated in mm10, the corresponding data is omitted

Page 8 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20

all four considered classes. DeepGRP achieves smaller
FNRs than dna-brnn. Except for Alu repeats, the FNRs
of DeepGRP are much smaller than those of dna-brnn.
According to the results of [11], dna-brnn is able to
predict repeats of class HSAT2,3 for the assembly CHM1
of the human genome, achieving FNRs of ≈ 0.3%. But this
result was achieved when considering only two classes of
repeats (Alphoid and HSAT2,3). In our more challenging
experiment with two additional classes (LINE-1 and Alu),
dna-brnn achieved an FNR of 1.0 for HSAT2,3 repeats,
i.e. it completely failed to predict repeats of this class.
Another reason why our results concerning HSAT2,3
repeats differ from those reported in [11] may be due
to the fact that for training of dna-brnn Li used addi-
tional annotated data. For three repeat classes (Alphoid,
Alu, LINE-1) the FNRs for hg19/chr1 and hg38/chr1 are
almost identical and very small. For hg38/chr1 and with
respect to HSAT2,3, the median FNR is only slightly
larger than 0.5, an issue considered below when we dis-
cuss misclassifications.

All models for dna-brnn and DeepGRP were trained
on a single chromosome of hg19, which is much more
similar to hg38 than to mm10. In particular, in mm10 one
repeat class (Alphoid) is not present and some repeats
(from class Alu and LINE-1) are specific for mm10 and
do not occur in hg19/chr11 which served as training
data. As a consequence, features of repeats learned from
hg19/chr11 are much more likely to lead to correct pre-
dictions for hg38/chr1 than for mm10/chr2. Neverthe-
less, DeepGRP is able to correctly identify several repeats
in mm10/chr2, for which it achieves considerably smaller

FNRs than dna-brnn. This shows that DeepGRP is able
to generalize across species.

To study misclassifications of the models in more
detail, we have created confusion matrices for the
same five models applied to hg19/chr1 and hg38/chr1,
see Fig. 4. Most misclassifications of repeat classes are
related to LINE-1 repeats. In particular, DeepGRP clas-
sifies 23% of the LINE-1 repeats as no repeat (for hg19/
chr1 and hg38/chr1) and 11% of HSAT2,3 repeats as
LINE-1 repeats (for hg19/chr1). For hg38/chr1, 51% of
the HSAT2,3 repeats are classified as LINE-1 repeats,
i.e. DeepGRP is hardly able to correctly separate
HSAT2,3 and LINE-1 repeats. To better understand the
degradation in classification performance, we system-
atically determined sequence regions which are almost
identical in both assemblies.

In particular, we computed colinear chains of approx-
imate matches of hg19/chr1 and hg38/chr1. They make
up 94.7% of hg19/chr1 and 92.6% of hg38/chr1 when
not counting occurrences of Ns in the genomes. A
detailed definition on how these chains are computed
can be found in Additional file 1: Section 5. Consider-
ing only repeats in these common sequence regions,
we obtain a highly improved accuracy for prediction of
HSAT2,3 repeats, see Additional file 1: Figure S1. For
the other three repeat classes there was virtually no dif-
ferences in the prediction performance, but the num-
ber of base pairs in hg38/chr1 annotated as HSAT2,3
reduces to ≈ 6.6% (10 041 bp of 151 442 bp) accord-
ing to gold standard annotation for hg38/chr1. This
shows that regions annotated as HSAT2,3 are mainly
in regions of hg38/chr1 differing from hg19/chr1. Also
the total number of nucleotides annotated as HSAT2,3
(and Alphoid) differ considerably between regions com-
mon to hg19 and hg38, compared to regions unique to
hg38, see Additional file 1: Figure S2. Due to this differ-
ence we cannot expect a good prediction performance
for DeepGRP, especially for regions which are unique
for hg38. Nevertheless, the results indicate that Deep-
GRP is able to learn sequences with no clear reference
sequence without the need to be trained on exactly
those sequences. RepeatMasker on hg19/chr1 com-
pared to RepeatMasker on hg38/chr1 (see, Additional
file 1: Figure S3) based on data from hgLiftOver [55]
shows large overlaps of those annotations, for which
the coordinates could be “lifted over” from hg38 to
hg19. This provides additional evidence that DeepGRP
performs well on regions common in different genome
assemblies.

While the results reported above were obtained for
single chromosomes from the reference assemblies, we
now report results obtained when applying the same
five models to all autosomal chromosomes of hg19 (i.e.

Fig. 4  Confusion matrices for DeepGRP predicting repeats of four
different classes for hg19/chr1 and hg38/chr1. The gold standard
annotation was computed by RepeatMasker. Values are averaged
over five models and absolute counts are divided by the true number
(with respect to the gold standard) of annotated base pairs per repeat
class. Values smaller than 0.01 are omitted. The models used for this
evaluation are the same as for the other evaluations, i.e. trained on
hg19/chr11

Page 9 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20 	

chr1, ..., chr22). The comparison is based on MCC5-val-
ues (cf. Fig. 5). While DeepGRP achieves consistently
high MCC5-values for Alphoid, Alu and LINE-1, the
MCC5-values for HSAT2,3 varies. It seems more dif-
ficult for DeepGRP to learn elements of this class of
repeats. This is likely due to the fact that repeats of class
HSAT2,3 are much shorter and less conserved on the
sequence level1 than repeats of the other three classes.
The weaker performance of DeepGRP for HSAT2,3 and
the complete failure of dna-brnn to predict HSAT2,3
repeats, as was already visible from the FNRs for
selected chromosomes (see Fig. 3) is confirmed for all
chromosomes of hg19. But at least, DeepGRP achieves
MCC5-values ≥ 0.8 for three chromosomes of hg19. So
one may conclude that DeepGRP is able to learn some
repeats of class HSAT2,3 in a setting where only limited
training data (i.e. 4% of hg19) is used.

For the prediction of Alu repeats dna-brnn slightly
outperforms DeepGRP. This may be due to the fact, that
during the training process, dna-brnn remains in a
local minimum which allows to successfully predict Alu
repeats, but delivers unreliable predictions of repeats of
the other classes. In fact, for hg19/chr1 in almost all cases
dna-brnn predicts the no repeat class or Alu repeats,
see the confusion matrix of Additional file 1: Figure S4.

For Alphoid repeats DeepGRP clearly outperforms
dna-brnn on all chromosomes and it shows much less
variation between different models than dna-brnn (cf.
Additional file 1: Figure S5). Interestingly, for Alphoid
repeats on hg19/chr13 and hg19/chr22, the MCC5-value
drops for DeepGRP as well as for dna-brnn. As there is
no difference in the number of segments or the number
of annotated positions for Alphoid repeats for the two
chromosomes compared to all other chromosomes, the
reason for this behavior remains unclear.

For LINE-1 repeats DeepGRP achieves MCC5-values
(overall mean ≈ 0.747 ) nearly twice as large as the MCC5

-values of dna-brnn (overall mean ≈ 0.397 ). But the
results for LINE-1 repeats are not as good as for Alphoid
and Alu repeats. This is likely due to the fact that LINE-1
repeats have longer reference sequences (around 6000 bp
[25]) than Alu and Alphoid repeats (<300 bp [13]). More-
over, LINE-1 repeats have a complex structure which is
reflected by the division of LINE-1 elements into 194
different repeat IDs in Repbase. Nevertheless, LINE-1
repeats share a common structure and similar sequences.
DeepGRP seems to be able to learn these much better
than dna-brnn.

To evaluate whether DeepGRP is able to learn repeat
annotations obtained by powerful models derived from
sequence families, we compared its predictions to anno-
tations of hg38 provided by the Dfam-database of trans-
posable elements. While DeepGRP was trained on a gold
standard computed by RepeatMasker, the confusion

Fig. 5  MCC2 for DeepGRP and dna-brnn for all chromosomes of the human genome assembly hg19. For both tools five independently trained
models were used. dna-brnn was trained with the same hyperparameter as DeepGRP for 50 epochs. All repeat classes where predicted with a
single model, but the MCC2-values where calculated in an one-vs-rest scheme, e.g. HSAT2,3 against not-HSAT2,3. The models used for this evaluation
are the same as for the other evaluations, i.e. trained on hg19/chr11

1  This may be the reason why Dfam (release 3.3, November 2020) does not
contain any repeats of class HSAT3 and relatively few of class HSAT2, see
Additional file 1: Table S4.

Page 10 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20

matrix of Additional file 1: Figure S6 shows that Deep-
GRP can predict repeats of class Alphoid, Alu and
HSAT2,3 annotated in Dfam with an accuracy similar
to the accuracy obtained when comparing with the gold
standard. For LINE-1 repeats the accuracy in comparison
to the Dfam annotation is lower than in the comparison
to the gold standard. DeepGRP performs well in compar-
ison to Dfam (cf. Additional file 1: Figure S7), although
the overlap of the annotations of Dfam and RepeatMas-
ker is only around 50% (cf. Additional file 1: Figure S3).
Interestingly, DeepGRP can correctly predict repeti-
tive elements annotated by Dfam, which are not present
in the gold standard (Additional file 1: Figure S8). For
example, DeepGRP correctly annotates 77% of Alphoid
repeats, which are specific to Dfam.

Comparing only the boundaries of repeats (instead of
all nucleotide positions of repetitive elements) to the gold
standard delivered by RepeatMasker, shows a less con-
vincing performance of DeepGRP. That is, only in rare
cases, the boundary positions of repeats are precisely
predicted. For example, for Alu repeats, maximum dif-
ference of boundaries of 50 bp. leads to a sensitivity of ≈
60% and a specificity of ≈ 20%. The results for the other
repeat classes are even worse, see Additional file 1: Figure
S11 for details. We consider three main reasons for these
results: The quality measures we apply hardly tolerate
any misclassifications of single positions, see Additional
file 1: Section 4. Thus a single false prediction has a much
larger impact on the quality measures for repeat bound-
aries than on the quality measures based on nucleotide
positions. Furthermore, boundaries of repetitive ele-
ments in the gold standard are ambiguous as they heav-
ily depend on the number of allowed mismatches and
indels when matching reference repeat sequences against
a genome. Finally, in the training of DeepGRP all posi-
tions of repetitive elements are treated in the same way
and no special emphases is laid on the boundary posi-
tions of the repeats, while RepeatMasker likely applies
polishing techniques on the ends of “raw” repeats. So,
additional enhancements with focus on polishing bound-
aries of repetitive elements and their integration into the
current DeepGRP-model seems an interesting topic for
further research. Of course, the relevance of these results
on boundary predictions must be considered in the con-
text of a concrete downstream analysis task for predicted
repeats.

One of the main goals when developing DeepGRP was
to reduce the running time when annotating repeats. To
prove that this goal was achieved, we measured the run-
ning time of the different software tools when annotating
repeats of the four classes in hg19. Again, for dna-brnn
and DeepGRP we used five trained models. Due to the
long running time of HMMER [29] it was applied only to

the five smallest autosomal chromosomes of hg19 (chr18,
chr19, ..., chr22; total length 299 666 212 bp). For all three
software tools, the running time for predicting repeats
is linear (cf. Fig. 6). DeepGRP is approx. 8.6 times faster
than RepeatMasker, approx. 1.8 times faster than dna-
brnn (which runs on CPU only) and > 100 times faster
than HMMER. So DeepGRP, using a fairly old (6 years in
2021) GPU available on a standard graphics card outper-
forms all other methods.

Conclusion
RepeatMasker [2] based on Repbase [27] and cross_
match [49] for local alignment provides the current
gold standard for annotation of repetitive elements in
genomes. However, cross_match as well as Repbase are
not commercially free and Repbase requires a paid license
even for academic research. Dfam [28] and HMMER
[29] are another powerful combination for annotating
repetitive elements. While Dfam provides a comprehen-
sive, well curated and free to use collection of HMMs
for repeat identification and pre-annotated genomes
for several genomes, the long running time of HMMER
is a major hurdle when annotating repeats for complete
genomes. dna-brnn and DeepGRP follow a new strat-
egy to annotate repeats. The strategy is based on learning
from already available repeat annotations and efficiently
transferring this knowledge to new genome assemblies.
Of course, this strategy is based on high quality repeat
annotations (likely delivered by RepeatMasker), but it is

Fig. 6  Prediction time of RepeatMasker, dna-brnn, DeepGRP and
HMMER as a function of the sequence length in Mbp. For dna-brnn
and DeepGRP five independently trained models and chromosomes
from hg19 were used. dna-brnn was trained with the same
hyperparameter as DeepGRP for 50 epochs with varying seed. The
running time of dna-brnn and of DeepGRP shows almost no
variance

Page 11 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20 	

independent of restrictions imposed by the license condi-
tions of Repbase.

With the development of dna-brnn Li [11] showed
how to implement the said strategy based on neural
networks. Here we extend this idea further in several
directions:

•	 By incorporating two new repetitive element
classes, we provide more complete annotations.

•	 By employing TensorFlow as implementation
framework for DeepGRP, we allow training and
evaluation of the model to be executed on all widely
used platforms including GPUs to reduce running
times.

•	 By adding methods from neural machine translation,
we achieve a consistent improvement of the quality
of the predictions, compared to dna-brnn.

For the model with four classes of repeats, Deep-
GRP delivers considerably improved predictions
( MCC5 ≈ 0.82± 0.02 ) compared to dna-brnn
MCC5 ≈ 0.68± 0.06 . For the two class model consid-
ered in [11], dna-brnn provides slightly better results
( MCC3 ≈ 0.85 ), but one should keep in mind that the
simultaneous prediction of four classes of repeats is much
more difficult. Our results obtained for relatively small
amounts of training data (only 4% of the bp. of hg19) pro-
vide evidence that DeepGRP is able to generalize features
learned from one genome assembly and transfer them
to another assembly of the same species, but also with
reduced precision to another related species.

Generally DeepGRP delivers conservative predictions,
i.e. an annotation is rather missed than falsely predicted.
This is an advantage in contexts where repeat masking is
used for preprocessing sequences, before applying other
tools to the unmasked part of the sequences for further
annotation. In such a context a missed repeat would
increase the number of base pairs to be annotated and
thus lead to longer running times. A falsely predicted
repeat would lead to masking regions possibly contain-
ing functional elements and thus have a negative effective
of the sensitivity of the downstream annotation pipeline.
A quantitative evaluation of the masking performance of
DeepGRP can be found in Additional file 1: Figure S10.
DeepGRP is robust with respect to the training data.

That is, when trained on different builds of the human
genome, DeepGRP delivers the same prediction perfor-
mance on all tested human genome assemblies, see Addi-
tional file 1: Figure S9. So, by training it directly on Dfam
annotations could lead to an improved sensitivity of the
prediction, in comparison to models that were trained

only on RepeatMasker annotations. This could especially
be useful in cases where high sensitivity is needed, but
the running time is limited. Such an application could be
subject for future research.

These properties and its improved running time makes
DeepGRP a useful tool for annotating repetitive elements
in eukaryotic genomes.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​021-​00199-0.

Additional file 1. MSS algorithm and additional figures. Section 1:
Detailed description of the maximum scoring segment algorithm and its
implementation by [11]. Section 2: Additional tables. Section 3: Additional
figures. Section 4: Sensitivity, specificity and the δ-parameter in the
evaluation of repeat boundaries. Section 5: Detailed description of the
comparison of hg19 and hg38.

Acknowledgements
We thank Birgitta Päuker for helpful comments on the manuscript. Thanks
goes to Julian Klemm for porting DeepGRP to TensorFlow 2.5.

Authors’ contributions
SK conceived the project. FH contributed technical ideas, implemented the
software and performed the evaluations. SK and FH wrote the manuscript.
Both authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. The author
received no financial support for the research, authorship, and publication of
this article.

Availability of data and materials
DeepGRP is available as Python package deepgrp (https://​github.​com/​
fhaus​mann/​deepg​rp) or on PyPI (https://​pypi.​org/​proje​ct/​deepg​rp/). It is pub-
lished under the Apache-2.0 License. Scripts to reproduce the results reported
here can be found at https://​github.​com/​fhaus​mann/​deepg​rp_​repro​ducib​
ility. DeepGRP is platform independent as long as the platform supports
TensorFlow 2.1 or higher (up to TensorFlow 2.5).
All genome assemblies used in the experiments are available at https://​hgdow​
nload.​cse.​ucsc.​edu/​golde​nPath. Pre-annotated genomes are available at the
RepeatMasker website (http://​www.​repea​tmask​er.​org/​genom​es/) and the
Dfam website (https://​dfam.​org/​relea​ses/​Dfam_3.​3/​annot​ations). A detailed
description of the used data sets can be found in Additional file 1: Table S2.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Medical Systems Biology, University Medical Center Hamburg-
Eppendorf, Falkenried 94, 20251 Hamburg, Germany. 2 ZBH ‑ Center for Bioin-
formatics, MIN‑Fakultät, Universität Hamburg, Bundesstrasse 43, 20146 Ham-
burg, Germany.

https://doi.org/10.1186/s13015-021-00199-0
https://doi.org/10.1186/s13015-021-00199-0
https://github.com/fhausmann/deepgrp
https://github.com/fhausmann/deepgrp
https://pypi.org/project/deepgrp/
https://github.com/fhausmann/deepgrp_reproducibility
https://github.com/fhausmann/deepgrp_reproducibility
https://hgdownload.cse.ucsc.edu/goldenPath
https://hgdownload.cse.ucsc.edu/goldenPath
http://www.repeatmasker.org/genomes/
https://dfam.org/releases/Dfam_3.3/annotations

Page 12 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20

Received: 5 May 2021 Accepted: 3 August 2021

References
	1.	 Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi

JC, Lee J, Kandimalla M, Chen I-MA, Kyrpides NC, Reddy T. Genomes
OnLine Database (GOLD) v. 8: overview and updates. Nucleic Acids Res.
2021;49(D1):723–33.

	2.	 Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0 (2013-2015). http://​
www.​repea​tmask​er.​org.

	3.	 Ohno S. So much “junk” DNA in our genome. Brookhaven Symp Biol.
1972;23:366–70.

	4.	 Garrido-Ramos M. Satellite DNA: an evolving topic. Genes. 2017;8(9):230.
	5.	 Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A, Wong AJ, Cleveland

DW. DNA sequence-specific binding of CENP-B enhances the fidelity of
human centromere function. Dev Cell. 2015;33(3):314–27.

	6.	 Shapiro JA, Sternberg RV. Why repetitive DNA is essential to genome
function. Biological Reviews. 2005;80(2):227–50.

	7.	 Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr. Mobile elements and
mammalian genome evolution. Curr Opin Genet Dev. 2003;13(6):651–8.

	8.	 Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in com-
plex genomes: structure and evolution. Annu Rev Genomics Hum Genet.
2007;8:241–59.

	9.	 Lower SE, Dion-Côté A-M, Clark AG, Barbash DA. Special issue: repetitive
DNA sequences. Genes. 2019;10(11):896.

	10.	 Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet
J, Billis K, García Girón C, Hourlier T, et al. The Ensembl gene annotation
system. Database. 2016;2016:baw093.

	11.	 Li H. Identifying centromeric satellites with dna-brnn. Bioinformatics.
2019;35(21):4408–10.

	12.	 Tyler-Smith C, Brown WR. Structure of the major block of alphoid satellite
DNA on the human Y chromosome. J Mol Biol. 1987;195(3):457–70.

	13.	 Altemose N, Miga KH, Maggioni M, Willard HF. Genomic characterization
of large heterochromatic gaps in the human genome assembly. PLoS
Comput Biol. 2014;10(5):1003628.

	14.	 Miga KH. Centromeric satellite DNAs: hidden sequence variation in the
human population. Genes. 2019;10(5):352.

	15.	 Valgardsdottir R, Chiodi I, Giordano M, Rossi A, Bazzini S, Ghigna C, Riva
S, Biamonti G. Transcription of Satellite III non-coding RNAs is a general
stress response in human cells. Nucleic Acids Res. 2008;36(2):423–34.

	16.	 Natale F, Scholl A, Rapp A, Yu W, Rausch C, Cardoso MC. Dna replication
and repair kinetics of Alu, LINE-1 and satellite III genomic repetitive ele-
ments. Epigenet Chromatin. 2018;11(1):61.

	17.	 Häsler J, Strub K. Alu elements as regulators of gene expression. Nucleic
Acids Res. 2006;34(19):5491–7.

	18.	 Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition
of marked Alu sequences. Nat Genet. 2003;35(1):41.

	19.	 Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB. Mobile DNA
elements in primate and human evolution. Am J Phys Anthropol.
2007;134(S45):2–19.

	20.	 Ray DA, Walker JA, Hall A, Llewellyn B, Ballantyne J, Christian AT, Turteltaub
K, Batzer MA. Inference of human geographic origins using Alu insertion
polymorphisms. Forensic Sci Int. 2005;153(2–3):117–24.

	21.	 Salem A-H, Ray DA, Xing J, Callinan PA, Myers JS, Hedges DJ, Garber R,
Witherspoon DJ, Jorde LB, Batzer MA. Alu elements and hominid phylo-
genetics. Proc Natl Acad Sci. 2003;100(22):12787–91.

	22.	 Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J. Evolutionary
history of 7SL RNA-derived SINEs in supraprimates. Trends Genet.
2007;23(4):158–61.

	23.	 Quentin Y. A master sequence related to a free left Alu monomer (FLAM)
at the origin of the B1 family in rodent genomes. Nucleic Acids Res.
1994;22(12):2222–7.

	24.	 Penzkofer T, Jäger M, Figlerowicz M, Badge R, Mundlos S, Robinson PN,
Zemojtel T. L1Base 2: more retrotransposition-active LINE-1s, more mam-
malian genomes. Nucleic Acids Res. 2016;925.

	25.	 Ostertag EM, Kazazian HH Jr. Biology of mammalian L1 retrotransposons.
Annu Rev Genet. 2001;35(1):501–38.

	26.	 Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antona-
rakis SE. Haemophilia A resulting from de novo insertion of L1

sequences represents a novel mechanism for mutation in man. Nature.
1988;332(6160):164.

	27.	 Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive
elements in eukaryotic genomes. Mobile DNA. 2015;6(1):1–6.

	28.	 Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community
resource of transposable element families, sequence models, and
genome annotations. Mobile DNA. 2021;12(1):1–14.

	29.	 Eddy SR. HMMER: biosequence analysis using profile hidden Markov
models. v3.3.2 (2020). http://​hmmer.​org/.

	30.	 Rumelhart DE, Hinton GE, Williams RJ. Learning representations by
back-propagating errors. Nature. 1986;323(6088):533–6.

	31.	 Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT
Press; 2016.

	32.	 Beaufays F. The neural networks behind Google Voice transcription
(2015). https://​ai.​googl​eblog.​com/​2015/​08/​the-​neural-​netwo​rks-​
behind-​google-​voice.​html.

	33.	 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Com-
put. 1997;9(8):1735–80.

	34.	 Cho K, van Merrienboer B, Gülçehre Ç, Bougares F, Schwenk H, Bengio
Y. Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. CoRR arXiv:​abs/​1406.​1078 2014.

	35.	 Britz D, Goldie A, Luong M-T, Le Q. Massive Exploration of Neural
Machine Translation Architectures. In: Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing, pp.
1442–1451;2017.

	36.	 Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated
recurrent neural networks on sequence modeling. In: NIPS 2014 Work-
shop on Deep Learning, 2014;2014

	37.	 Goel K, Vohra R, Sahoo JK. Polyphonic music generation by modeling
temporal dependencies using a rnn-dbn. In: International Conference
on Artificial Neural Networks, pp. 217–224;2014. Springer

	38.	 Chung J, Gulcehre C, Cho K, Bengio Y. Gated feedback recurrent neural
networks. In: International Conference on Machine Learning, pp.
2067–2075;2015

	39.	 Deming L, Targ S, Sauder N, Almeida D, Ye CJ. Genetic architect:
Discovering genomic structure with learned neural architectures. arXiv
preprint arXiv:​1605.​07156 2016.

	40.	 Singh R, Lanchantin J, Sekhon A, Qi Y. Attend and predict: Understand-
ing gene regulation by selective attention on chromatin. In: Advances
in Neural Information Processing Systems, pp. 6785–6795;2017.

	41.	 Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly
learning to align and translate. In: 3rd International Conference on
Learning Representations, ICLR 2015;2015.

	42.	 Ruzzo WL, Tompa M. A Linear Time Algorithm for Finding All Maximal
Scoring Subsequences. In: Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular Biology, pp. 234–241.
AAAI Press, Palo Alto, California, USA 1999.

	43.	 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

	44.	 Chollet F. TensorFlow has crossed 100M total downloads from PyPI
2020. https://​twitt​er.​com/​fchol​let/​status/​12602​67421​01469​1841.

	45.	 Sundermeyer M, Alkhouli T, Wuebker J, Ney H. Translation modeling
with bidirectional recurrent neural networks. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 14–25;2014.

	46.	 Shrikumar A, Greenside P, Kundaje A. Reverse-complement param-
eter sharing improves deep learning models for genomics. bioRxiv.
2017;103663

	47.	 Hastie T, Tibshirani R, Friedman J. The elements of statistical learning:
data mining, inference, and prediction. Berlin: Springer; 2009.

	48.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS,
Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G,
Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, elion Mane
D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Fern a Viegas,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org;2015. https://​www.​tenso​rflow.​
org/.

http://www.repeatmasker.org
http://www.repeatmasker.org
http://hmmer.org/
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1605.07156
https://twitter.com/fchollet/status/1260267421014691841
https://www.tensorflow.org/
https://www.tensorflow.org/

Page 13 of 13Hausmann and Kurtz ﻿Algorithms Mol Biol (2021) 16:20 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	49.	 Green P. cross_match (1993-1996). http://​www.​phrap.​org/​phred​phrap​
consed.​html#​block_​phrap.

	50.	 Green P. Personal communication;2020.
	51.	 Bergstra J, Yamins D, Cox DD. Hyperopt: A python library for optimizing

the hyperparameters of machine learning algorithms. In: Proceedings of
the 12th Python in Science Conference, pp. 13–20;2013

	52.	 Gorodkin J. Comparing two K-category assignments by a K-category cor-
relation coefficient. Comput Biol Chem. 2004;28(5–6):367–74.

	53.	 Boughorbel S, Jarray F, El-Anbari M. Optimal classifier for imbal-
anced data using Matthews Correlation Coefficient metric. PLoS ONE.
2017;12(6):e0177678.

	54.	 Google XLA-team: XLA - TensorFlow, compiled;2017. https://​devel​opers.​
googl​eblog.​com/​2017/​03/​xla-​tenso​rflow-​compi​led.​html.

	55.	 UCSC Genome Browser Development Team: Lift Genome Annota-
tions;2021. https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.phrap.org/phredphrapconsed.html#block_phrap
http://www.phrap.org/phredphrapconsed.html#block_phrap
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://genome.ucsc.edu/cgi-bin/hgLiftOver

	DeepGRP: engineering a software tool for predicting genomic repetitive elements using Recurrent Neural Networks with attention
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Repeat annotation
	Maximum scoring segments algorithm
	Contribution

	Methods and data sets
	Network architecture
	From probabilities to segments
	Implementation
	Data sets
	Training details

	Results and discussion
	Conclusion
	Acknowledgements
	References

