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Abstract 

Background:  The supertree problem, i.e., the task of finding a common refinement of a set of rooted trees is an 
important topic in mathematical phylogenetics. The special case of a common leaf set L is known to be solvable in lin-
ear time. Existing approaches refine one input tree using information of the others and then test whether the results 
are isomorphic.

Results:  An O(k|L|) algorithm, LinCR, for constructing the common refinement T of k input trees with a common 
leaf set L is proposed that explicitly computes the parent function of T in a bottom-up approach.

Conclusion:  LinCR is simpler to implement than other asymptotically optimal algorithms for the problem and 
outperforms the alternatives in empirical comparisons.

Availability:  An implementation of LinCR in Python is freely available at https://​github.​com/​david-​schal​ler/​tralda.
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Introduction
Given a collection of rooted phylogenetic trees T1 , T2 , ...Tk , 
the supertree problem in phylogenetics consists in deter-
mining whether there is a common tree T that “displays” all 
input trees Ti , 1 ≤ i ≤ k , and if so, a supertree T is to be con-
structed [1, 2]. In its most general form, the leaf sets L(Ti) , 
representing the taxonomic units (taxa), may differ, and the 
supertree T has the leaf set L(T ) =

⋃k
i=1 L(Ti) . Writing 

n:=|L(T )| , N :=
∑k

i=1 |L(Ti)| , and R:=
∑k

i=1 |L(Ti)|2 , this 
problem is solved by the algorithm of Aho et al. [3], which 
is commonly called BUILD in the the phylogenetic litera-
ture [4], in O(Nn) time for binary trees and O(Rn) time in 
general.

An O(N 2) algorithm to compute all binary trees 
compatible with the input is described in [5]. 
Using sophisticated data structures, the effort 
for computing a single supertree was reduced to 
O(min(N

√
n,N + n2 log n)) for binary trees and 

(R log2 R) for arbitrary input trees [6]. Recently, an 
O(N log2N ) algorithm has become available for the 
compatibility problem for general trees [7]. The com-
patibility problem for nested taxa in addition assigns 
labels to inner vertices and can also be solved in 
O(N log2N ) [8].

Here we consider the special case that 
the input trees share the same leaf set 
L(T1) = L(T2) = · · · = L(Tk) = L(T ) = L , and thus 
N = kn and R = kn2 . While the general supertree 
problem arises naturally when attempting to rec-
oncile phylogenetic trees produced in independent 
studies, the special case appears in particular when 
incompletely resolved trees are produced with differ-
ent methods. In a recent work, we have shown that 
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such trees can be inferred e.g. as the least resolved 
trees from best match data [9, 10] and from infor-
mation of horizontal gene transfer [11, 12]. Denot-
ing with H(T ) the set of “clusters” in T, we recently 
showed that the latter type of data can be explained 
by a common evolutionary scenario if and only if (1) 
both the best match and the horizontal transfer data 
can be explained by least resolved trees T1 and T2 , 
respectively, and (2) the union H(T1) ∪H(T2) is again 
a hierarchy. In this context it is of practical interest 
whether the latter property can be tested efficiently, 
and whether the common refinement T satisfying 
H(T ) = H(T1) ∪H(T2) [13] can be constructed effi-
ciently in the positive case.

Several linear time, i.e., O(|L|) time, algorithms for 
the common refinement of two input trees T1 and T2 
with a common leaf set have become available. The 
INSERT algorithm [14], which makes use of ideas 
from [15], inserts the clusters of T2 into T1 and vice 
versa and then uses a linear-time algorithm to check 
whether the two edited trees are isomorphic [16]. 
Assuming that the input trees are already known 
to be compatible, Merge_Trees [17, 18] can also 
be applied to insert the clusters of one tree into the 
other. For both of these methods, an overall linear-
time algorithm for the common refinement of k input 
trees is then obtained by iteratively computing the 
common refinement of the input tree Tj and the com-
mon refinement of first j − 1 trees, resulting in a total 
effort of O(k|L|).

Here we describe an alternative algorithm that con-
structs in a single step a candidate refinement T of 
all k input trees. This is achieved by computing the 
parent-function of the potential refinement T in a 
bottom-up fashion. As we shall see, the algorithm is 
easy to implement and does not require elaborate data 
structures. The existence of a common refinement 
is then verified by checking that the parent function 
defines a tree T and, if so, that T displays each of the 
input trees Tj . This test is also much simpler to imple-
ment than the isomorphism test for rooted trees [16].

Theory
Notation and preliminaries
Let T be a rooted tree. We write V(T) for its vertex 
set, E(T) for is edge set, L(T ) ⊆ V (T ) for its leaf set, 
V 0(T ):=V (T ) \ L(T ) for the set of inner vertices and 
ρ ∈ V 0(T ) for its root. An edge e = {u, v} ∈ E(T ) is an 
inner edge if u, v ∈ V 0(T ) . The ancestor partial order 
�T  on V(T) is defined by x �T y whenever y lies along 
the unique path connecting x and the root ρ . If x �T y 
and x  = y , we write x ≺T y . For v ∈ V (T ) , we set 

childT (v):={u | {v,u} ∈ E(T ), u ≺T v} . If u ∈ childT (v) , 
then v is the unique parent of u. In this case, we write 
v = parentT (u) . All trees T considered in this contri-
bution are phylogenetic, i.e., they satisfy |childT (v)| ≥ 2 
for all v ∈ V 0(T ).

We denote by T(u) the subtree of T rooted in u and 
write L(T(u)) for its leaf set. The last common ances-
tor of a vertex set W ⊆ V (T ) is the unique �T-minimal 
vertex lcaT (W ) ∈ V (T ) satisfying w �T lcaT (W ) for all 
w ∈ W  . For brevity, we write lcaT (x, y):=lcaT ({x, y}) . 
Furthermore, we will sometimes write vu ∈ E(T ) as a 
shorthand for “ {u, v} ∈ E(T ) with u ≺T v.”

A hierarchy on L is set system H ⊆ 2L such that (i) 
L ∈ H , (ii) A ∩ B ∈ {A,B, ∅} for all A,B ∈ H , and (iii) 
{x} ∈ H for all x ∈ L . There is a well-known bijection 
between rooted phylogenetic trees T with leaf set 
L and hierarchies on L, see e.g. [4, Thm. 3.5.2]. It is 
given by H(T ):={L(T (u)) | u ∈ V (T )} ; conversely, the 
tree TH corresponding to a hierarchy H is the Hasse 
diagram w.r.t. set inclusion. Thus, if v = lcaT (A) for 
some A ⊆ L(T ) , then L(T(v)) is the inclusion-minimal 
cluster in H(T ) that contains A, see e.g. [19]. We call 
the elements of H(T ) clusters and say that two clusters 
C and C ′ are compatible if C ∩ C ′ ∈ {C ,C ′, ∅} . Note 
that, by (i), the clusters of the same tree are all pair-
wise compatible.

A (rooted) triple is a binary tree on three 
leaves. We say that a tree T displays a triple xy|z if 
lcaT (x, y) ≺T lcaT (x, z) = lcaT (y, z) , or equivalently, 
if there is a cluster C ∈ H(T ) such that x, y ∈ C  and 
z /∈ C  . The set of all triples that are displayed by T is 
denoted by r(T). A set R of triples is consistent if there 
is a tree that displays all triples in R.

Let T and T ∗ be phylogenetic trees with 
L(T ) = L(T ∗) . We say that T ∗ is a refinement 
of T if T can be obtained from T ∗ by contract-
ing a subset of inner edges. Equivalently, T ∗ is 
a refinement of T if and only if H(T ) ⊆ H(T ∗) . 
A tree T displays a tree T ′ if L(T ′) ⊆ L(T ) and 
H(T ′) ⊆ {C ∩ L(T ′) | C ∈ H(T ) and C ∩ L(T ′) �= ∅}   . 
In particular, therefore, T displays a tree T ′ with 
L(T ′) = L(T ) if and only if H(T ′) ⊆ H(T ) , i.e., if and 
only if T is a refinement of T ′ . The minimal common 
refinement of the trees Ti , 1 ≤ i ≤ k is the tree T such 
that H(T ) =

⋃k
i=1H(Ti) , provided it exists.

Thm. 3.5.2 of [4] can be rephrased in the following 
form:

Lemma 1  Let T1 , T2 , ..., Tk be trees with common leaf 
set L(Ti) = L such that H:=

⋃k
i=1H(Ti) is a hierarchy. 

Then there is a unique tree T such that H(T ) = H . 
Furthermore, T is the unique “least resolved” tree in 
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the sense that contraction of any edge in T yields a tree 
Te with H(Te) � H(T ).

Proof  By definition of H and the bijection between 
phylogenetic trees and hierarchies, there is a unique 
tree T such that H = H(T ) . Consider an inner 
edge e = uv . By construction, there is at least one 
tree Tv such that C:=L(T (v)) ∈ H(Tv) . However, 
H(Te) = H(T ) \ {Cv} and thus Te does not display Tv . 
� �

By Thm. 1 in [20], a tree T ′ is displayed by a tree T 
with L(T ′) ⊆ L(T ) if and only if r(T ′) ⊆ r(T ) . As an 
immediate consequence, a common refinement of 
trees with a common leaf set L exists if and only if the 
union L of their triple sets is consistent. The latter 
condition can be checked using the BUILD algorithm 
which, in the positive case, returns a tree BUILD(R, L) 
that displays all triples in R.

Lemma 2  Suppose that T is the unique least 
resolved common refinement of the trees T1 , T2 , ..., 
Tk with common leaf set L(Ti) = L , 1 ≤ i ≤ k and let 
R:=r(Ti) ∪ r(T2) ∪ · · · ∪ r(Tk) . Then T = BUILD(R, L).

Proof  The tree T̂ :=BUILD(R, L) is a common refine-
ment since, by the arguments above, it displays T1 , T2 , 
..., Tk . By Lemma  1, we therefore have H(T ) ⊆ H(T̂ ) . 
Prop. 4.1 in [21] implies that T̂  is least resolved w.r.t. 
R , i.e., every tree T̂ ′ obtained from T̂  by contraction 
of an edge no longer displays all input triples in R . By 
Thm.  6.4.1 in [4], Ti is displayed by T̂ ′ if and only if 
T̂ ′ displays all triples of Ti . Since this is not true for 
all input trees Ti , T̂ ′ does not display all input trees Ti , 
1 ≤ i ≤ k . Together with H(T ) ⊆ H((T̂ )) , this implies 
that T = T̂  . � �

We note that, given a set of triples R, “T is a least 
resolved displaying R” does not imply that vertex set 
V(T) is minimal among all such trees. It is possible in 
general that there is a tree T ′ displaying a given tri-
ple set R with |V (T ′)| < |V (BUILD(R, L))| . In this case, 
BUILD(R, L) does not display T ′ , see [22] for details. 
However, uniqueness of the least resolved tree, 
Lemma 1, rules out this scenario in our setting.

The algorithm BuildST [7] computes the super-
tree of a set T :={Ti | 1 ≤ i ≤ k} of rooted trees with-
out first breaking down each tree to its triple set 
r(Ti) . Lemma  5 in [7] establishes that BuildST 
applied to a set of trees and BUILD applied to the tri-
ple set R:=

⋃k
i=1 r(Ti) produce the same output for 

all instances. If R is consistent, BuildST computes 
the tree BUILD(R, L) . If all input trees have the same 
same leaf set L BuildST in particular computes their 
common refinement. The performance analysis in [7] 
shows that BuildST runs in O(k|L| log2(k|L|)) time 
for this special case. Linear-time algorithms for the 
special case of a common leaf set therefore offer a fur-
ther improvement over the best known general pur-
pose supertree algorithms.

A bottom‑up linear time algorithm
The basic idea of our approach is to construct T by 
means of a simple bottom-up approach that computes 
the parent function parentT : V (T ) \ {ρT } → V (T ) \ L 
of a candidate tree T in a stepwise manner. This algo-
rithm is based on three simple observations: 

	(i)	 If it exists, the common refinement T of T1 , 
T2 , ..., Tk is uniquely defined by virtue of 
H(T ) =

⋃k
i=1H(Ti) (cf. Lemma 1). We will 

therefore identify all vertices vi ∈ V (Ti) with 
a vertex v in the prospective tree T whenever 
their clusters – i.e., the sets L(Ti(vi)) – are the 
same. In this case, we have L(T (v)):=L(Ti(vi)) . 
From here on, we simply say, by a slight abuse 
of notation, that v is also a vertex of Ti and write 
v ∈ V (Ti).

	(ii)	 Since H(T ) =
⋃k

i=1H(Ti) , each vertex 
v ∈ V (T ) is also a vertex in at least one input 
tree Ti . Conversely, every vertex v ∈ V (Ti) , 
i ∈ {1, . . . , k} , is a vertex in T. Therefore, we have 
V (T ) =

⋃k
i=1 V (Ti).

	(iii)	T exists if and only if the sets L(T(x)) and 
L(T(y)) for all x, y ∈

⋃k
i=1 V (Tk) are either 

comparable by set inclusion or disjoint, i.e., 
L(T (x)) ∩ L(T (y)) ∈ {L(T (x)), L(T (y)),∅}   . 
Thus, x ≺T y if and only if 
L(Ti(x)) = L(T (x)) � L(Tj(y)) = L(T (y)) for the 
appropriate choices of i, j ∈ {1, . . . , k}.

Observation (iii) makes it possible to access the ances-
tor order ≺T  on V(T) without knowing the common 
refinement T explicitly. Many of the upcoming defini-
tions are illustrated in Fig. 1.

We introduce, for each v ∈ V (T ) , the index set 
J (v) = {i | L(Ti(v)) = L(T (v))} of the trees that con-
tain vertex v. We have J (v)  = ∅ for all v ∈ V (T ) . For 
simplicity, we write J̄(v):={1, . . . , k} \ J (v) for the 
indices of all other trees. Hence, J̄(v) = ∅ if and only 
if L(T (v)) ∈ H(Ti) for all i ∈ {1, . . . , k} . In particular, 
therefore, J̄(v) = ∅ whenever v ∈ L or v = ρ.
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Let us assume until further notice that a common 
refinement exists and let T = (V ,E) be the unique 
least resolved common refinement of T1 , T2 , ..., Tk on 
a common leaf set. Due to Lemma 1, T is uniquely 
determined by the parent function parentT  . The key 
ingredient in our construction are the following ver-
tices in Ti:

By assumption, we have L(T (v)) ⊆ L(Ti) and thus pi(v) 
is well-defined. As immediate consequence of the defini-
tion in Eq. (1), we have

Observation 3  For all v ∈ V (T ) and all i ∈ {1, . . . , k} it 
holds that pi(v) = v iff v ∈ V (Ti) iff i ∈ J (v) . If i /∈ J (v) , 
then v ≺T pi(v) and therefore parentT (v) �T pi(v).

Now assume that parentT (v) exists in T, i.e., v  = ρ . 
By Observation (ii), v ∈ V (T ) implies v ∈ V (Ti) for 
some i ∈ {1, . . . , k} . In this case, parentT (v) must be 
the unique �Ti-minimal vertex ui ∈ V (Ti) that satisfies 
L(T (v)) � L(Ti(ui)) because H(Ti) ⊆ H(T ) . In other 
words, pi(parentT (v)) = ui = parentTi

(v) . Hence, we 
have

Observation 4  For all v ∈ V \ {ρ} it holds that 
parentT (v) = parentTi

(v) for some i ∈ J (v) or 
parentT (v) = pj(v) for some j ∈ J̄ (v).

Note that in general also both cases in Obs.  4 
are possible. Consider the set of vertices 
A(v):={v} ∪ {parentTi

(v) | i ∈ J (v)} ∪ {pi(v) | i ∈ J̄ (v)}   . 
By construction and Obs. 4, we have v �T x for all 
x ∈ A(v) . Since all ancestors of a vertex in a tree are 
mutually comparable w.r.t. the ancestor order, we have

(1)
pi(v):=lcaTi(L(T (v)), i ∈ {1, . . . , k}, v ∈ V (T )

Observation 5  All x, y ∈ A(v) are pairwise compara-
ble w.r.t. �T .

Taken together, Observations 3-5 imply that the par-
ent map of T can be expressed in the following form:

where the minimum is taken w.r.t. the ancestor order �T 
on T. Since the root ρi of each Ti coincides with the root ρ 
of T, v is the root of T iff parentTi

(v) = ∅ is undefined for 
one and thus for all i. In this case, we set parentT (v) = ∅.

With this in hand, we show how to compute the 
maps pi for u:=parentT (v) for all i ∈ {1, . . . , k} . To this 
end, we distinguish three cases. (1) If u ∈ V (Ti) , we 
have pi(u) = u by definition. (2) If u /∈ V (Ti) , then we 
have to identify the �T-minimal vertex w ∈ V (Ti) with 
u ≺T w . If v ∈ V (Ti) , then pi(u) = w = parentTi

(v) . 
In the remaining case, i ∈ J̄ (v) , we already know that 
pi(v) is the �Ti-minimal ancestor of v. Thus, we have 
either pi(v) = u = parentT (v) , i.e., a sub-case of (1), 
or (3) u �T pi(v) whenever v /∈ V (Ti) and u /∈ V (Ti) . 
In this case, the definition of pi implies pi(u) = pi(v) . 
Summarizing the three cases yields the following 
recursion:

Note, although the cases in Eq.  (3) are not exclusive 
(since J (v) ∩ J (u) �= ∅ is possible), they are not in con-
flict. To see this, observe that if i ∈ J (u) and i ∈ J (v) , then 
u = parentTi

(v) as a consequence of the definition of u.

(2)

parentT (v) = min

(
min
i∈J (v)

parentTi
(v), min

i∈J̄ (v)
pi(v)

)

(3)pi(u) =






u if i ∈ J (u)
parentTi

(v) if i ∈ J (v)

pi(v) if i ∈ J̄ (u) and i ∈ J̄ (v)

Fig. 1  The three trees T1 , T2 , and T3 with common leaf set L = {a, b, c, d, e} have the (unique) common refinement T. Here, J(ρ) = {1, 2, 3} and 
thus, J̄(ρ) = ∅ . The different symbols for vertices indicate which vertex u in the Ti s corresponds to which vertex u in T. Consider the vertex v 
highlighted as � . The corresponding vertices pi(v) are shown in the respective trees Ti . Here, p2(v) = v while the vertices p1(v) and p3(v) in T1 and 
T3 correspond to parentT (v) and ρ , respectively. Consequently, J(v) = {2} and J̄(v) = {1, 3} . We have p2(v) = v ≺T parentT (v) = p1(v) ≺T p3(b) , 
according to Obs. 3. In this example, only the last case in Obs. 4 for v is satisfied, namely parentT (v) = p1(v) . Moreover, 
A(v) = {v} ∪ {parentT2 (v) = ρ} ∪ {p1(v), p3(v)} = {v , ρ , parentT (v)}
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Initializing i ∈ J (v) for all i and all leaves v, we can 
compute J(u) for u = parentT (v) as a by-product by 
the minimum computation in Eq.  (2) by simply keep-
ing track of the equalities encountered since both 
parentTi

(v) and pi(v) are vertices in Ti . More precisely, 
each time a strictly �T-smaller vertex u′ , i.e., a proper 
set inclusion, is encountered in Eq.  (2), the current 
list of equalities is discarded and re-initialized as {i} , 
where i is the index of the tree Ti in which the new 
minimum u′ was found. The indices of the trees Tj 
with u′ ∈ V (Tj) are then appended.

It remains to ensure that the vertices are pro-
cessed in the correct order. To this end, we use a 
queue Q , which is initialized by enqueueing the leaf 
set. Upon dequeueing v, its parent u and the values 
pi(u) are computed. Except for the leaves, every ver-
tex u ∈ V (T ) appears as parent of some v ∈ V (T ) . On 
the other hand, u may appear multiple times as par-
ent. Thus we enqueue u in Q only if the same vertex 
has not been enqueued already in a previous step. We 
emphasize that it is not sufficient to check whether 
u ∈ Q since u may have already been dequeued from 
Q before re-appearance as a parent. We therefore keep 
track of all vertices that have ever been enqueued 
in a set V. To see that this is indeed necessary, con-
sider a tree Ti = (a, (b, c)v1)v2 and an initial queue 
Q = (a, b, c) . Without the auxiliary set V, we obtain 
Q = (b, c, v2) , Q = (c, v2, v1) , Q = (v2, v1) , Q = (v1) , 
Q = (v2) , etc., and thus v2 is enqueued twice.

An implementation of this procedure also needs 
to keep track of the correspondence between verti-
ces in V(T) and the vertices of V (Ti) . To this end, we 
can associate with each v ∈ V (T ) a list of pointers 
to v ∈ V (Ti) for i ∈ J (v) , and pointer from v ∈ V (Ti) 
back to v ∈ V (T ) . For the leaves, these are assigned 
upon initialization. Afterwards, they are obtained 
for u = parentT (v) as a by-product of computing 
J(u), since the pointers have to be set exactly for the 
i ∈ J (u) . In particular, whenever the pointer for u 
found Ti has already been set, we know that u ∈ V .

Summarizing the discussion so far, we have shown:

Proposition 6  Suppose the trees T1 , T2 , ..., Tk have 
a common refinement T. Then parentT (v) is correctly 
computed by the recursions Eq. (2) and Eq. (3).

Next we observe that it is not necessary to explic-
itly compute set inclusions. As an immediate con-
sequence of Obs.  5 and the fact that x  = y implies 
L(T (x))  = L(T (y)) because all trees are phylogenetic 
by assumption, we obtain

Observation 7  For any two x, y ∈ A(v) , we have 
x ≺T y if and only if |L(T (x))| < |L(T (y))|.

Thus it suffices to evaluate the minimum in 
Eq.  (2) w.r.t. to the cardinalities |L(T(v))|. This 
can be achieved in O(k) time provided the values 
ℓi(v):=|L(Ti(v))| are known for the input trees. Since 
the parent-function parentT  unambiguously defines a 
tree T, we have

Corollary 8  Suppose the trees T1 , T2 , ..., Tk have a 
common refinement T. Then T can be computed in 
O(k|L|) time.

Proof  For each input tree Ti , ℓi(v) can be computed 
as

Since the total number of terms appearing for the inner 
vertices of T equals the number of edges of Ti , the total 
effort for Ti is bounded by O(|L|). The total number of 
vertices u computed as parentT (v) equals the number of 
edges of T, and thus is also bounded by O(L). Since the 
tree T, as well as the k trees Ti , have O(|L|) vertices, we 
require O(k|L|) pointers from the vertices in T to their 
corresponding vertices in the Ti and vice versa. By initial-
izing the pointers for all v ∈ V (Ti) as “not set”, it can be 
checked in constant time whether u that was found in Ti 
is already contained in the set V, since this is the case if 
and only if its pointer has already been set. Evaluation of 
Eq. (2) requires O(k) comparisons, each of which can be 
performed in constant time by virtue of Obs. 7. The com-
putation of pi(u) and J(u) as well as the update of the cor-
respondence table between vertices in T and Ti , 1 ≤ i ≤ k 
requires O(k) operations for each v ∈ V (T ) . Thus T can 
be computed in O(k|L|) time. �

(4)ℓi(v) =






1 if v ∈ L, and

ℓi(v) =
�

u∈childTi (v)
ℓi(u) otherwise.
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..., Tk on the same leaf set L exists and, in the affirm-
ative case, returns the tree T corresponding to 
H(T ) = H(T1) ∪H(T2) ∪ · · · ∪H(Tk).

Proof  We construct parentT in Lines 1–24 as described 
in the proof of Cor.  8. In particular, we determine 
u:=parentT (v) by virtue of the smallest ℓi(u) . Hence, we 
can process each enqueued vertex v in O(k). Moreover, 
if a common refinement T exists, then Cor. 8 guarantees 
that we obtain this tree in Line 25.

A tree on |L| leaves has at most |L| − 1 inner vertices 
with equality holding for binary trees. Therefore, the set 
V of distinct vertices encountered in Alg. 1, can contain 
at most 2|L| − 2 vertices (note that by construction the 

So far, we have assumed that a common refinement 
exists. By a slight abuse of notation, we also use the func-
tion parentT if the refinement T does not exist. In this 
case, we define parentT on the union of the V (Ti) recur-
sively by Eqs. (2) and (3). Alg. 1 summarizes the proce-
dure based on the leaf set cardinalities for the general 
case. If no common refinement T exists, then either 
parentT does not specify a tree, or the tree T defined by 
parentT is not a common refinement of T1 , T2 , ..., Tk . The 
following result shows that we can always efficiently com-
pute parentT and check whether it specifies a common 
refinement of the input trees.

Theorem  9  LinCR (Alg.  1) decides in O(k|L|) 
time whether a common refinement of trees T1 , T2 , 
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root does not enter V). If this condition is violated, no 
common refinement exists and we can terminate with a 
negative answer (cf. Line  19). This ensures that parentT 
is constructed in O(k|L|) time. We continue by showing 
that, unless the algorithm exits in Line 16 or 19, parentT 
in Line 25 always defines a tree T. To see this, consider 
the graph G with vertex set V ∪ {ρ} where ρ is the root 
vertex which is contained in each Ti and an edge {u, v} 
if and only if parentT (v) = u or parentT (u) = v . Check-
ing whether ℓ(v) < ℓmin(= ℓ(u)) in Line 15 ensures that 
G does not contain cycles and that parentT (v) = u and 
parentT (u) = v is not possible. Moreover, every vertex 
v ∈ V  is enqueued to Q and receives a parent u such that 
ℓ(v) < ℓ(u) . Unless u = ρ , u in turn receives a parent u′ 
with ℓ(u) < ℓ(u′) . Since V is finite v,u,u′, ... are pairwise 
distinct as a consequence of the cardinality condition, 
and we conclude that eventually ρ is reached, i.e., a path 
to ρ exists for all v ∈ V  . It follows that G is connected, 
acyclic, and simple, and thus a tree (with root ρ).

It remains to check whether T is phylogenetic and dis-
plays Ti for all i ∈ {1, . . . , k} . Checking whether T is phy-
logenetic in Line 26 can be done in O(|L|) in a top-down 
traversal that exits as soon as it encounters a vertex with 
a single child. To check whether T displays a tree Ti , 
we contract (in a copy of T) in a top-down traversal all 
edges uv with v ∈ childT (u) for which u /∈ V (Ti) , i.e., for 
which i /∈ J (v) . Since the root of T and leaves of T are in 
Ti , this results in a rooted tree T ′

i  with V (Ti) = V (T ′
i ) if T 

is indeed the common refinement of all trees. The con-
traction of an edge uv can be performed in O(childT (v)|) , 
hence in total time O(|E(Ti)|) = O(|L|) . Finally, we can 
check in O(|L|) time whether the known correspond-
ence between the vertices of Ti and T ′

i  is an isomorphism. 
To this end, it suffices to traverse Ti and to check that 
childTi(v) = childT ′

i
(v) for all v ∈ V (Ti) (cf. Lines 31–32) 

using the pointers of v and all elements in childTi(v) to 
the corresponding vertices in T. Note that, in general, the 
pointer from a vertex v in Ti to a vertex in T ′

i  may not be 
set, in which case v /∈ V (T ′

i ) and thus, we can terminate 
with a negative answer. The total effort thus is bounded 
by O(k|L|).

If T on L is a phylogenetic tree displaying all trees 
T1 , T2 , ..., Tk , then it is a common refinement of 
these trees. Since every vertex v ∈ V (T ) is also 

contained in some Ti , i.e., L(T (v)) = L(Ti(v)) , we have 
H(T ) = H(T1) ∪H(T2) ∪ · · · ∪H(Tk) . �

Computational results
We compare the running times for (a) BUILD [3], 
(b) BuildST [7], (c) Merge_Trees [18], (c’) 
Loose_Cons_Tree [18], and (d) LinCR (Alg. 1). To this 
end, we implemented all of these algorithms in Python as 
part of the tralda library. We note that BUILD operates 
on a set of triples extracted from the input trees rather 
than the trees themselves. We use the union of the mini-
mum cardinality sets of representative triples of every 
Ti appearing in the proof of Thm. 2.8 in [23]. Therefore, 
we have R ∈ O(k|L|2) [24, Thm. 6.4] and BUILD runs in 
O(k|L|3) time. In the case of Merge_Trees , we imple-
mented a variant that starts with T = T1 and then itera-
tively merges the clusters of the tress Ti , 2 ≤ i ≤ k , into T. 
Merge_Trees assumes that the input trees are compat-
ible, which is guaranteed in our benchmarking data set. 
In practice, however, this condition may be violated, in 
which case the behavior of Merge_Trees is undefined. 
We therefore also implemented an O(k|L|) algorithm for 
constructing the loose consensus tree for a set of trees T1 , 
T2 , ..., Tk on the same leaf set, Loose_Cons_Tree , fol-
lowing [18]. The loose consensus comprises all clusters 
that occur in at least one tree Ti , 1 ≤ i ≤ k and that are 
compatible with all other clusters of the input trees (see 
[25–27] and the references therein). The loose consensus 
tree by definition coincides with the common refinement 
whenever the latter exists. Loose_Cons_Tree uses 
Merge_Trees as a subroutine but ensures compatibil-
ity in each step by first deleting incompatible clusters in 
one of the trees. This is implemented as the deletion of 
the corresponding inner vertex v followed by reconnect-
ing the children of v to the parent of v. The input trees 
are compatible if and only if no deletion is necessary. 
The existence of a common refinement can therefore by 
checked by keeping track of the number of deletions. 
However, the subroutine that processes trees to remove 
incompatible clusters significantly adds to the running 
time of the Loose_Cons_Tree algorithm. The linear-
time algorithms require O(k|L|) space.

We simulate test instances as follows: First, a ran-
dom tree T ∗ is generated recursively by starting from a 
single vertex (which becomes the root) and stepwise 

(See figure on next page.)
Fig. 2  Running time comparison of the algorithms for the construction of a common refinement of k input trees on leaf set L. The subplots of each 
row show boxplots for the running time for different numbers of leaves |L| (indicated on the x-axis) and different values of k ∈ {2, 8, 32} (indicated 
in the leftmost column of each subplot). In each row, a different probability p ∈ {0.1, 0.5, 0.9} for edge contraction was used to produce the k input 
trees. Per combination of the parameters |L|, k, and p, 100 instances were simulated to which all four algorithm were applied
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Fig. 2  (See legend on previous page.)
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attaching new leaves to a randomly chosen vertex v until 
the desired number of leaves |L| is reached. In each 
step, we add two children to v if v is currently a leaf, and 
only a single new leaf otherwise. This way, the num-
ber of leaves increases by exactly one in each step and 
the resulting tree T ∗ is phylogenetic (but in general not 
binary). From T ∗ , we obtain k ∈ {2, 8, 32} trees T1 , T2,..., 
Tk by random contraction of inner edges in (a copy of ) 
T ∗ . Each edge is considered for contraction indepen-
dently with a probability p ∈ {0.1, 0.5, 0.9} . Therefore, 
T ∗ is a refinement of Ti for all 1 ≤ i ≤ k , i.e., a common 
refinement exists by construction. However, in general 
we have H(T ∗) �=

⋃k
i=1H(Ti) , i.e., T ∗ is not necessarily 

the minimal common refinement of the Ti . The trees T1 , 
T2 , ..., Tk constructed in this manner serve as input for all 
algorithms.

The running time comparisons were performed using 
tralda on an off-the-shelf laptop (Intel® CoreTM 
i7-4702MQ processor, 16  GB RAM, Ubuntu 20.04, 
Python 3.7). The time required to compute a least 
resolved common refinement of the input trees is 
included in the respective total running time shown in 
Figs. 2 and 3 . The empirical performance data are con-
sistent with the theoretical result that LinCR scales line-
arly in k|L|. In particular, the median running times scale 

Fig. 3  Running time comparison of the algorithms for the construction of a common refinement of k input trees on leaf set L. Per combination of 
the parameters |L| (indicated on the horizontal axis), k (columns), and p (rows), 100 instances were simulated and median values are shown for all 
algorithms. In each row, a different probability p ∈ {0.1, 0.5, 0.9} for edge contraction was used to produce the k input trees
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linearly with |L|, as shown by the slopes of ≈ 1 in the log/
log plot for the running times of LinCR in Fig. 3.

In accordance with the theoretical complexity of 
O(k|L| log2(k|L|)) for the common refinement problem, 
the performance curve of BuildST is almost parallel to 
that of LinCR; however, its computation cost is higher 
by almost two orders of magnitude. Our implementation 
of BuildST uses an algorithm for dynamic graph con-
nectivity often referred to as HDT data structure [28] 
as originally described in [7]. While we do not expect 
BuildST to become competitive with the other algo-
rithms, we note that a recent experimental study showed 
that a simplified version of the HDT data structure (with 
a slightly worse asymptotic bound) outperforms the full 
version in practice [29]. For both LinCR and BuildST, 
the contraction probability p appears to have little effect 
on the running time. In both cases, a larger value of p 
(i.e., a lower average resolution of the input trees) leads to 
a moderate decrease of the running time.

In contrast, the resolution of the input trees has a large 
impact on the efficiency of BUILD. It also scales nearly lin-
early when the resolution of the individual input trees Ti is 
comparably high (and even terminates faster than LinCR 
up until a few hundred leaves, cf. top-right panel), whereas 
its performance drops drastically with increasing p, i.e., 
for poorly resolved input trees. The reason for this is most 
likely the cardinality of a minimal triple set that repre-
sents the set of input trees. For binary trees, the cardinal-
ity of the triple set of Ti equals the number of inner edges 
[23], i.e., there are O(|L|) triples. For very poorly resolved 
trees, on the other hand, O(|L|2) triples are required [24], 
matching the differences of the slopes with p observed for 
BUILD in Fig. 3.

As expected, the curves of the two O(k|L|) algorithms 
Merge_Trees and Loose_Cons_Tree are also almost 
parallel to that of LinCR in Fig. 3. For k = 2 , we can even 
observe that Merge_Trees is slightly faster than LinCR. 
However, the smaller number of necessary tree travers-
als in LinCR apparently becomes a noticeable advantage 
with an increasing number k of input trees. The additional 
tree processing steps in the more practically relevant 
Loose_Cons_Tree algorithm, furthermore, result in a 
longer running time compared to our new approach.

Concluding remarks
We developed a linear-time algorithm to compute the 
common refinement of trees on the same leaf set. In con-
trast to the “classical” supertree algorithms BUILD and 
BuildST, LinCR uses a bottom-up instead of a top-down 
strategy. This is similar to Loose_Cons_Tree and its 
subroutine Merge_Trees [18], which can also be used to 
obtain the common refinement of trees on the same leaf 
set in linear time. LinCR, however, requires fewer tree 

traversals and is, in our opinion, simpler to implement. 
In contrast to Merge_Trees , LinCR in particular does 
not rely on a data structure that enables linear-time tree 
preprocessing and constant-time last common ancestor 
queries for the nodes in the tree [30]. All algorithms were 
implemented in Python and are freely available for down-
load from https://​github.​com/​david-​schal​ler/​tralda as part 
of the tralda library. Empirical comparisons of running 
times show that LinCR consistently outperforms the lin-
ear-time alternatives. Only BUILD is faster for very small 
instances and moderate-size trees that are nearly binary.

Although it may be possible to improve Alg. 1 by a con-
stant factor, it is asymptotically optimal, since the input 
size is O(k|L|) for k trees with |L| leaves. Furthermore, 
trivial solutions can be obtained in some limiting cases. 
For instance, if |V (Ti)| = 2|L| − 1 , then Ti is binary, i.e., 
no further refinement is possible. In this case, we can 
immediately use T = Ti as the only viable candidate and 
only check that Tj displays all other Tj . However, we can-
not entirely omit Lines 1–24 in this case since we require 
the sets J(v) as well as the correspondence between the 
vertices in order to check whether T displays every Ti.

It is worth noting that the idea behind LinCR does 
not generalize to more general supertree problems. 
The main reason is that the set inclusions employed to 
determine ≺T  do not carry over to the more general case 
because the inclusion order of C1,C2 ∈ H(T ) cannot be 
determined from C1 ∩ L(Ti) and C2 ∩ L(Tj) for two trees 
with L(Ti), L(Tj) � L(T ).

Depending on the application, a negative answer to the 
existence of a common refinement may not be sufficient. 
One possibility is to resort to the loose consensus tree or 
possibly other notions of consensus trees, see e.g. [25, 31]. 
A natural alternative approach is to extract a maximum 
subset of consistent triples from 

⋃k
i=1 r(Ti) . This problem, 

however, is known to be NP-hard for arbitrary triple sets, 
see e.g. [32] and the references therein.
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