
Schaller et al.
Algorithms for Molecular Biology (2021) 16:23
https://doi.org/10.1186/s13015-021-00202-8

RESEARCH

A simpler linear‑time algorithm
for the common refinement of rooted
phylogenetic trees on a common leaf set
David Schaller1  , Marc Hellmuth2  and Peter F. Stadler1,3,4,5,6,7*   

Abstract 

Background:  The supertree problem, i.e., the task of finding a common refinement of a set of rooted trees is an
important topic in mathematical phylogenetics. The special case of a common leaf set L is known to be solvable in lin-
ear time. Existing approaches refine one input tree using information of the others and then test whether the results
are isomorphic.

Results:  An O(k|L|) algorithm, LinCR, for constructing the common refinement T of k input trees with a common
leaf set L is proposed that explicitly computes the parent function of T in a bottom-up approach.

Conclusion:  LinCR is simpler to implement than other asymptotically optimal algorithms for the problem and
outperforms the alternatives in empirical comparisons.

Availability:  An implementation of LinCR in Python is freely available at https://​github.​com/​david-​schal​ler/​tralda.

Keywords:  Mathematical phylogenetics, Rooted trees, Compatibility of rooted trees

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Given a collection of rooted phylogenetic trees T1 , T2 , ...Tk ,
the supertree problem in phylogenetics consists in deter-
mining whether there is a common tree T that “displays” all
input trees Ti , 1 ≤ i ≤ k , and if so, a supertree T is to be con-
structed [1, 2]. In its most general form, the leaf sets L(Ti) ,
representing the taxonomic units (taxa), may differ, and the
supertree T has the leaf set L(T) =

⋃k
i=1 L(Ti) . Writing

n:=|L(T)| , N :=
∑k

i=1 |L(Ti)| , and R:=
∑k

i=1 |L(Ti)|2 , this
problem is solved by the algorithm of Aho et al. [3], which
is commonly called BUILD in the the phylogenetic litera-
ture [4], in O(Nn) time for binary trees and O(Rn) time in
general.

An O(N 2) algorithm to compute all binary trees
compatible with the input is described in [5].
Using sophisticated data structures, the effort
for computing a single supertree was reduced to
O(min(N

√
n,N + n2 log n)) for binary trees and

(R log2 R) for arbitrary input trees [6]. Recently, an
O(N log2N) algorithm has become available for the
compatibility problem for general trees [7]. The com-
patibility problem for nested taxa in addition assigns
labels to inner vertices and can also be solved in
O(N log2N) [8].

Here we consider the special case that
the input trees share the same leaf set
L(T1) = L(T2) = · · · = L(Tk) = L(T) = L , and thus
N = kn and R = kn2 . While the general supertree
problem arises naturally when attempting to rec-
oncile phylogenetic trees produced in independent
studies, the special case appears in particular when
incompletely resolved trees are produced with differ-
ent methods. In a recent work, we have shown that

Open Access

Algorithms for
Molecular Biology

*Correspondence: studla@bioinf.uni-leipzig.de
1 Bioinformatics Group, Department of Computer Science,
and Interdisciplinary Center for Bioinformatics, Universität Leipzig,
Härtelstraße 16–18, 04107 Leipzig, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0025-3097
http://orcid.org/0000-0002-1620-5508
http://orcid.org/0000-0002-5016-5191
https://github.com/david-schaller/tralda
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00202-8&domain=pdf

Page 2 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23

such trees can be inferred e.g. as the least resolved
trees from best match data [9, 10] and from infor-
mation of horizontal gene transfer [11, 12]. Denot-
ing with H(T) the set of “clusters” in T, we recently
showed that the latter type of data can be explained
by a common evolutionary scenario if and only if (1)
both the best match and the horizontal transfer data
can be explained by least resolved trees T1 and T2 ,
respectively, and (2) the union H(T1) ∪H(T2) is again
a hierarchy. In this context it is of practical interest
whether the latter property can be tested efficiently,
and whether the common refinement T satisfying
H(T) = H(T1) ∪H(T2) [13] can be constructed effi-
ciently in the positive case.

Several linear time, i.e., O(|L|) time, algorithms for
the common refinement of two input trees T1 and T2
with a common leaf set have become available. The
INSERT algorithm [14], which makes use of ideas
from [15], inserts the clusters of T2 into T1 and vice
versa and then uses a linear-time algorithm to check
whether the two edited trees are isomorphic [16].
Assuming that the input trees are already known
to be compatible, Merge_Trees [17, 18] can also
be applied to insert the clusters of one tree into the
other. For both of these methods, an overall linear-
time algorithm for the common refinement of k input
trees is then obtained by iteratively computing the
common refinement of the input tree Tj and the com-
mon refinement of first j − 1 trees, resulting in a total
effort of O(k|L|).

Here we describe an alternative algorithm that con-
structs in a single step a candidate refinement T of
all k input trees. This is achieved by computing the
parent-function of the potential refinement T in a
bottom-up fashion. As we shall see, the algorithm is
easy to implement and does not require elaborate data
structures. The existence of a common refinement
is then verified by checking that the parent function
defines a tree T and, if so, that T displays each of the
input trees Tj . This test is also much simpler to imple-
ment than the isomorphism test for rooted trees [16].

Theory
Notation and preliminaries
Let T be a rooted tree. We write V(T) for its vertex
set, E(T) for is edge set, L(T) ⊆ V (T) for its leaf set,
V 0(T):=V (T) \ L(T) for the set of inner vertices and
ρ ∈ V 0(T) for its root. An edge e = {u, v} ∈ E(T) is an
inner edge if u, v ∈ V 0(T) . The ancestor partial order
�T on V(T) is defined by x �T y whenever y lies along
the unique path connecting x and the root ρ . If x �T y
and x = y , we write x ≺T y . For v ∈ V (T) , we set

childT (v):={u | {v,u} ∈ E(T), u ≺T v} . If u ∈ childT (v) ,
then v is the unique parent of u. In this case, we write
v = parentT (u) . All trees T considered in this contri-
bution are phylogenetic, i.e., they satisfy |childT (v)| ≥ 2
for all v ∈ V 0(T).

We denote by T(u) the subtree of T rooted in u and
write L(T(u)) for its leaf set. The last common ances-
tor of a vertex set W ⊆ V (T) is the unique �T-minimal
vertex lcaT (W) ∈ V (T) satisfying w �T lcaT (W) for all
w ∈ W  . For brevity, we write lcaT (x, y):=lcaT ({x, y}) .
Furthermore, we will sometimes write vu ∈ E(T) as a
shorthand for “ {u, v} ∈ E(T) with u ≺T v.”

A hierarchy on L is set system H ⊆ 2L such that (i)
L ∈ H , (ii) A ∩ B ∈ {A,B, ∅} for all A,B ∈ H , and (iii)
{x} ∈ H for all x ∈ L . There is a well-known bijection
between rooted phylogenetic trees T with leaf set
L and hierarchies on L, see e.g. [4, Thm. 3.5.2]. It is
given by H(T):={L(T (u)) | u ∈ V (T)} ; conversely, the
tree TH corresponding to a hierarchy H is the Hasse
diagram w.r.t. set inclusion. Thus, if v = lcaT (A) for
some A ⊆ L(T) , then L(T(v)) is the inclusion-minimal
cluster in H(T) that contains A, see e.g. [19]. We call
the elements of H(T) clusters and say that two clusters
C and C ′ are compatible if C ∩ C ′ ∈ {C ,C ′, ∅} . Note
that, by (i), the clusters of the same tree are all pair-
wise compatible.

A (rooted) triple is a binary tree on three
leaves. We say that a tree T displays a triple xy|z if
lcaT (x, y) ≺T lcaT (x, z) = lcaT (y, z) , or equivalently,
if there is a cluster C ∈ H(T) such that x, y ∈ C and
z /∈ C  . The set of all triples that are displayed by T is
denoted by r(T). A set R of triples is consistent if there
is a tree that displays all triples in R.

Let T and T ∗ be phylogenetic trees with
L(T) = L(T ∗) . We say that T ∗ is a refinement
of T if T can be obtained from T ∗ by contract-
ing a subset of inner edges. Equivalently, T ∗ is
a refinement of T if and only if H(T) ⊆ H(T ∗) .
A tree T displays a tree T ′ if L(T ′) ⊆ L(T) and
H(T ′) ⊆ {C ∩ L(T ′) | C ∈ H(T) and C ∩ L(T ′) �= ∅}   .
In particular, therefore, T displays a tree T ′ with
L(T ′) = L(T) if and only if H(T ′) ⊆ H(T) , i.e., if and
only if T is a refinement of T ′ . The minimal common
refinement of the trees Ti , 1 ≤ i ≤ k is the tree T such
that H(T) =

⋃k
i=1H(Ti) , provided it exists.

Thm. 3.5.2 of [4] can be rephrased in the following
form:

Lemma 1  Let T1 , T2 , ..., Tk be trees with common leaf
set L(Ti) = L such that H:=

⋃k
i=1H(Ti) is a hierarchy.

Then there is a unique tree T such that H(T) = H .
Furthermore, T is the unique “least resolved” tree in

Page 3 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23 	

the sense that contraction of any edge in T yields a tree
Te with H(Te) � H(T).

Proof  By definition of H and the bijection between
phylogenetic trees and hierarchies, there is a unique
tree T such that H = H(T) . Consider an inner
edge e = uv . By construction, there is at least one
tree Tv such that C:=L(T (v)) ∈ H(Tv) . However,
H(Te) = H(T) \ {Cv} and thus Te does not display Tv .
� �

By Thm. 1 in [20], a tree T ′ is displayed by a tree T
with L(T ′) ⊆ L(T) if and only if r(T ′) ⊆ r(T) . As an
immediate consequence, a common refinement of
trees with a common leaf set L exists if and only if the
union L of their triple sets is consistent. The latter
condition can be checked using the BUILD algorithm
which, in the positive case, returns a tree BUILD(R, L)
that displays all triples in R.

Lemma 2  Suppose that T is the unique least
resolved common refinement of the trees T1 , T2 , ...,
Tk with common leaf set L(Ti) = L , 1 ≤ i ≤ k and let
R:=r(Ti) ∪ r(T2) ∪ · · · ∪ r(Tk) . Then T = BUILD(R, L).

Proof  The tree T̂ :=BUILD(R, L) is a common refine-
ment since, by the arguments above, it displays T1 , T2 ,
..., Tk . By Lemma 1, we therefore have H(T) ⊆ H(T̂) .
Prop. 4.1 in [21] implies that T̂ is least resolved w.r.t.
R , i.e., every tree T̂ ′ obtained from T̂ by contraction
of an edge no longer displays all input triples in R . By
Thm. 6.4.1 in [4], Ti is displayed by T̂ ′ if and only if
T̂ ′ displays all triples of Ti . Since this is not true for
all input trees Ti , T̂ ′ does not display all input trees Ti ,
1 ≤ i ≤ k . Together with H(T) ⊆ H((T̂)) , this implies
that T = T̂  . � �

We note that, given a set of triples R, “T is a least
resolved displaying R” does not imply that vertex set
V(T) is minimal among all such trees. It is possible in
general that there is a tree T ′ displaying a given tri-
ple set R with |V (T ′)| < |V (BUILD(R, L))| . In this case,
BUILD(R, L) does not display T ′ , see [22] for details.
However, uniqueness of the least resolved tree,
Lemma 1, rules out this scenario in our setting.

The algorithm BuildST [7] computes the super-
tree of a set T :={Ti | 1 ≤ i ≤ k} of rooted trees with-
out first breaking down each tree to its triple set
r(Ti) . Lemma 5 in [7] establishes that BuildST
applied to a set of trees and BUILD applied to the tri-
ple set R:=

⋃k
i=1 r(Ti) produce the same output for

all instances. If R is consistent, BuildST computes
the tree BUILD(R, L) . If all input trees have the same
same leaf set L BuildST in particular computes their
common refinement. The performance analysis in [7]
shows that BuildST runs in O(k|L| log2(k|L|)) time
for this special case. Linear-time algorithms for the
special case of a common leaf set therefore offer a fur-
ther improvement over the best known general pur-
pose supertree algorithms.

A bottom‑up linear time algorithm
The basic idea of our approach is to construct T by
means of a simple bottom-up approach that computes
the parent function parentT : V (T) \ {ρT } → V (T) \ L
of a candidate tree T in a stepwise manner. This algo-
rithm is based on three simple observations:

	(i)	 If it exists, the common refinement T of T1 ,
T2 , ..., Tk is uniquely defined by virtue of
H(T) =

⋃k
i=1H(Ti) (cf. Lemma 1). We will

therefore identify all vertices vi ∈ V (Ti) with
a vertex v in the prospective tree T whenever
their clusters – i.e., the sets L(Ti(vi)) – are the
same. In this case, we have L(T (v)):=L(Ti(vi)) .
From here on, we simply say, by a slight abuse
of notation, that v is also a vertex of Ti and write
v ∈ V (Ti).

	(ii)	 Since H(T) =
⋃k

i=1H(Ti) , each vertex
v ∈ V (T) is also a vertex in at least one input
tree Ti . Conversely, every vertex v ∈ V (Ti) ,
i ∈ {1, . . . , k} , is a vertex in T. Therefore, we have
V (T) =

⋃k
i=1 V (Ti).

	(iii)	T exists if and only if the sets L(T(x)) and
L(T(y)) for all x, y ∈

⋃k
i=1 V (Tk) are either

comparable by set inclusion or disjoint, i.e.,
L(T (x)) ∩ L(T (y)) ∈ {L(T (x)), L(T (y)),∅}   .
Thus, x ≺T y if and only if
L(Ti(x)) = L(T (x)) � L(Tj(y)) = L(T (y)) for the
appropriate choices of i, j ∈ {1, . . . , k}.

Observation (iii) makes it possible to access the ances-
tor order ≺T on V(T) without knowing the common
refinement T explicitly. Many of the upcoming defini-
tions are illustrated in Fig. 1.

We introduce, for each v ∈ V (T) , the index set
J (v) = {i | L(Ti(v)) = L(T (v))} of the trees that con-
tain vertex v. We have J (v) = ∅ for all v ∈ V (T) . For
simplicity, we write J̄(v):={1, . . . , k} \ J (v) for the
indices of all other trees. Hence, J̄(v) = ∅ if and only
if L(T (v)) ∈ H(Ti) for all i ∈ {1, . . . , k} . In particular,
therefore, J̄(v) = ∅ whenever v ∈ L or v = ρ.

Page 4 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23

Let us assume until further notice that a common
refinement exists and let T = (V ,E) be the unique
least resolved common refinement of T1 , T2 , ..., Tk on
a common leaf set. Due to Lemma 1, T is uniquely
determined by the parent function parentT  . The key
ingredient in our construction are the following ver-
tices in Ti:

By assumption, we have L(T (v)) ⊆ L(Ti) and thus pi(v)
is well-defined. As immediate consequence of the defini-
tion in Eq. (1), we have

Observation 3  For all v ∈ V (T) and all i ∈ {1, . . . , k} it
holds that pi(v) = v iff v ∈ V (Ti) iff i ∈ J (v) . If i /∈ J (v) ,
then v ≺T pi(v) and therefore parentT (v) �T pi(v).

Now assume that parentT (v) exists in T, i.e., v = ρ .
By Observation (ii), v ∈ V (T) implies v ∈ V (Ti) for
some i ∈ {1, . . . , k} . In this case, parentT (v) must be
the unique �Ti-minimal vertex ui ∈ V (Ti) that satisfies
L(T (v)) � L(Ti(ui)) because H(Ti) ⊆ H(T) . In other
words, pi(parentT (v)) = ui = parentTi

(v) . Hence, we
have

Observation 4  For all v ∈ V \ {ρ} it holds that
parentT (v) = parentTi

(v) for some i ∈ J (v) or
parentT (v) = pj(v) for some j ∈ J̄ (v).

Note that in general also both cases in Obs. 4
are possible. Consider the set of vertices
A(v):={v} ∪ {parentTi

(v) | i ∈ J (v)} ∪ {pi(v) | i ∈ J̄ (v)}   .
By construction and Obs. 4, we have v �T x for all
x ∈ A(v) . Since all ancestors of a vertex in a tree are
mutually comparable w.r.t. the ancestor order, we have

(1)
pi(v):=lcaTi(L(T (v)), i ∈ {1, . . . , k}, v ∈ V (T)

Observation 5  All x, y ∈ A(v) are pairwise compara-
ble w.r.t. �T .

Taken together, Observations 3-5 imply that the par-
ent map of T can be expressed in the following form:

where the minimum is taken w.r.t. the ancestor order �T
on T. Since the root ρi of each Ti coincides with the root ρ
of T, v is the root of T iff parentTi

(v) = ∅ is undefined for
one and thus for all i. In this case, we set parentT (v) = ∅.

With this in hand, we show how to compute the
maps pi for u:=parentT (v) for all i ∈ {1, . . . , k} . To this
end, we distinguish three cases. (1) If u ∈ V (Ti) , we
have pi(u) = u by definition. (2) If u /∈ V (Ti) , then we
have to identify the �T-minimal vertex w ∈ V (Ti) with
u ≺T w . If v ∈ V (Ti) , then pi(u) = w = parentTi

(v) .
In the remaining case, i ∈ J̄ (v) , we already know that
pi(v) is the �Ti-minimal ancestor of v. Thus, we have
either pi(v) = u = parentT (v) , i.e., a sub-case of (1),
or (3) u �T pi(v) whenever v /∈ V (Ti) and u /∈ V (Ti) .
In this case, the definition of pi implies pi(u) = pi(v) .
Summarizing the three cases yields the following
recursion:

Note, although the cases in Eq. (3) are not exclusive
(since J (v) ∩ J (u) �= ∅ is possible), they are not in con-
flict. To see this, observe that if i ∈ J (u) and i ∈ J (v) , then
u = parentTi

(v) as a consequence of the definition of u.

(2)

parentT (v) = min

(
min
i∈J (v)

parentTi
(v), min

i∈J̄ (v)
pi(v)

)

(3)pi(u) =






u if i ∈ J (u)
parentTi

(v) if i ∈ J (v)

pi(v) if i ∈ J̄ (u) and i ∈ J̄ (v)

Fig. 1  The three trees T1 , T2 , and T3 with common leaf set L = {a, b, c, d, e} have the (unique) common refinement T. Here, J(ρ) = {1, 2, 3} and
thus, J̄(ρ) = ∅ . The different symbols for vertices indicate which vertex u in the Ti s corresponds to which vertex u in T. Consider the vertex v
highlighted as � . The corresponding vertices pi(v) are shown in the respective trees Ti . Here, p2(v) = v while the vertices p1(v) and p3(v) in T1 and
T3 correspond to parentT (v) and ρ , respectively. Consequently, J(v) = {2} and J̄(v) = {1, 3} . We have p2(v) = v ≺T parentT (v) = p1(v) ≺T p3(b) ,
according to Obs. 3. In this example, only the last case in Obs. 4 for v is satisfied, namely parentT (v) = p1(v) . Moreover,
A(v) = {v} ∪ {parentT2 (v) = ρ} ∪ {p1(v), p3(v)} = {v , ρ , parentT (v)}

Page 5 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23 	

Initializing i ∈ J (v) for all i and all leaves v, we can
compute J(u) for u = parentT (v) as a by-product by
the minimum computation in Eq. (2) by simply keep-
ing track of the equalities encountered since both
parentTi

(v) and pi(v) are vertices in Ti . More precisely,
each time a strictly �T-smaller vertex u′ , i.e., a proper
set inclusion, is encountered in Eq. (2), the current
list of equalities is discarded and re-initialized as {i} ,
where i is the index of the tree Ti in which the new
minimum u′ was found. The indices of the trees Tj
with u′ ∈ V (Tj) are then appended.

It remains to ensure that the vertices are pro-
cessed in the correct order. To this end, we use a
queue Q , which is initialized by enqueueing the leaf
set. Upon dequeueing v, its parent u and the values
pi(u) are computed. Except for the leaves, every ver-
tex u ∈ V (T) appears as parent of some v ∈ V (T) . On
the other hand, u may appear multiple times as par-
ent. Thus we enqueue u in Q only if the same vertex
has not been enqueued already in a previous step. We
emphasize that it is not sufficient to check whether
u ∈ Q since u may have already been dequeued from
Q before re-appearance as a parent. We therefore keep
track of all vertices that have ever been enqueued
in a set V. To see that this is indeed necessary, con-
sider a tree Ti = (a, (b, c)v1)v2 and an initial queue
Q = (a, b, c) . Without the auxiliary set V, we obtain
Q = (b, c, v2) , Q = (c, v2, v1) , Q = (v2, v1) , Q = (v1) ,
Q = (v2) , etc., and thus v2 is enqueued twice.

An implementation of this procedure also needs
to keep track of the correspondence between verti-
ces in V(T) and the vertices of V (Ti) . To this end, we
can associate with each v ∈ V (T) a list of pointers
to v ∈ V (Ti) for i ∈ J (v) , and pointer from v ∈ V (Ti)
back to v ∈ V (T) . For the leaves, these are assigned
upon initialization. Afterwards, they are obtained
for u = parentT (v) as a by-product of computing
J(u), since the pointers have to be set exactly for the
i ∈ J (u) . In particular, whenever the pointer for u
found Ti has already been set, we know that u ∈ V .

Summarizing the discussion so far, we have shown:

Proposition 6  Suppose the trees T1 , T2 , ..., Tk have
a common refinement T. Then parentT (v) is correctly
computed by the recursions Eq. (2) and Eq. (3).

Next we observe that it is not necessary to explic-
itly compute set inclusions. As an immediate con-
sequence of Obs. 5 and the fact that x = y implies
L(T (x)) = L(T (y)) because all trees are phylogenetic
by assumption, we obtain

Observation 7  For any two x, y ∈ A(v) , we have
x ≺T y if and only if |L(T (x))| < |L(T (y))|.

Thus it suffices to evaluate the minimum in
Eq. (2) w.r.t. to the cardinalities |L(T(v))|. This
can be achieved in O(k) time provided the values
ℓi(v):=|L(Ti(v))| are known for the input trees. Since
the parent-function parentT unambiguously defines a
tree T, we have

Corollary 8  Suppose the trees T1 , T2 , ..., Tk have a
common refinement T. Then T can be computed in
O(k|L|) time.

Proof  For each input tree Ti , ℓi(v) can be computed
as

Since the total number of terms appearing for the inner
vertices of T equals the number of edges of Ti , the total
effort for Ti is bounded by O(|L|). The total number of
vertices u computed as parentT (v) equals the number of
edges of T, and thus is also bounded by O(L). Since the
tree T, as well as the k trees Ti , have O(|L|) vertices, we
require O(k|L|) pointers from the vertices in T to their
corresponding vertices in the Ti and vice versa. By initial-
izing the pointers for all v ∈ V (Ti) as “not set”, it can be
checked in constant time whether u that was found in Ti
is already contained in the set V, since this is the case if
and only if its pointer has already been set. Evaluation of
Eq. (2) requires O(k) comparisons, each of which can be
performed in constant time by virtue of Obs. 7. The com-
putation of pi(u) and J(u) as well as the update of the cor-
respondence table between vertices in T and Ti , 1 ≤ i ≤ k
requires O(k) operations for each v ∈ V (T) . Thus T can
be computed in O(k|L|) time. �

(4)ℓi(v) =






1 if v ∈ L, and

ℓi(v) =
�

u∈childTi (v)
ℓi(u) otherwise.

Page 6 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23

..., Tk on the same leaf set L exists and, in the affirm-
ative case, returns the tree T corresponding to
H(T) = H(T1) ∪H(T2) ∪ · · · ∪H(Tk).

Proof  We construct parentT in Lines 1–24 as described
in the proof of Cor. 8. In particular, we determine
u:=parentT (v) by virtue of the smallest ℓi(u) . Hence, we
can process each enqueued vertex v in O(k). Moreover,
if a common refinement T exists, then Cor. 8 guarantees
that we obtain this tree in Line 25.

A tree on |L| leaves has at most |L| − 1 inner vertices
with equality holding for binary trees. Therefore, the set
V of distinct vertices encountered in Alg. 1, can contain
at most 2|L| − 2 vertices (note that by construction the

So far, we have assumed that a common refinement
exists. By a slight abuse of notation, we also use the func-
tion parentT if the refinement T does not exist. In this
case, we define parentT on the union of the V (Ti) recur-
sively by Eqs. (2) and (3). Alg. 1 summarizes the proce-
dure based on the leaf set cardinalities for the general
case. If no common refinement T exists, then either
parentT does not specify a tree, or the tree T defined by
parentT is not a common refinement of T1 , T2 , ..., Tk . The
following result shows that we can always efficiently com-
pute parentT and check whether it specifies a common
refinement of the input trees.

Theorem 9  LinCR (Alg. 1) decides in O(k|L|)
time whether a common refinement of trees T1 , T2 ,

Page 7 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23 	

root does not enter V). If this condition is violated, no
common refinement exists and we can terminate with a
negative answer (cf. Line 19). This ensures that parentT
is constructed in O(k|L|) time. We continue by showing
that, unless the algorithm exits in Line 16 or 19, parentT
in Line 25 always defines a tree T. To see this, consider
the graph G with vertex set V ∪ {ρ} where ρ is the root
vertex which is contained in each Ti and an edge {u, v}
if and only if parentT (v) = u or parentT (u) = v . Check-
ing whether ℓ(v) < ℓmin(= ℓ(u)) in Line 15 ensures that
G does not contain cycles and that parentT (v) = u and
parentT (u) = v is not possible. Moreover, every vertex
v ∈ V is enqueued to Q and receives a parent u such that
ℓ(v) < ℓ(u) . Unless u = ρ , u in turn receives a parent u′
with ℓ(u) < ℓ(u′) . Since V is finite v,u,u′, ... are pairwise
distinct as a consequence of the cardinality condition,
and we conclude that eventually ρ is reached, i.e., a path
to ρ exists for all v ∈ V  . It follows that G is connected,
acyclic, and simple, and thus a tree (with root ρ).

It remains to check whether T is phylogenetic and dis-
plays Ti for all i ∈ {1, . . . , k} . Checking whether T is phy-
logenetic in Line 26 can be done in O(|L|) in a top-down
traversal that exits as soon as it encounters a vertex with
a single child. To check whether T displays a tree Ti ,
we contract (in a copy of T) in a top-down traversal all
edges uv with v ∈ childT (u) for which u /∈ V (Ti) , i.e., for
which i /∈ J (v) . Since the root of T and leaves of T are in
Ti , this results in a rooted tree T ′

i with V (Ti) = V (T ′
i) if T

is indeed the common refinement of all trees. The con-
traction of an edge uv can be performed in O(childT (v)|) ,
hence in total time O(|E(Ti)|) = O(|L|) . Finally, we can
check in O(|L|) time whether the known correspond-
ence between the vertices of Ti and T ′

i is an isomorphism.
To this end, it suffices to traverse Ti and to check that
childTi(v) = childT ′

i
(v) for all v ∈ V (Ti) (cf. Lines 31–32)

using the pointers of v and all elements in childTi(v) to
the corresponding vertices in T. Note that, in general, the
pointer from a vertex v in Ti to a vertex in T ′

i may not be
set, in which case v /∈ V (T ′

i) and thus, we can terminate
with a negative answer. The total effort thus is bounded
by O(k|L|).

If T on L is a phylogenetic tree displaying all trees
T1 , T2 , ..., Tk , then it is a common refinement of
these trees. Since every vertex v ∈ V (T) is also

contained in some Ti , i.e., L(T (v)) = L(Ti(v)) , we have
H(T) = H(T1) ∪H(T2) ∪ · · · ∪H(Tk) . �

Computational results
We compare the running times for (a) BUILD [3],
(b) BuildST [7], (c) Merge_Trees [18], (c’)
Loose_Cons_Tree [18], and (d) LinCR (Alg. 1). To this
end, we implemented all of these algorithms in Python as
part of the tralda library. We note that BUILD operates
on a set of triples extracted from the input trees rather
than the trees themselves. We use the union of the mini-
mum cardinality sets of representative triples of every
Ti appearing in the proof of Thm. 2.8 in [23]. Therefore,
we have R ∈ O(k|L|2) [24, Thm. 6.4] and BUILD runs in
O(k|L|3) time. In the case of Merge_Trees , we imple-
mented a variant that starts with T = T1 and then itera-
tively merges the clusters of the tress Ti , 2 ≤ i ≤ k , into T.
Merge_Trees assumes that the input trees are compat-
ible, which is guaranteed in our benchmarking data set.
In practice, however, this condition may be violated, in
which case the behavior of Merge_Trees is undefined.
We therefore also implemented an O(k|L|) algorithm for
constructing the loose consensus tree for a set of trees T1 ,
T2 , ..., Tk on the same leaf set, Loose_Cons_Tree , fol-
lowing [18]. The loose consensus comprises all clusters
that occur in at least one tree Ti , 1 ≤ i ≤ k and that are
compatible with all other clusters of the input trees (see
[25–27] and the references therein). The loose consensus
tree by definition coincides with the common refinement
whenever the latter exists. Loose_Cons_Tree uses
Merge_Trees as a subroutine but ensures compatibil-
ity in each step by first deleting incompatible clusters in
one of the trees. This is implemented as the deletion of
the corresponding inner vertex v followed by reconnect-
ing the children of v to the parent of v. The input trees
are compatible if and only if no deletion is necessary.
The existence of a common refinement can therefore by
checked by keeping track of the number of deletions.
However, the subroutine that processes trees to remove
incompatible clusters significantly adds to the running
time of the Loose_Cons_Tree algorithm. The linear-
time algorithms require O(k|L|) space.

We simulate test instances as follows: First, a ran-
dom tree T ∗ is generated recursively by starting from a
single vertex (which becomes the root) and stepwise

(See figure on next page.)
Fig. 2  Running time comparison of the algorithms for the construction of a common refinement of k input trees on leaf set L. The subplots of each
row show boxplots for the running time for different numbers of leaves |L| (indicated on the x-axis) and different values of k ∈ {2, 8, 32} (indicated
in the leftmost column of each subplot). In each row, a different probability p ∈ {0.1, 0.5, 0.9} for edge contraction was used to produce the k input
trees. Per combination of the parameters |L|, k, and p, 100 instances were simulated to which all four algorithm were applied

Page 8 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23

Fig. 2  (See legend on previous page.)

Page 9 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23 	

attaching new leaves to a randomly chosen vertex v until
the desired number of leaves |L| is reached. In each
step, we add two children to v if v is currently a leaf, and
only a single new leaf otherwise. This way, the num-
ber of leaves increases by exactly one in each step and
the resulting tree T ∗ is phylogenetic (but in general not
binary). From T ∗ , we obtain k ∈ {2, 8, 32} trees T1 , T2,...,
Tk by random contraction of inner edges in (a copy of)
T ∗ . Each edge is considered for contraction indepen-
dently with a probability p ∈ {0.1, 0.5, 0.9} . Therefore,
T ∗ is a refinement of Ti for all 1 ≤ i ≤ k , i.e., a common
refinement exists by construction. However, in general
we have H(T ∗) �=

⋃k
i=1H(Ti) , i.e., T ∗ is not necessarily

the minimal common refinement of the Ti . The trees T1 ,
T2 , ..., Tk constructed in this manner serve as input for all
algorithms.

The running time comparisons were performed using
tralda on an off-the-shelf laptop (Intel® CoreTM
i7-4702MQ processor, 16 GB RAM, Ubuntu 20.04,
Python 3.7). The time required to compute a least
resolved common refinement of the input trees is
included in the respective total running time shown in
Figs. 2 and 3 . The empirical performance data are con-
sistent with the theoretical result that LinCR scales line-
arly in k|L|. In particular, the median running times scale

Fig. 3  Running time comparison of the algorithms for the construction of a common refinement of k input trees on leaf set L. Per combination of
the parameters |L| (indicated on the horizontal axis), k (columns), and p (rows), 100 instances were simulated and median values are shown for all
algorithms. In each row, a different probability p ∈ {0.1, 0.5, 0.9} for edge contraction was used to produce the k input trees

Page 10 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23

linearly with |L|, as shown by the slopes of ≈ 1 in the log/
log plot for the running times of LinCR in Fig. 3.

In accordance with the theoretical complexity of
O(k|L| log2(k|L|)) for the common refinement problem,
the performance curve of BuildST is almost parallel to
that of LinCR; however, its computation cost is higher
by almost two orders of magnitude. Our implementation
of BuildST uses an algorithm for dynamic graph con-
nectivity often referred to as HDT data structure [28]
as originally described in [7]. While we do not expect
BuildST to become competitive with the other algo-
rithms, we note that a recent experimental study showed
that a simplified version of the HDT data structure (with
a slightly worse asymptotic bound) outperforms the full
version in practice [29]. For both LinCR and BuildST,
the contraction probability p appears to have little effect
on the running time. In both cases, a larger value of p
(i.e., a lower average resolution of the input trees) leads to
a moderate decrease of the running time.

In contrast, the resolution of the input trees has a large
impact on the efficiency of BUILD. It also scales nearly lin-
early when the resolution of the individual input trees Ti is
comparably high (and even terminates faster than LinCR
up until a few hundred leaves, cf. top-right panel), whereas
its performance drops drastically with increasing p, i.e.,
for poorly resolved input trees. The reason for this is most
likely the cardinality of a minimal triple set that repre-
sents the set of input trees. For binary trees, the cardinal-
ity of the triple set of Ti equals the number of inner edges
[23], i.e., there are O(|L|) triples. For very poorly resolved
trees, on the other hand, O(|L|2) triples are required [24],
matching the differences of the slopes with p observed for
BUILD in Fig. 3.

As expected, the curves of the two O(k|L|) algorithms
Merge_Trees and Loose_Cons_Tree are also almost
parallel to that of LinCR in Fig. 3. For k = 2 , we can even
observe that Merge_Trees is slightly faster than LinCR.
However, the smaller number of necessary tree travers-
als in LinCR apparently becomes a noticeable advantage
with an increasing number k of input trees. The additional
tree processing steps in the more practically relevant
Loose_Cons_Tree algorithm, furthermore, result in a
longer running time compared to our new approach.

Concluding remarks
We developed a linear-time algorithm to compute the
common refinement of trees on the same leaf set. In con-
trast to the “classical” supertree algorithms BUILD and
BuildST, LinCR uses a bottom-up instead of a top-down
strategy. This is similar to Loose_Cons_Tree and its
subroutine Merge_Trees [18], which can also be used to
obtain the common refinement of trees on the same leaf
set in linear time. LinCR, however, requires fewer tree

traversals and is, in our opinion, simpler to implement.
In contrast to Merge_Trees , LinCR in particular does
not rely on a data structure that enables linear-time tree
preprocessing and constant-time last common ancestor
queries for the nodes in the tree [30]. All algorithms were
implemented in Python and are freely available for down-
load from https://​github.​com/​david-​schal​ler/​tralda as part
of the tralda library. Empirical comparisons of running
times show that LinCR consistently outperforms the lin-
ear-time alternatives. Only BUILD is faster for very small
instances and moderate-size trees that are nearly binary.

Although it may be possible to improve Alg. 1 by a con-
stant factor, it is asymptotically optimal, since the input
size is O(k|L|) for k trees with |L| leaves. Furthermore,
trivial solutions can be obtained in some limiting cases.
For instance, if |V (Ti)| = 2|L| − 1 , then Ti is binary, i.e.,
no further refinement is possible. In this case, we can
immediately use T = Ti as the only viable candidate and
only check that Tj displays all other Tj . However, we can-
not entirely omit Lines 1–24 in this case since we require
the sets J(v) as well as the correspondence between the
vertices in order to check whether T displays every Ti.

It is worth noting that the idea behind LinCR does
not generalize to more general supertree problems.
The main reason is that the set inclusions employed to
determine ≺T do not carry over to the more general case
because the inclusion order of C1,C2 ∈ H(T) cannot be
determined from C1 ∩ L(Ti) and C2 ∩ L(Tj) for two trees
with L(Ti), L(Tj) � L(T).

Depending on the application, a negative answer to the
existence of a common refinement may not be sufficient.
One possibility is to resort to the loose consensus tree or
possibly other notions of consensus trees, see e.g. [25, 31].
A natural alternative approach is to extract a maximum
subset of consistent triples from

⋃k
i=1 r(Ti) . This problem,

however, is known to be NP-hard for arbitrary triple sets,
see e.g. [32] and the references therein.

Authors’ contributions
All authors contributed to deriving the mathematical results, the interpretation
of results and the writing of the manuscript. DS implemented and bench-
marked the algorithms. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work
was supported in part by the German Research Foundation (DFG), proj. no.
STA850/49-1.

Availability of data and materials
Implementations of the algorithms used in this contribution are available at
https://​github.​com/​david-​schal​ler/​tralda as part of the tralda library.

Declarations

Ethics approval and consent to participate
Not applicable.

https://github.com/david-schaller/tralda
https://github.com/david-schaller/tralda

Page 11 of 11Schaller et al. Algorithms for Molecular Biology (2021) 16:23 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Bioinformatics Group, Department of Computer Science, and Interdisci-
plinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18,
04107 Leipzig, Germany. 2 Department of Mathematics, Faculty of Science,
Stockholm University, SE‑10691 Stockholm, Sweden. 3 Competence Center
for Scalable Data Services and Solutions Dresden/Leipzig, Interdisciplinary
Center for Bioinformatics, German Centre for Integrative Biodiversity Research
(iDiv), and Leipzig Research Center for Civilization Diseases, Universität Leipzig,
Augustusplatz 12, 04107 Leipzig, Germany. 4 Max Planck Institute for Math-
ematics in the Sciences, Inselstraße 22, 04109 Leipzig, Germany. 5 Depart-
ment of Theoretical Chemistry, University of Vienna, Währinger Straße 17,
1090 Vienna, Austria. 6 Facultad de Ciencias, Universidad National de Colombia,
Sede Bogotá, Ciudad Universitaria, Bogotá 111321, D.C, Colombia. 7 Santa Fe
Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA.

Received: 5 October 2021 Accepted: 27 November 2021

References
	1.	 Sanderson MJ, Purvis A, Henze C. Phylogenetic supertrees: assembling the

trees of life. Trends Ecol Evol. 1998;13:105–9. https://​doi.​org/​10.​1016/​S0169-​
5347(97)​01242-1.

	2.	 Semple C, Steel M. A supertree method for rooted trees. Discr Appl Math.
2000;105:147–58. https://​doi.​org/​10.​1016/​S0166-​218X(00)​00202-X

	3.	 Aho AV, Sagiv Y, Szymanski TG, Ullman JD. Inferring a tree from lowest com-
mon ancestors with an application to the optimization of relational expres-
sions. SIAM J Comput. 1981;10:405–21. https://​doi.​org/​10.​1137/​02100​30.

	4.	 Semple C, Steel M. Phylogenetics. Oxford: Oxford University Press; 2003.
	5.	 Constantinescu M, Sankoff D. An efficient algorithm for supertrees. J Classif.

1995;12:101–12. https://​doi.​org/​10.​1007/​BF012​02270.
	6.	 Henzinger MR, King V, Warnow T. Constructing a tree from homeomorphic

subtrees, with applications to computational evolutionary biology. Algo-
rithmica. 1999;24:1–13. https://​doi.​org/​10.​1007/​PL000​09268.

	7.	 Deng Y, Fernández-Baca D. Fast compatibility testing for rooted phylo-
genetic trees. Algorithmica. 2018;80:2453–77. https://​doi.​org/​10.​1007/​
s00453-​017-​0330-4.

	8.	 Deng Y, Fernández-Baca D. An efficient algorithm for testing the compat-
ibility of phylogenies with nested taxa. Algorithms Mol Biol. 2017;12:7.
https://​doi.​org/​10.​1186/​s13015-​017-​0099-7.

	9.	 Geiß M, Chávez E, González Laffitte M, López Sánchez A, Stadler BMR, Val-
divia DI, Hellmuth M, Hernández Rosales M, Stadler PF. Best match graphs. J
Math Biol. 2019;78:2015–57. https://​doi.​org/​10.​1007/​s00285-​019-​01332-9.

	10.	 Schaller D, Geiß M, Chávez E, González Laffitte M, López Sánchez A, Stadler
BMR, Valdivia DI, Hellmuth M, Hernández Rosales M, Stadler PF. Corrigen-
dum to “Best Match Graphs’’. J Math Biol. 2021;82:47. https://​doi.​org/​10.​
1007/​s00285-​021-​01601-6.

	11.	 Geiß M, Anders J, Stadler PF, Wieseke N, Hellmuth M. Reconstructing gene
trees from Fitch’s Xenology relation. J Math Biol. 2018;77:1459–91. https://​
doi.​org/​10.​1007/​s00285-​018-​1260-8. arXiv:​1711.​02152.

	12.	 Hellmuth M, Seemann CR. Alternative characterizations of Fitch’s Xenol-
ogy relation. J Math Biol. 2019;79:969–86. https://​doi.​org/​10.​1007/​
s00285-​019-​01384-x.

	13.	 Hellmuth M, Michel M, Nøjgaard N, Schaller D, Stadler PF. Combining
orthology and xenology data in a common phylogenetic tree. In: Stadler
PF, Walter MEMT, Hernandez-Rosales M, Brigido MM, editors. Advances
in bioinformatics and computational biology. Lecture notes in bioin-
formatics, 14 BSB, vol. 13063. Cham: Springer; 2021. p. 53–64. 10.​1007/​
978-3-​030-​91814-9_5.

	14.	 Warnow TJ. Tree compatibility and inferring evolutionary history. J Algo-
rithms. 1994;16:388–407. https://​doi.​org/​10.​1006/​jagm.​1994.​1018.

	15.	 Gusfield D. Efficient algorithms for inferring evolutionary trees. Networks.
1991;21:19–28. https://​doi.​org/​10.​1002/​net.​32302​10104.

	16.	 Aho AV, Hopcroft JE, Ullman JD. The design and analysis of computer
algorithms. Boston: Addison-Wesley, Reading; 1974.

	17.	 Jansson J, Shen C, Sung W-K. Improved algorithms for constructing con-
sensus trees. In: Khanna, S. (ed.) Proceedings of the 2013 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1800–1813. Soc. Indust.
Appl. Math., Philadelphia, PA 2013. https://​doi.​org/​10.​1137/1.​97816​11973​
105.​129.

	18.	 Jansson J, Shen C, Sung W-K. Improved algorithms for constructing con-
sensus trees. J ACM. 2016;63:1–24. https://​doi.​org/​10.​1145/​29259​85.

	19.	 Hellmuth M, Schaller D, Stadler PF. Compatibility of partitions with trees,
hierarchies, and split systems 2021. submitted; arXiv:​2104.​14146.

	20.	 Bryant D, Steel M. Extension operations on sets of leaf-labeled trees. Adv
Appl Math. 1995;16:425–53. https://​doi.​org/​10.​1006/​aama.​1995.​1020.

	21.	 Semple C. Reconstructing minimal rooted trees. Discr Appl Math.
2003;127:489–503. https://​doi.​org/​10.​1016/​S0166-​218X(02)​00250-0.

	22.	 Jansson J, Lemence RS, Lingas A. The complexity of inferring a minimally
resolved phylogenetic supertree. SIAM J Comput. 2012;41:272–91. https://​
doi.​org/​10.​1137/​10081​1489.

	23.	 Grünewald S, Steel M, Swenson MS. Closure operations in phylogenetics.
Math Biosci. 2007;208:521–37. https://​doi.​org/​10.​1016/j.​mbs.​2006.​11.​005.

	24.	 Seemann CR, Hellmuth M. The matroid structure of representative triple
sets and triple-closure computation. Eur J Comb. 2018;70:384–407. https://​
doi.​org/​10.​1016/j.​ejc.​2018.​02.​013.

	25.	 Bremer K. Combinable component consensus. Cladistics. 1990;6(4):369–72.
https://​doi.​org/​10.​1111/j.​1096-​0031.​1990.​tb005​51.x.

	26.	 Day WHE, McMorris FR. Axiomatic Consensus Theory in Group Choice and
Bioinformatics. Society for Industrial and Applied Mathematics, Providence,
RI 2003. https://​doi.​org/​10.​1137/1.​97808​98717​501.

	27.	 Dong J, Fernández-Baca D, McMorris FR, Powers RC. An axiomatic study of
majority-rule (+) and associated consensus functions on hierarchies. Discr
Appl Math. 2011;159:2038–44. https://​doi.​org/​10.​1016/j.​dam.​2011.​07.​002.

	28.	 Holm J, de Lichtenberg K, Thorup M. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity. J ACM. 2001;48:723–60. https://​doi.​org/​10.​1145/​502090.​
502095.

	29.	 Fernández-Baca D, Liu L. Tree compatibility, incomplete directed perfect
phylogeny, and dynamic graph connectivity: an experimental study. Algo-
rithms. 2019;12(3):53. https://​doi.​org/​10.​3390/​a1203​0053.

	30.	 Bender MA, Farach-Colton M, Pemmasani G, Skiena S, Sumazin P. Lowest
common ancestors in trees and directed acyclic graphs. J Algorithms.
2005;57(2):75–94. https://​doi.​org/​10.​1016/j.​jalgor.​2005.​08.​001.

	31.	 Bryant D. A classification of consensus methods for phylogenetics. In:
Janowitz MF, Lapointe F-J, McMorris FR, Mirkin B, Roberts FS, editors.
Bioconsensus, DIMACS series in discrete mathematics and theoretical
computer science, vol. 61. Providence, RI: Amer. Math. Soc; 2003. p. 163–83.
https://​doi.​org/​10.​1090/​dimacs/​061/​11.

	32.	 Byrka J, Guillemot S, Jansson J. New results on optimizing rooted triplets
consistency. Discr Appl Math. 2010;158:1136–47. https://​doi.​org/​10.​1016/j.​
dam.​2010.​03.​004.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/S0169-5347(97)01242-1
https://doi.org/10.1016/S0169-5347(97)01242-1
https://doi.org/10.1016/S0166-218X(00)00202-X
https://doi.org/10.1137/0210030
https://doi.org/10.1007/BF01202270
https://doi.org/10.1007/PL00009268
https://doi.org/10.1007/s00453-017-0330-4
https://doi.org/10.1007/s00453-017-0330-4
https://doi.org/10.1186/s13015-017-0099-7
https://doi.org/10.1007/s00285-019-01332-9
https://doi.org/10.1007/s00285-021-01601-6
https://doi.org/10.1007/s00285-021-01601-6
https://doi.org/10.1007/s00285-018-1260-8
https://doi.org/10.1007/s00285-018-1260-8
http://arxiv.org/abs/1711.02152
https://doi.org/10.1007/s00285-019-01384-x
https://doi.org/10.1007/s00285-019-01384-x
https://doi.org/10.1007/978-3-030-91814-9_5
https://doi.org/10.1007/978-3-030-91814-9_5
https://doi.org/10.1006/jagm.1994.1018
https://doi.org/10.1002/net.3230210104
https://doi.org/10.1137/1.9781611973105.129
https://doi.org/10.1137/1.9781611973105.129
https://doi.org/10.1145/2925985
http://arxiv.org/abs/2104.14146
https://doi.org/10.1006/aama.1995.1020
https://doi.org/10.1016/S0166-218X(02)00250-0
https://doi.org/10.1137/100811489
https://doi.org/10.1137/100811489
https://doi.org/10.1016/j.mbs.2006.11.005
https://doi.org/10.1016/j.ejc.2018.02.013
https://doi.org/10.1016/j.ejc.2018.02.013
https://doi.org/10.1111/j.1096-0031.1990.tb00551.x
https://doi.org/10.1137/1.9780898717501
https://doi.org/10.1016/j.dam.2011.07.002
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.3390/a12030053
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1090/dimacs/061/11
https://doi.org/10.1016/j.dam.2010.03.004
https://doi.org/10.1016/j.dam.2010.03.004

	A simpler linear-time algorithm for the common refinement of rooted phylogenetic trees on a common leaf set
	Abstract
	Background:
	Results:
	Conclusion:
	Availability:

	Introduction
	Theory
	Notation and preliminaries
	A bottom-up linear time algorithm

	Computational results
	Concluding remarks
	References

