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Abstract 

The development of a privacy-preserving technology is important for accelerating genome data sharing. This study 
proposes an algorithm that securely searches a variable-length substring match between a query and a database 
sequence. Our concept hinges on a technique that efficiently applies FM-index for a secret-sharing scheme. More 
precisely, we developed an algorithm that can achieve a secure table lookup in such a way that V [V [. . . V [p0] . . .]] 
is computed for a given depth of recursion where p0 is an initial position, and V is a vector. We used the secure table 
lookup for vectors created based on FM-index. The notable feature of the secure table lookup is that time, communi-
cation, and round complexities are not dependent on the table length N, after the query input. Therefore, a substring 
match by reference to the FM-index-based table can also be conducted independently against the database length, 
and the entire search time is dramatically improved compared to previous approaches. We conducted an experiment 
using a human genome sequence with the length of 10 million as the database and a query with the length of 100 
and found that the query response time of our protocol was at least three orders of magnitude faster than a non-
indexed database search protocol under the realistic computation/network environment.
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Introduction
The dramatic reduction in the cost of genome sequenc-
ing has prompted increased interest in personal genome 
sequencing over the last 15 years. Extensive collections 
of personal genome sequences have been accumulated 
both in academic and industrial organizations, and there 
is now a global demand for sharing the data to acceler-
ate scientific research [1, 2]. As discussed in previous 
studies, disclosing personal genome information has a 
high privacy risk [3], so it is crucial to ensure that indi-
viduals’ privacy is protected upon data sharing. At pre-
sent, the most popular approach for this is to formulate 
and enforce a privacy policy, but it is a time-consum-
ing process to reach an agreement, especially among 

stakeholders with different legal backgrounds, which 
slows down the pace of research. Therefore, there is a 
strong demand for privacy-preserving technologies that 
can potentially compensate for or even replace the tra-
ditional policy-based approach [4, 5]. One important 
application that needs a privacy-preserving technol-
ogy is private genome sequence search, where different 
stakeholders respectively hold a query sequence and a 
database sequence and the goal is to let the query holder 
know the result while simultaneously keeping the query 
and the database private. Many studies have addressed 
the problem of how to compute exact or approximate edit 
distance or the longest common substring (LCS) through 
techniques based on homomorphic encryption [6–8] 
and secure multi-party computation (MPC) [9–15], or 
how to compute sequence similarity based on private set 
intersection [16]. While these studies can evaluate global 
sequence similarity for two sequences of similar length, 
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other studies address the problem of finding a substring 
between a query and a long genome sequence or a set of 
long genome sequences, with the aim of evaluating local 
sequence similarity [17–23]. Shimizu et  al. proposed an 
approach to combine an additive homomorphic encryp-
tion and index structures such as FM-index [24] and the 
positional Burrows-Wheeler transform [25] to find the 
longest prefix of a query that matches a database (LPM) 
and a set-maximal match for a collection of haplotypes 
[17]. Sudo et  al. used a similar approach and improved 
the time and communication complexities for LPM on a 
protein sequence by using a wavelet matrix [19]. Ishimaki 
et  al. improved the round complexity of a set-maximal 
match, though the search time was more than one order 
of magnitude slower than [17] due to the heavy computa-
tional cost caused by the fully homomorphic encryption 
[18]. Sotiraki et al. used the Goldreich-Micali-Wigderson 
protocol to build a suffix tree for a set-maximal match 
[20]. According to experiments by [21], the search time 
of [20] is one order of magnitude slower than [17, 21]. 
Mahdi et al. [21] used a garbled circuit to build a suffix 
tree for substring match and a set-maximal match under 
a different security assumption such that the tree-tra-
versal pattern is leaked to the cloud server. Chen et  al. 
[22] and Popic et  al. [23] found fixed-length substring 
matches using a one-way hash function or homomorphic 
encryption on a public cloud under a security assump-
tion such that the database is a public sequence and a 
query is leaked to a private cloud server.

In this study, we aim to improve privacy-preserving 
substring match under the security assumption such that 
both the query and the database sequence are strictly 
protected. We first propose a more efficient method 
for finding LPM, and then extend it to find the longest 
maximal exact match (LMEM), which is more practically 
important in bioinformatics. We designed the protocol 
for LMEM for ease of explanation, and the protocol can 
be applied to similar problems such as finding all maxi-
mal exact matches (MEMs) with a small modification. To 
our knowledge, this is the first study to address the prob-
lem of securely finding MEMs.

Our contribution
The time complexity of the previous studies [17, 19] 
include the factor of N  , and thus they do not scale well 
to a large database. For a similar reason, using secure 
matching protocols (e.g., [26]) for the shares (or tags in 
searchable encryption) of all substrings in a query and 
database is even worse in terms of time complexity. To 
achieve a real-time search on an actual genome database, 
we propose novel secret-sharing-based protocols that do 
not include the factor of N  in the time, communication, 

and round complexities for the search time (i.e., the time 
after the input of a query until the end of the search).

The basic idea of the protocols is to represent the data-
base string by a compressed index [24, 27] and store the 
index as a lookup table. LPM and MEMs are found by at 
most ℓ and 2ℓ table lookups respectively, where ℓ is the 
length of the query. More specifically, the table V  is ref-
erenced in a recursive manner; i.e., one needs to obtain 
V [j] , where j = V [i] , given i. To ensure security, we need 
to compute V [j] without seeing any element of V  . The 
key technical contribution of this study is an efficient 
protocol that achieves this type of recursive reference. 
We named the protocol secret-shared recursive oblivi-
ous transfer (ss-ROT). While the previous studies require 
O(N ) time complexity to ensure security, the time, com-
munication, and round complexities of ss-ROT  are all 
O(ℓ) for ℓ recursive table lookups, except for the prepa-
ration of the table and generation of shares before the 
query input. Since the entire protocols mainly consist of ℓ 
table lookups for LPM, and 2ℓ table lookups and 2ℓ inner 
product computations for LMEM, the search times for 
LPM and LMEM do not depend on the database size. In 
addition to the protocols based on ss-ROT, we developed 
a protocol to reduce data transfer size in the initial step 
by using a similar approach taken in ss-ROT. The pro-
tocol offers a reasonable trade-off between the amount 
of reduction in data transfer in the initial step and the 
increase in computational cost in the later step.

We implemented the proposed protocol and tested it 
on substrings of a human genome sequence 103 to 107 in 
length and confirmed that the actual CPU time and data 
transfer overhead were in good agreement with the theo-
retical complexities. We also found that the search time 
of our protocol was three orders of magnitude faster than 
that of the previous method [17, 19]. For conducting fur-
ther performance analysis, we designed and implemented 
baseline protocols using major techniques of secret-shar-
ing-based protocols. The results showed that the search 
times of our protocols were at least two orders of magni-
tude faster than those of the baseline protocols.

Preliminaries
Secure computation based on secret sharing
Here, we explain the 2-out-of-2 additive secret sharing 
((2, 2)-SS) scheme and how to securely compute arithme-
tic/Boolean gates (Fig. 1).

Secret sharing and secure computation In t-out-of-
n secret sharing (e.g., [28]), we split the secret value x 
into n pieces, and can reconstruct x by combining more 
or an equal number of t pieces. We call the split pieces 
“share”. The basic security notion for secret sharing is 
that we cannot obtain any information about x even 
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if we gather less than or equal to (t − 1) shares. In this 
paper, we consider a case with (t, n) = (2, 2) . A 2-out-
of-2 secret sharing ((2,  2)-SS) scheme over Z2n consists 
of two algorithms: Share and Reconst . Share takes as 
input x ∈ Z2n and outputs ([[x]]0, [[x]]1) ∈ Z

2
2n , where the 

bracket notation [[x]]i denotes the arithmetic share of the 
i-th party (for i ∈ {0, 1} ). We denote [[x]] = ([[x]]0, [[x]]1) 
as their shorthand. Reconst takes as inputs [[x]]0 and [[x]]1 
and outputs x. For arithmetic sharing [[x]]i and Boolean 
sharing [[x]]Bi  , we consider power-of-two integers n (e.g., 
n = 16 ) and n = 1 , respectively.

Depending on the secret sharing scheme, we can com-
pute arithmetic/Boolean gates over shares; that is, we can 
execute some kind of processing related to x without x. 
This means it is possible to perform some computation 
without violating the privacy of the secret data, and is 
called secure (multi-party) computation. It is known 
that we can execute arbitrary computation by combining 
basic arithmetic/Boolean gates. In the following para-
graphs, we show how to concretely compute these gates 
over shares.

Semi-honest secure two-party computation based on 
(2,  2)-Additive SS We use a standard (2,  2)-additive SS 
scheme, defined by

•	 Share(x) : randomly choose r ∈ Z2n and let [[x]]0 = r 
and [[x]]1 = x − r.

•	 Reconst([[x]]0, [[x]]1) : output [[x]]0 + [[x]]1.

Note that one of the shares of x ( [[x]]0 or [[x]]1 ) does not 
reveal any information about x. In Fig. 1, the secret value 
x = 2 is split into [[x]]0 = 4 and [[x]]1 = 6 . These are 
valid (2,  2)-additive shares because 4 + 6 ≡ 2 (mod 8) 
holds. Even if we can see [[x]]0 = 4 , we cannot decide the 
value of x since we execute a split of x uniformly at ran-
dom. This means, in Fig.  1, computing nodes P0 and P1 
cannot obtain any information about x as long as these 
two nodes do not collude. On the other hand, we can 

compute arithmetic ADD/MULT gates over shares as 
follows:

•	 [[z]] ← ADD([[x]], [[y]]) can be done locally by just 
adding each party’s share on x and on y. In Fig.  1 
(left), we show an example of secure addition. P0/P1 
obtain shares 6/7 by adding their two shares. In this 
process, P0/P1 cannot find they are computing 2+ 3.

•	 Multiplication is more complex than addition. There 
are various methods for multiplication over shares, 
most of which require communication between 
computing nodes. In this paper, we use the stand-
ard method for [[w]] ← MULT([[x]], [[y]]) based on 
Beaver triples (BT) [29]. Such a triple consists of 
bt0 = (a0, b0, c0) and bt1 = (a1, b1, c1) such that 
(a0 + a1)(b0 + b1) = (c0 + c1) . Hereafter, a, b, and 
c denote a0 + a1 , b0 + b1 , and c0 + c1 , respectively. 
We use these BTs as auxiliary inputs for computing 
MULT . Note that we can compute them in advance 
(or in offline phase) since they are independent of 
inputs [[x]] and [[y]] . We adopt a trusted initializer set-
ting (e.g., [30, 31]); that is, BTs are generated by the 
party other than two computing nodes and then dis-
tributed. In the online phase of MULT , each i-th party 
Pi ( i ∈ {0, 1} ) can compute the multiplication share 
[[z]] = [[xy]] as follows:

1)	 Pi first computes ([[x]]i − ai) and ([[y]]i − bi) , and 
sends them to P1−i.

2)	 Pi reconstructs x′ = x − a and y′ = y− b.
3)	 P0 computes [[z]]0 = x′y′ + x′b0 + y′a0 + c0 , and P1 

computes [[z]]1 = x′b1 + y′a1 + c1.
	 Here, [[z]]0 and [[z]]1 calculated with the above 

procedures are valid shares of xy; that is, 
Reconst([[z]]0, [[z]]1) = xy . We shorten the notations 
and write the ADD and MULT protocols simply as 
[[x]] + [[y]] and [[x]] · [[y]] , respectively.

Fig. 1  Arithmetic addition and multiplication over secret sharing
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We also write ADD(ADD([[xA]], [[xB]]), [[xC]]) as 
�c={A,B,C}[[xc]] . Note that, similarly to the ADD protocol, 
we can also locally compute multiplication by constant c, 
denoted by c · [[x]] . We can easily extend the above proto-
cols to Boolean gates. By converting + and − into ⊕ in the 
arithmetic ADD and MULT protocols, we can obtain the 
XOR and AND protocols, respectively. We can construct 
NOT and OR protocols from the properties of these 
gates. When we compute NOT([[x]]B0 , [[x]]B1 ) , P0 and P1 
output ¬[[x]]B0 and [[x]]B1 , respectively. When we compute 
OR([[x]]B, [[y]]B) , we compute ¬AND(¬[[x]]B,¬[[y]]B) . We 
shorten the notations and write XOR , AND , NOT , and 
OR simply as [[x]] ⊕ [[y]] , [[x]] ∧ [[y]] , ¬[[x]] , and [[x]] ∨ [[y]] , 
respectively. By combining the above gates, we can 
securely compute higher-level protocols. The function-
ality of the secure subprotocols [15] used in this paper 
are shown in Table  1. Due to space limits, we omit the 
details of their construction. Note that we can compute 
Choose  by [[z]] = [[y]] + [[e]] · ([[x]] − [[y]]) . In this paper, 
we consider the standard simulation-based security 
notion in the presence of semi-honest adversaries (for 
2PC), as in [32]. We show the definition in Appendix 2. 
Roughly speaking, this security notion guarantees the 
privacy of the secret under the condition that computing 
nodes do not deviate from the protocol; that is, although 
computing nodes are allowed to execute arbitrary attacks 
in their local, they do not (maliciously) manipulate trans-
mission data to other parties. The building blocks we 
adopt in this paper satisfy this security notion. Moreo-
ver, as described in [32], the composition theorem for 
the semi-honest model holds; that is, any protocol is pri-
vately computed as long as its subroutines are privately 
computed.

Index structure for string search
Notation and definition � denotes a set of ordered sym-
bols. A string consists of symbols in � . We denote a lexi-
cographical order of two strings S and S′ by S ≤ S′ (i.e., A 
< C < G < T and AAA < AAC). We denote the i-th letter 
of a string S by S[i] and a substring starting from the i-
th letter to the j-th letter by S[i, j]. The index starts with 

0. The length of S is denoted by |S|. A reverse string of 
S (i.e., S[|S| − 1], . . . , S[0] ) is denoted by Ŝ . We consider 
a direction from the i-th position to the j-th position as 
rightward if i < j and leftward otherwise.

Given a query w and a database S, we define the long-
est prefix that matches a database string (LPM) by 
max(0,j){j|w[0, . . . , j] = S[k , . . . , l]} , where 0 ≤ j < ℓ and 
0 ≤ k ≤ l < N  , and the longest maximal exact match 
(LMEM) by max(i,j){j − i|w[i, . . . , j] = S[k , . . . , l]} , where 
0 ≤ i ≤ j < ℓ and 0 ≤ k ≤ l < N .

FM-Index and related data structures FM-Index [24] 
and related data structures [27] are widely used for 
genome sequence search. Given a query string w of 
length ℓ and a database string S of length N, [24] enables 
LPM to be found in O(ℓ) time regardless of N, and it also 
enables LMEM to be found in O(ℓ) if auxiliary data struc-
tures are used [27]. Given all the suffixes of a string S: 
S[0, . . . , |S| − 1] , S[1, . . . , |S| − 1], . . . , S[|S| − 1] , a suffix 
array is an array of positions (p0, . . . , p|S|−1) such  
that S[p0, . . . , |S| − 1] ≤ S[p1, . . . , |S| − 1] ≤ S[p2, . . . ,
|S| − 1], . . . ,≤ S[p|S|−1, . . . , |S| − 1] . We denote the suffix 
array of S by SA and denote its i-th element by SA[i]. A 
Burrows-Wheeler transform (BWT) is a permutation of 
the sequence S such that its i-th letter becomes 
S[SA[i] − 1] . We denote a BWT of S by L and denote its 
i-th letter by L[i]. Let us define a rank of S for a letter 
c ∈ � at position t by Rankc(t, S) = |{j|S[j] = c, 0 ≤ j < t}| 
and a count of occurrences of letters that are lexicograph-
ically smaller than c in S by CFc(S) =

∑

r<c Rankr(|S|, S) , 
and the operation LFc(i, S) = CFc(L)+ Rankc(i, L) . The 
match between w and S is reported as a form of left-
closed and right-open interval on SA, and the lower and 
upper bounds of the interval are respectively computed 
by LF . Given a letter c and an interval [f,  g) that corre-
sponds to suffixes that share the prefix x (i.e., [f, g) reports 
the locations of the substring x in S), we can find a new 
interval that corresponds to all suffixes that share the 
prefix cx (i.e., locations of the substring cx) by

The leftward extension of the match is called a backward 
search, which is the main functionality of FM-Index. By 
starting the search with the initial interval [0, N) and con-
ducting the backward searches for w[ℓ− 1],w[ℓ− 2], . . . , 
the longest suffix match is detected when f = g . Rank 
and CF are precomputed and stored in an efficient from 
that can be searched in constant time. Therefore, the 
longest suffix match can be computed in O(ℓ) time. LPM 
is found if the search is conducted on Ŝ and match is 
extended by w[0],w[1], . . . ,w[ℓ− 1].

Searching LMEM by repeating LPM for 
w[0, . . . , ℓ− 1],w[1, . . . , ℓ− 1],w[2, . . . , ℓ− 1], . . . ,w[ℓ− 1] takes 

(1)[f ′, g ′) = [LFc(f , S),LFc(g , S)).

Table 1  Secure subprotocols used in this paper

Input Output

Equality [[x]] , [[y]] [[z]]B s.t. z = 1 if x = y otherwise z = 0

Comp [[x]] , [[y]] [[z]]B s.t. z = 1 if x < y otherwise z = 0

CastUp [[x]] ∈ Z2n , n′ [[x]] ∈ Z2n
′ ( n < n′)

B2A [[x]]B [[x]]
Choose [[x]] , [[y]] , [[e ∈ {0, 1}]] [[z]] s.t. z = x if e = 1 , otherwise ( e = 0 ) 

z = y
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O(ℓ2) time. We can improve it to O(ℓ) time by using 
the longest common prefix (LCP) array and related 
data structures [27]. The LCP array, denoted by LCP , 
is an array that stores the length of the longest prefix 
of S[SA[i − 1], |S| − 1] and S[SA[i], |S| − 1] in LCP[i] 
for 0 < i ≤ N  . The lcp-interval [i,  j) of lcp-value d is an 
interval such that it satisfies LCP[i] < d , LCP[j] < d , 
LCP[k] > d for all k ∈ {i + 1, . . . , j − 1} , and LCP[k] = d 
for at least one k ∈ {i + 1, . . . , j − 1} , and is denoted by 
d − [i, j) . d − [i, j) corresponds to all the suffixes that 
share the prefix S[SA[i], . . . , SA[i] + d − 1] . The parent 
interval of d − [i, j) is the lcp-interval h− [m, n) such 
that h < d and 0 ≤ m ≤ i < j ≤ n < N  , and there is 
no other lcp-interval t − [r, s) such that h < t < d and 
0 ≤ m ≤ r ≤ i < j ≤ s ≤ n < N  . The parent of the lcp-
interval [f, g) can be found by

where PSV[i] = max{j|0 ≤ j < i ∧ LCP[j] < LCP[i]} and  
NSV[i] = min{j|i ≤ j < N ∧ LCP[j] < LCP[i]} . By find-
ing a parent interval using PSV and NSV whenever it 
fails to extend the match, we can avoid useless backward 
searches, and thus LMEM is found at most 2ℓ backward 
searches. LCP , PSV and NSV are precomputed and 
stored in an efficient form that can be searched in con-
stant time, so we can find LMEM in O(ℓ) time. See sec-
tion  5.2 of [27] for more details of the data structures. 
Examples of the search by FM-Index, LCP , PSV , and 
NSV are provided in Appendix 1.

Proposed protocols
Problem setting and outline of our protocols
We assume that a query holder A , a database holder B , 
and two computing nodes P0 and P1 participate the pro-
tocol. A holds a query string w of length ℓ and B holds a 
database string T  of length N  . After the protocol is run, 

(2)

[f ′, g ′) =
{
[PSV[fi],NSV[fi]) LCP[gi] ≤ LCP[fi]
[PSV[gi],NSV[gi]) (otherwise),

only A knows LPM or LMEM between w and T  . P0 and 
P1 do not obtain any information of w and T  , except for 
ℓ and N .

Our protocol consists of offline, DB preparation, and 
Search phases. In the offline phase, B generates BTs (cor-
related randomness used for multiplication) and sends 
them to P0 and P1 . In the DB preparation phase, B cre-
ates a lookup table and distributes its shares to P0 and 
P1 . In the Search phase, A generates shares of the query 
and sends them to P0 and P1 , and P0 and P1 jointly com-
pute the result without obtaining any information of 
the lookup table. Finally, A obtains the results. Figure 2 
shows the schematic view of our goal and model. Note 
that the offline and DB preparation phases do not depend 
on a query string, so they can be computed in advance 
for multiple queries.

In section "Secret-shared recursive oblivious transfer", 
we propose the important building block ss-ROT  that 
enables recursive reference to a lookup table. In sec-
tion "Secure LPM", we describe how to design the lookup 
table based on FM-Index, and propose an efficient pro-
tocol for LPM by using the lookup table and ss-ROT. In 
section "Secure LMEM", we describe the additional table 
design for auxiliary data structures, and propose the 
complete protocol for LMEM. Table  2 summarizes the 
theoretical complexities of the three protocols. For com-
parison, the complexities of the baseline protocols and a 
previous method for LPM based on an additive homo-
morphic encryption [17, 19] are shown. As we men-
tioned in section  "Introduction", the baseline protocols 
are designed using major techniques of secret-sharing-
based protocols. The detailed algorithms are described in 
Appendix 3.

Secret‑shared recursive oblivious transfer
We define a problem called a secret-shared recursive 
oblivious transfer (ss-ROT) as follows.

Fig. 2  Schematic view of our goal and model. (0) Server (DB holder) distributes Beaver triples. (A reliable third party can serve as the trusted 
initializer instead.) (1) Server distributes shares of the database. (2) User (query holder) distributes shares of the query. (3) The computing nodes 
jointly calculate shares of the result. (4) The results are sent to User. The offline phase is (0), DB preparation phase is (1), and Search phase consists of 
(2)–(4)
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Definition 1  We assume a database holder B and two  
computing nodes P0 and P1 participate the protocol. B  
holds a vector V of length N  and 0 ≤ V [i] < N  . Given the 
initial position p0 and the depth of recursion ℓ (2 ≤ ℓ) , 
the secret-shared recursive oblivious transfer protocol 
outputs shares of

without leaking V to P0 and P1.

For simplicity, we denote the recursion of Eq.  3 by 
V (ℓ)[p0] (e.g., V [V [p0]] is denoted by V (2)[p0] ). In our 
protocol, all the random values are uniformly generated 
from Z2n.

DB preparation phase B generates ℓ− 1 random val-
ues r0, . . . , rℓ−2 and computes the following vectors 
R0, . . . ,Rℓ−1 . Each vector Rj has N  elements.

(3)
V [V [· · ·V
︸ ︷︷ ︸

ℓ

[p0] · · · ]]

(4)

Rj[i] =







(V [i] + rj) mod N (j = 0)

(V [(i − rj−1) mod N ] + rj) mod N (1 ≤ j ≤ ℓ− 2)

(V [(i − rj−1) mod N ]) mod N (j = ℓ− 1)

B computes Share(Rj[i]) and sends [[Rj[i]]]0 and [[Rj[i]]]1 
to P0 and P1 , for i = 0, . . . ,N − 1 and j = 0, . . . , ℓ− 1.

Search phase The Search phase consists of two steps 
and is described in Lines 2–5 of Protocol  1. The input 
is the initial position p0 and shares of R. The output is 
[[V (ℓ)[p0]]] . An example of a search is illustrated in Fig. 3.

Security intuition
In the DB preparation phase of ss-ROT, B does not 
disclose any private values, and P0 and P1 receive the 
shares. In the Search phase, all the messages exchanged 
between P0 and P1 are shares except for the result of 
Reconst in Step 1. In the j-th step of the loop in Step 1, 
pj+1 = Rj[pj] = (V (j+1)[p0] + rj) mod N is reconstructed. 
Since the reconstructed value is randomized by rj , no 
information is leaked. Note that for each vector Rj , all 
the elements Rj[0], . . . ,Rj[N − 1] are randomized by the 
same value rj , but only one of them is reconstructed, 
and different random numbers r0, . . . , rℓ−1 are used for 
R0, . . . ,Rℓ−1 . In Step 2, P0 and P1 output a result, and no 
information other than the result is leaked.

Table 2  Summary of complexities for our protocols and related protocols

BTime and Bsize are generation time and size of BTs. Dtime and Dsize are generation time for the shares of the database and size of the shares. Stime is the time for 
Search phase. Comm. is the size of data exchanged between computing nodes. Round is the number of data exchanges

Btime Bsize Dtime Dsize Stime Comm. Round

ss-ROT (proposed) 0 0 ℓN ℓN ℓ ℓ ℓ

Secure LPM (proposed) ℓ ℓ ℓN ℓN ℓ ℓ ℓ

[17, 19] (LPM by AHE) − − − − ℓN ℓ
√
N ℓ

Baseline LPM ℓ2N ℓ2N N N ℓ2N ℓ2N log ℓ+ logN

Secure LMEM (proposed) ℓ2 ℓ2 ℓN ℓN ℓ2 ℓ2 ℓ

Baseline LMEM ℓ3N ℓ3N N N ℓ3N ℓ3N log ℓ+ logN
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Security

Theorem  1  ss-ROT   is correct and secure in the semi-
honest model.

Proof  Correctness and security of ss-ROT protocol are 
proved as follows.

Correctness. We assume the following equation.

In Step1, for j = 0 , the protocol computes p1 by recon-
structing R0[p0] . From the definition of Rj[i] in Eq. 4,

For j = k , the protocol computes pk+1 by reconstruct-
ing Rk [pk ] . From the definition of Rj[i] in Eq. 4 and the 
assumption of Eq. 5,

Eq. 5 holds for i = 1 by Eq. 6. It also holds for i = k + 1 
under the assumption that Eq. 5 holds for i = k . There-
fore by induction, Eq. 5 holds for i = 1, . . . , ℓ− 1.

In Step 2, P0 and P1 output [[Rℓ−1[pℓ−1]]] . Since Eq.  5 
holds for i = ℓ− 1,

is transformed into (V (ℓ)[p0]) mod N by plugging in 
pℓ−1 = V (ℓ−1)[p0] + rℓ−2 . Therefore the final output of 
ss-ROT  becomes (V (ℓ)[p0]) mod N . The above argument 
completes the proof of correctness of Theorem 1.

Security. Since the roles of P0 and P1 are symmetric, it is 
sufficient to consider the case when P0 is corrupted. The 

(5)pi = (V (i)[p0] + ri−1) mod N

(6)p1 = R0[p0] = (V (1)[p0] + r0) mod N .

(7)

pk+1 = Rk [pk ] =(V [ (pk − rk−1) mod N ] + rk) mod N

=(V [V (k)[p0] ] + rk) mod N

=(V (k+1)[p0] + rk) mod N .

Rℓ−1[pℓ−1] = (V [(pℓ−1 − rℓ−2) mod N ]) mod N

Fig. 3  Example of a search when V = (2, 0, 3, 1) , p0 = 2 , and ℓ = 4 . The goal is to compute [[V (4)[2] ]] = [[2]] . Here we assume B generates 
r0 = 1, r1 = 2, r2 = 1 . In Step 1 of Search phase, P0 and P1 jointly compute Reconst([[R0[2] ]]0, [[R0[2] ]]1) to obtain R0[2] = 0 . ( R0[2] is randomized 
by r0 , so any element of V is leaked.) In a similar way, P0 and P1 compute R1[0] = 3 and R2[3] = 1 . In Step 2, P0 and P1 output [[R3[1] ]]0 and 
[[R3[1] ]]1 respectively. Since R0[2] = V [2] + r0 , R1[V [2] + r0] = V [V [2] + r0 − r0] + r1 , R2[V [V [2]] + r1] = V [V [V [2]] + r1 − r1] + r2 , and 
R3[V [V [V [2]]] + r2] = V [V [V [V [2]]] + r2 − r2] , ss-ROT successfully computes [[V (4)[2] ]]

input to P0 is p0 and ℓ , and output of P0 is V (ℓ)[p0] . The 
function achieved by Protocol 1 is deterministic and the 
protocol is correct. Therefore, to ensure the security of 
Protocol 1, we need to prove existence of a probabilistic 
polynomial-time simulator S such that

where X is P0 ’s view. X consists of:

•	 [[Rj[i]]]0 for i = 0, . . . ,N − 1 and j = 0, . . . , ℓ− 1 (a 
message from B)

•	 [[Rj[pj]]]1 (j-th message from P1 ) for j = 0, . . . , ℓ− 1

•	 pj (j-th value obtained by Reconst([[Rj[pj]]]0, [[Rj[pj]]]1) 
in Step1) for j = 1, . . . , ℓ− 1.

All the messages from B and P1 are uniformly at 
random in Z2n , as they are generated by Share . 
pj + 1 = Reconst([[Rj[pj]]]0, [[R

j[pj]]]1) holds for j = 0, . . . , ℓ− 2 , 
and V (ℓ)[p0] = Reconst([[Rℓ−1[pℓ−1]]]0, [[Rℓ−1[pℓ−1]]]1) 
holds. p1 = R0[p0], p2 = R1[p1], . . . , pℓ−1 = Rℓ−2[pℓ−2] 
are uniformly at random in ZN from the definition of 
Eq. 4.
Let us denote a random number u chosen from a set 
U uniformly at random by u

R∈U . We construct S as 
described in Protocol  2. The output of S is R̃0 ∈ Z

ℓ×N
2n  , 

R̃1 ∈ Z
ℓ
2n , and p̃1, . . . , p̃ℓ−1 . In Line  6 and Line  9, 

p̃1, . . . , p̃ℓ−1 are generated such that they are uniformly at 
random in ZN . In Line 7, R̃0

j[p0] and R̃1[0] are generated 
by Share such that they are shares of p̃1 and uniformly 
at random in Z2n . In Line 10, R̃0

j[p̃j] and R̃1[j] are gener-
ated by Share such that they are shares of p̃j+1 and uni-
formly at random in Z2n for j = 1, . . . , ℓ− 2 . In Line 12, 
R̃0

j[p̃ℓ−1] and R̃1[ℓ− 1] are generated by Share such that 
they are shares of V (ℓ)[p0] and uniformly at random in 
Z2n . All the elements of R̃0 except for R̃0

0[p0] and R̃0
j[p̃j] 

( j = 1, . . . , ℓ− 1 ) are uniformly at random in Z2n by 
Line  3. Therefore, Eq.  8 holds. By the above discussion, 
we find our ss-ROT satisfies security in the semi-honest 
model. � �

(8){(S(p0, ℓ,V (ℓ)[p0]),V (ℓ)[p0])} ≡ {(X ,V (ℓ)[p0])},
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Complexities
In the DB preparation phase, B generates shares of V of 
length N  for ℓ times. Therefore, time and communication 
complexities are O(ℓN ) . For the Search phase, Reconst is 
computed ℓ times in Step 1. Since the time, communica-
tion, and round complexities of Reconst are O(1), those 
of the Search phase become O(ℓ).

Secure LPM
Construction of lookup table The goal is to find LPM 
securely. To apply FM-Index for a prefix search, the 
reverse string of T  (i.e., T̂  ) is used. The backward search 
of FM-Index is formulated by Eq.  1. If we precompute 
LFc(i, T̂ ) for i = 0, . . . ,N  and c ∈ {A,T,G,C} , and store 
them in a lookup table that consists of four vectors: 
VA , VC , VG , and VT such that Vc[i] = LFc(i, T̂ ) , Eq.  1 is 
replaced by the following table lookup

I.e., starting with the initial interval [f0 = 0, g0 = N ) , we 
can compute the match by recursively referring to the 
lookup table while f < g.

Protocol overview The key idea of Secure LPM is to 
refer to V by ss-ROT, i.e., P0 and P1 jointly refer to V ℓ 
times in a recursive manner. To achieve backward 
search, P0 and P1 need to select Vx[·] for each refer-
ence, where x is a query letter to be searched with. This 
is achieved by expressing the query letter by unary code 

(9)fk+1 = Vw[k][fk ], gk+1 = Vw[k][gk ].

(Eq. 11 ) and computing the inner product of Eq. 11 and 
(VA[·],VC[·],VG[·],VT[·]) . To find LPM, P0 and P1 need 
to check f = g for each reference. We use the subproto-
col Equality to check it securely. Since V is randomized 
with different numbers for searching f and g, the dif-
ference of the random numbers is precomputed and 
removed securely upon the equality check. A receives 
only the result of each equality check to know LPM. For 
example, LPM is the prefix of length i − 1 when f = g for 
the i-th reference. If f  = g for all references, LPM is the 
entire query.

DB preparation phaseB creates a lookup table and 
generates the following 4ℓ vectors in a similar manner 
to ss-ROT. For simplicity, we denote the length of Vc by 
N ′ = N + 1.

R
j
c,f [i] is used for computing the lower bound f of the 

interval [f,  g). We also generate Rj
c,g [i] for the upper 

bound g. R consists of 8ℓ vectors, each of length N ′ . Since 
the longest match is found when f = g , B also generates 
a vector r′[j] = (r

j
f − r

j
g ) mod N ′ that is used for equality 

check of f and g. Then, B sends shares of Rj
c,f [i] , R

j
c,g [i] , 

and r′[j] to P0 and P1.

(10)

R
j
c,f [i] =

{

(Vc[i] + r
j
f ) mod N ′ (j = 0)

(Vc[(i − r
j−1

f ) mod N ′ ] + r
j
f ) mod N ′ (1 ≤ j < ℓ)
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and LFw[j](g ′, T̂ )+ r
j
g in Lines 5–8 without leaking f ′ and 

g ′ , where [f ′, g ′) corresponds to the match of w[0,  j] and 
T̂  . In Lines 10–13, the equality of f ′ and g ′ is examined 
for all rounds. Note that different values rj−1

f  and rj−1
g  are 

used for fj = (f ′ − r
j−1

f ) mod N ′ and gj = (g ′ − r
j−1
g ) mod N ′ 

in order to conceal f ′ and g ′ . Since f ′ , g ′ , rj−1

f  , 
r
j−1
g , r′[j − 1] ∈ {0, . . . ,N ′ − 1} , it is sufficient to check if 
fj − gj − r′[j − 1] is equal to either one of −N ′, 0, and N ′ . 
In Lines 16–18, A receives all the results of equality 
checks (i.e., [[o[1]]]B, . . . , [[o[ℓ]]]B ) from P0 and P1 , and 
knows LPM by reconstructing them. For example, if w =
GCT and o = (0, 0, 1) , A knows that LPM is GC.

Fig. 4  Example of a secure table lookup when w = GCT and T̂  = ACGT. Only the lookup for a lower bound is shown. For simplicity, Rjc,f  and rjf  
are denoted by Rjc and rj . LFw[i](fi , T̂ ) ( i = 0, 1, 2 ) is computed by VG[0], VC[2] , and VT[1] . V is referenced securely by using R. R0

G
[0] is computed by 

∑

c∈� qc[0] · Rc[0] . R1C[2+ r0] is computed by 
∑

c∈� qc[1] · Rc[2+ r0] . R2
T
[1+ r1] is computed by 

∑

c∈� qc[2] · Rc[1+ r1]

Search phase Protocol 3 describes the algorithm in detail. 
A generates four vectors qA , qC , qG , qT , each of length ℓ , 
as follows.

For each j, (qA[j], qC[j], qG[j], qT[j]) encodes w[j] (e.g., 
(qA[j], qC[j], qG[j], qT[j]) = (1, 0, 0, 0) if w[j] = A ). The aim 
of the encode is to compute [[Rx[j]]] = [[∑c∈� qc[j] · Rc[j]]] 
when w[j] = x . Figure 4 illustrates an example of the table 
lookup.
A generates shares of qA , qC , qG , qT and distributes 

them to P0 and P1 . P0 and P1 compute LFw[j](f ′, T̂ )+ r
j
f  

(11)qc[j] =
{
1 (c = w[j])
0 (c �= w[j])
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Security

Theorem 2  Protocol 3 is correct and secure in the semi-
honest model.

Proof  Correctness and security of Protocol 3 are proved 
as follows.

Correctness. The lookup table V simply stores all possible 
outputs of LF . Therefore, backward search (Eq.  1) is 
equivalent to Eq.  9. For the case of querying w, 
Vw[k−1][· · ·Vw[0][p0] · · · ] becomes lower bound f (for 
p0 = 0 ) or upper bound g (for p0 = N  ) of the interval 
that corresponds to the prefix match of length k. In Line 
5 of Protocol  3, [[Rk

A,f [fk ] × qA[k] + Rk
C,f [fk ] × qC[k]

+Rk
G,f [fk ] × qG[k] + Rk

T,f [fk ] × qT[k]]] is computed. Since 
qw[j][j] = 1 and qc[j] = 0 ( c  = w[j] ), it is equivalent to 
[[Rk

w[k],f [fk ]]] . Line 6 computes [[Rj
w[k],g [gk ]]] in the same 

manner. Each vector Rj
c,f  in Eq.  10 is generated in the 

same manner as Rj in Eq. 4. Since Eq. 10 uses the com-
mon random values rjf  and rj−1

f  for Rj
A,f  , R

j
C,f  , R

j
G,f  , R

j
T,f  , 

we can recursively reference Vc ( c ∈ { A, C, G, T } ),  
which is obvious from the correctness of ss-ROT.  
 Therefore, the recursion by Line 5 and Line 7 can  
compute (Vw[k−1][· · ·Vw[0][f0] · · · ] + rk−1

f ) mod N ′ , and 
the recursion by Line 6 and Line 8 can also compute 
(Vw[k−1][· · ·Vw[0][g0] · · · ] + rk−1

g ) mod N ′.

The longest match is found when the interval width 
becomes 0. Since fk = (Vw[k−1][· · ·Vw[0][f0] · · · ] + rk−1

f ) mod N ′ 
and gk = (Vw[k−1][· · ·Vw[0][g0] · · · ] + rk−1

g ) mod N ′ are 
randomized, Line 11 computes fk − gk − (r′[k − 1] =
(rk−1

f − rk−1
g ) mod N ′) to obtain the correct interval width. 

When the width is 0, d becomes either one of 0, N ′ and 
−N ′ . Therefore, Line 12 computes the equality d and 0, 
N ′ and −N ′ respectively. By reconstructing all the results 
in Lines 16–18, A knows the round, in which the interval 
width becomes 0; i.e., he/she knows LPM. The above 
argument completes the proof of correctness of 
Theorem 2.

Security We only show a sketch of the proof. For Lines 
1–2 of Protocol 3, A and B do not disclose any private 
values, and P0 and P1 receive the shares. For Lines 
3–14, it is guaranteed by the subprotocols ADD , MULT , 
and Equality that all the messages exchanged between 
P0 and P1 are shares except for the output of Reconst 

in Lines 7–8. (see section  "Secure computation based 
on secret sharing" for details of the subprotocols.) In 
Lines 7–8, reconstructed values are Rk

w[j],f [fj] and 
Rk
w[j],g [gj] . Since the values are (Vw[j][fj] + r

j
f ) mod N ′ and 

(Vw[j][gj] + r
j
g ) mod N ′ according to Eq.  10, it is obvious 

that V is randomized for all rounds j = 0, . . . , ℓ− 1 , 
and no information is leaked. For Lines 14–17, only 
the output of Equality at Line 11 is reconstructed. The 
reconstructed values are either 1 or 0 according to 
Equality , and no information other than the result is 
leaked.�  �

A may reveal T  by making many queries. Such a problem 
is called output privacy. Although output privacy is out-
side of the scope of this paper, we should mention here 
that A needs to make an unrealistically large number of 
queries for obtaining T  by such a brute-force attack, con-
sidering that N  is very long.

Complexities
The DB preparation phase generates shares of Rj

c,f  and 
R
j
c,g ( c ∈ � and 0 ≤ j < ℓ ); i.e., 8× ℓ vectors of length N ′ . 

Therefore, the time and communication complexities are 
O(ℓN ) . For the Search phase, MULT and Reconst are 
computed twice in Lines 4–9 for ℓ rounds and Equality is 
computed once in Lines 10–13 for ℓ rounds. Note that 
Equality is computed in parallel, and the number of 
round can be reduced to a constant number. Each time, 
the communication and round complexities of these sub-
protocols are O(1), so those of the Search phase become 
O(ℓ).

Secure LMEM
Construction of lookup table As described in sec-
tion  "Index structure for string search", we can find a 
parent interval by a reference to LCP , PSV , and NSV . 
Therefore, in addition to Vc defined in section  "Secure 
LPM", we prepare lookup tables that simply store all the 
outputs of them; i.e., Vlcp[i] = LCP[i] , Vpsv[i] = PSV[i] , 
and Vnsv[i] = NSV[i].

DB preparation phase B generates randomized vectors 
Rc,f  , Rc,g and r′[j] = (r

j
f − r

j
g ) mod N ′ using the same algo-

rithm in section "Secure LPM" for length 2ℓ . As shown in 
Eq. 2, Vlcp is referred by the upper and lower bounds of 
[f, g). Therefore, B generates following circular permuta-
tions of Vlcp such that Wl,f  and Rc,f  , and Wl,g and Rc,g , are 
permutated by the same random values, respectively. I.e.,
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where x is either f or g. Vpsv is referred by both f and g, and 
is plugged in to f. Therefore, B generates Wj

p,f  and Wj
p,g 

such that both of them are randomized by rjf  , and Wj
p,f  is 

permutated by rj−1

f  and Wj
p,g is permutated by rj−1

g  as 
follows.

 Similarly, Vnsv is referred by both f and g, and is plugged 
in to g. Therefore, B generates Wj

n,f [i] and Wj
n,g [i] as 

follows.

 B distributes shares of Rc,f  , Rc,g , r′ , Wl,f  , Wl,g , Wp,f  , Wp,g , 
Wn,f  , and Wn,g to P0 and P1.

Search phase Protocol  4 describes the algorithm in 
detail. A generates query vectors qA , qC , qG , qT by Eq. 11 
and distributes shares of the vectors to P0 and P1 . In Line 
6 of Protocol 4, [f̂ , ĝ) is computed by the reference to R 
(i.e., a search based on a backward search) similarly to 
Lines 5–6 of Protocol 3. In Line 11, [fex, gex) is computed 
by the reference to W (i.e., a search based on LCP , PSV 
and NSV ). In Line 13, the interval is updated by either 
[f̂ , ĝ) or [fex, gex) based on the result of f ′ = g ′ in Lines 
7–9, where [f ′, g ′) corresponds to the interval that corre-
sponds to a substring match.

In each round, we need to know a query letter to be 
searched with, so we need to maintain the right end 
position of the match in the query. The position moves 
toward the right while the match is extended, but remains 
the same when the interval is updated based on PSV and 
NSV . To memorize the position, we prepare shares of 
a unit bit vector u of length ℓ , in which the position t is 
memorized as u[t] = 1 and u[i �= t] = 0 . In Lines 20–23, 
u remains the same if the interval is updated based 
on PSV and NSV , and u = (0,u[0],u[1], . . . ,u[ℓ− 2]) 

W
j
l,x[i] =

{
Vlcp[i] (j = 0)

Vlcp[(i − r
j−1
x ) mod N ] (1 ≤ j < 2ℓ),

W
j
p,f [i] =

{

(Vpsv[i] + r
j
f ) mod N (j = 0)

(Vpsv[(i − r
j−1

f ) mod N ] + r
j
f ) mod N (1 ≤ j < 2ℓ)

W
j
p,g [i] =

{

(Vpsv[i] + r
j
g ) mod N (j = 0)

(Vpsv[(i − r
j−1
g ) mod N ] + r

j
f ) mod N (1 ≤ j < 2ℓ)

W
j
n,f [i] =

{

(Vnsv[i] + r
j
f ) mod N (j = 0)

(Vnsv[(i − r
j−1

f ) mod N ] + r
j
g ) mod N (1 ≤ j < 2ℓ)

W
j
n,g [i] =

{

(Vnsv[i] + r
j
g ) mod N (j = 0)

(Vnsv[(i − r
j−1
g ) mod N ] + r

j
g ) mod N (1 ≤ j < 2ℓ)

otherwise. When the search is finished (e.g., the right 
end of a match exceeds the right end of the query) 
u = (0, . . . , 0) . Therefore in Lines 25–28, x = 1 while the 
right end of a match dose not exceed the right end of 
the query and x = 1 after finishing the search. In Lines 
29–31, the inner product of qc ( c ∈ � ) and u becomes the 
encode of w[t] that is used for the next round.

We also maintain the left end position of the match. 
While the match is extended, the position remains the 
same and it moves toward the right when the interval 
is updated by [fex, gex) . The new left end position can be 
computed by p+m− c where p is the current position, 
m is the length of the current match, and c is the lcp-
value of [fex, gex) (i.e., the longest common prefix length of 
suffixes contained in [fex, gex) ). The position is computed 
in Line 33. The match length is incremented by 1 for 
each extension while the right end of the match does not 
exceed the query length. When the interval is updated 
by [fex, gex) , the match length is reduced to the lcp-value 
of [fex, gex) , which is computed by max(LCP[f ], LCP[g]) . 
The match length is computed in Line 32. In Line 35, 
the longest match length and the corresponding left end 
position are updated. After all the positions in the query 
have been examined, LMEM and its left end position are 
sent to A in Line 37.

Security

Theorem 3  Protocol 4 is correct and secure in the semi-
honest model.

Proof  Correctness and security of Protocol 4 are proved 
as follows. Correctness. V, R, r′ and q are generated by the 
same algorithm used in Protocol  3. Therefore, Line 6 is 
equivalent to a backward search, and e1 is the result of 
the equality check of 0 and the width of the obtained 
interval in Lines 7-8. The lookup tables Vlcp , Vpsv , and Vnsv 
store all the outputs of LCP , PSV and NSV , and Wl , Wp , 
and Wn are generated based on Vlcp , Vpsv , and Vnsv , 
respectively. Since Wj

l,f  and Wj
l,g are circular permutations 

of Vlcp by the same random values rj−1

f  and rj−1
g  that are 

used for generating Rc,f  and Rc,g (c ∈ �) respectively, Line 
8 can compute LCP[gj] ≤ LCP[fj] and e2 holds the result. 
By using Choose  and e2, either [Wj

p,f [fj],W
j
n,f [fj]) or 

[Wj
p,g [gj],Wj

n,g [gj]) is selected. Wj
p,f  and Wj

p,g are permu-
tated by rj−1

f  and rj−1
g  , but are randomized by the identi-
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cal random value rjf  . Similarly, Wj
n,f  and Wj

n,g are permu-
tated by rj−1

f  and rj−1
g  , but are randomized by rjg . Since 

Wp,f [fj] and Wj
n,g [gj] are generated in the same manner as 

Rc,f  and Rc,g , it is obvious that the reference by them is 
correct. The reference by Wj

n,f [fj] is transformed into

and the reference by Wj
p,f [gj] is transformed into

where Xj+1 is any one of Rj+1
c  , Wj+1

p  and Wj+1
n  , and Vx is 

the corresponding lookup table; i.e., either one of Vc , Vpsv 
and Vnsv . Note that Vx could be a different table for each 
j + 1 , but we abuse the same notation for simplicity of 
notation. Since fj and gj are described in the form of 
V

(j)
x [p0] + r

j−1

f  and V (j)
x [p′0] + r

j−1
g  based on Eq. 5, Eq. 12 

and Eq.  13 are transformed into V (j+2)
x [p0] + r

j+1
g  and 

V
(j+2)
x [p′0] + r

j+1

f  , which also satisfy the recursion form of 
Eq.  5. Thus, the intervals [Wj

p,f [fj],W
j
n,f [fj]) and 

[Wj
p,g [gj],Wj

n,g [gj]) are correct intervals and Line  11 is 
equivalent to computing Eq. 2.

Lines 16–23, u remains the same if e1 = 0 and 
u = (0,u[0],u[1], . . . ,u[ℓ− 2]) otherwise. Therefore 
Lines 29–31 can choose the letter to be searched with. 
The match length and the start position are obtained 
based on e1 in Lines 32–33, and the longest value and the 
corresponding position are selected in Lines 34–35. The 
shares of the length and start position of LMEM are sent 
to A , and A reconstructs them. Then, Protocol 4 outputs 
them. The above argument completes the proof of cor-
rectness of Theorem 3.

(12)

X
j+1
g [Wj

n,f [fj]] = Vx[Wj
n,f [fj] − r

j
g ] + r

j+1
g

= Vx[Vnsv[fj − r
j−1

f ] + r
j
g − r

j
g ] + r

j+1
g

= Vx[ Vnsv[fj − r
j−1

f ] ] + r
j+1
g

(13)

X
j+1

f [Wj
p,g [gj]] = Vx[Wj

p,g [gj] − r
j
f ] + r

j+1

f

= Vx[Vpsv[gj − r
j−1
g ] + r

j
f − r

j
f ] + r

j+1

f

= Vx[ Vpsv[gj − r
j−1
g ] ] + r

j+1

f

Security. We only show a sketch of the proof. For Lines 
1–2 of Protocol  4, A and B do not disclose any private 
values, and P0 and P1 receive the shares. For Lines 3–37, 
it is guaranteed by the subprotocols ADD , MULT , 
Equality , and Choose  that all the messages exchanged 
between P0 and P1 are shares except for the output of 
Reconst in Line 14. (see section  "Secure computation 
based on secret sharing" for details of the subprotocols.) 
In Line 14, the reconstructed values are 
fi+1 = V

(j+1)
x [p0] + r

j
f  and gj+1 = V

(j+1)
x [p0] + r

j
g , 

according to Eq. 5, Eq. 12, and Eq. 13. Since fj+1 and gj+1 
are randomized by rjf  and rjg , respectively, for all rounds 
j = 0, . . . , 2ℓ− 1 , no information is leaked. In Line 38, A 
reconstructs only the search result (the length and start 
position of LMEM). � �

Complexities
The DB preparation phase generates shares of Rj

c,f  and 
R
j
c,g ( c ∈ � , 0 ≤ j < ℓ ) and Wj

x,f  and Wj
x,g ( x ∈ {l, p, n} and 

0 ≤ j < ℓ ); 14 × ℓ vectors of length N + 1 . Therefore, the 
time and communication complexities are O(ℓN ) . For 
the Search phase, MULT is computed ℓ times in parallel in 
Lines 17–18. (These are not dependent on each other.) In 
Line 30, MULT is computed ℓ times in parallel, and Line 
30 is computed in parallel four times in Lines  29–31. 
Lines  17–18 and Lines  29–31 are repeated for 2ℓ− 1 
rounds. Other subprotocols are also computed for 2ℓ− 1 
rounds. The time, communication, and round complexi-
ties are O(1) for MULT , and independent computation of 
MULT for ℓ times does not increase the round complex-
ity. The time, communication and round complexities 
are O(1) for the other subprotocols used in Protocol  4. 
Therefore, the complexities of the Search phase are O(ℓ2) 
for time and communication, and O(ℓ) for the number of 
rounds. The time complexity of the standard (i.e., non-
privacy-preserving) LMEM is O(ℓ) while that of Secure 
LMEM is O(ℓ2) . The increase in time complexity is 
caused by the computation for maintaining match posi-
tion securely.
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Reducing size of shares in DB preparation phase
The protocols based on ss-ROT  are quite efficient in 
Search phase, however, they require large data trans-
fer from B to the computing nodes in DB preparation 
phase when the number of queries and the length of the 
database are large. To mitigate the problem, we propose 
another protocol that can reduce size of shares in DB 
preparation phase.

We use two parameters m and n ( m < n ) for comput-
ing shares. When Share outputs ([[x]]0, [[x]]1) ∈ Z

2
2m , we 

denote the share by ([[x]]m0 , [[x]]m1 ) . When Share outputs 
([[x]]0, [[x]]1) ∈ Z

2
2n , we denote the share by ([[x]]0, [[x]]1) . 

We denote M = 2m . In our protocol, all the random val-
ues are uniformly generated from Z2n.

Basic idea Vc[i] = LFc(i, T̂ ) is a lookup table 
used by Protocol  3 and  4. We sample Vc[i] at 
i = 0,M, 2M, . . . , ⌊N ′/M⌋M , where N ′ is the length of 
Vc and store the sampled values in a vector z. We com-
pute x[i] = Vc[i] − Vc[p] for i = 0, . . . ,N ′ − 1 , where p 
is the sampled position closest to i and p ≤ i . Given a 
position k, we can compute Vc[k] by z[⌊k/M⌋] + x[k] . 
Any element in z is non-negative and at most N ′ − 1 
while that in x is also non-negative and at most M − 1 
because 0 ≤ Vc[i + 1] − Vc[i] ≤ 1 . Our idea is to use 
n bits for storing z[i] and m bits for storing x[i]. Note 
that we used n bits for storing Vc[i] in Protocol  3 and 
Protocol 4. There are ⌈N ′/M⌉ sampled positions, so the 
size of the lookup table becomes O(n⌈N ′/M⌉ +mN ′) , 
which is n/m times smaller compared to Vc if M is suf-
ficiently large. We use a rotation technique to hide an 
intermediate position. Since 1 < Vc[0] − Vc[N ′ − 1] for 
most cases, we design a rotated table V ′ that satisfies 
0 ≤ V ′

c[i + 1] − V ′
c[i] ≤ 1 by subtracting an offset from 

Vc.
DB preparation phase B computes following vectors for 

j = 0, . . . , ℓ− 1

where rf [j] is a random value, ojc,f = Vc[(N ′ − 1−rf [j]) mod N ′ ] 
−Vc[N ′ − 1]and ōjc,f = Vc[(N ′ − 1−rf [j]) mod N ′ ]−Vc[0].

(14)

V ′j
c,f [(i + rf [j]) mod N ′ ]

=
{

Vc[i] − o
j
c,f (i ≤ (i + rf [j]) mod N ′)

Vc[i] − ō
j
c,f (i > (i + rf [j]) mod N ′) ,

Theorem 4  0 ≤ V ′ j
c,f [i + 1] − V ′ j

c,f [i] ≤ 1 for i = 0, . . . ,N ′ − 2.

Proof  Following equation is equivalent to Eq. 14.

0 ≤ Vc[i + 1] − Vc[i] ≤ 1 holds for i = 0, . . . ,N ′ − 2 
from the definition of Vc.

I f (rf [j]) mod N ′ = 0   , Vc = V ′j
c,f   . T h e r e f o r e , 

0 ≤ V ′j
c,f [i + 1] − V ′j

c,f [i] ≤ 1 holds for i = 0, . . . ,N ′ − 2.

If (rf [j]) mod N ′ �= 0 and i = (rf [j] − 1) mod N ′ , V ′ j
c,f [i + 1] − V ′ j

c,f [i]
= Vc[0] − o

j
c,f − Vc[N ′ − 1] + ō

j
c,f = 0 . Let us consider 

when 
(rf [j]) mod N ′ �= 0 and i  = (rf [j] − 1) mod N ′ . We denote 

i = (rf [j] − 1+ a) mod N ′ (0 < a < N ′
)
 . Then, 

(i + 1− rf [j]) mod N ′

= (a) mod N ′ and i + 1 = (rf [j] − 1+ a) mod N ′ + 1 . Since 
(a) mod N ′ − ((rf [j] − 1+ a) mod N ′ + 1)

= (a− 1) mod N ′ − (rf [j] − 1+ a) mod N ′ holds because 
0 < a , an offset for V ′j

c,f [i + 1] and that for V ′j
c,f [i] are 

same and V ′ j
c,f [i + 1] − V ′ j

c,f [i] = Vc[(a) mod N ′ ] − Vc[(a− 1) mod N ′ ] . 
Therefore, 0 ≤ V ′j

c,f [i + 1] − V ′j
c,f [i] ≤ 1 holds for 

i = 0, . . . ,N ′ − 2 . � �

Let Qj
c,f  be an integer vector of length ⌈N ′/M⌉ such that

Note that V ′j
c,f [i] = Q

j
c,f [⌊i/M⌋] + R

j
c,f [i] , and Vc[i] is 

obtained by adding an offset to V ′j
c,f [i].

Since Rj
c,f [i] is non-negative and at most M − 1 , B gen-

erates shares [[Rj
c,f [i]]]m . B also generates [[Qj

c,f [p]]] , [[o
j
c,f ]] , 

[[ōjc,f ]] and [[rf [j]]] . Above shares are used for computing 
lower bound f of an interval. B generates shares for upper 
bound g in a same manner. Then B distributes all the 
shares to P0 and P1.

Search phase A generates table w for a query string w 
by Eq. 11. A generates shares of q and distributes them to 
P0 and P1 . The entire protocol is described in Protocol 5.

(15)

V ′ j
c,f [i]

=
{

Vc[(i − rf [j]) mod N ′ ] − o
j
c,f ((i − rf [j]) mod N ′ ≤ i)

Vc[(i − rf [j]) mod N ′ ] − ō
j
c,f ((i − rf [j]) mod N ′ > i) .

Q
j
c,f [p] = V ′j

c,f [pM] , and R
j
c,f [i]

= V ′j
c,f [i] − V ′j

c,f [M⌊i/M⌋] .
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Security

Theorem 5  Protocol 5 is correct and secure in semi-hon-
est setting.

Proof  Correctness and security of Protocol 5 are proved 
as follows.

Correctness. In Line 5-6 of Protocol 5, pj = (fj + rj) mod N ′ 
is computed. In Line 8, CastUp(Rj

c,f [pj]) is computed to 
avoid overflow in Line 9. In Line 9, shares of V ′j

c,f [pj] are 
computed, which is obvious from the definition of Qj

c,f  
and Rj

c,f  . In Line 11-13, [[f̂ j+1
w[j] ]] , [[o

j
w[j],f ]] and [[ōjw[j],f ]] are 

selected. From the definition of V ′j
c,f  described in Eq. 14, 

it is obvious that Vc[fj] is obtained by V ′j
c,f [pj] + o

j
c,f  when 

fj ≤ pj and V ′j
c,f [pj] + ō

j
c,f  when fj > pj , and Line 14 

computes [[Vc[fj]]] . g is computed similarly to f. Since ref-
erence to Vc achieved in Lines 4–16 is equivalent to eval-
uating Eq. 1 and an equality check of f = g is conducted 
in Lines 17–19, Protocol 5 is correct.

Security We only show sketch of the proof. All the mes-
sages exchanged between P0 and P1 are shares except for 
Line 6. In Line 6, reconstructed value pj is randomized by 
rf [j] in Line 5. Therefore, no information is leaked. � �

Complexities
In DB preparation phase, shares of Rj

c,f  are generated 
with a parameter m and shares of other values including 
Q
j
c,f  are generated with a parameter n. The length of Rj

c,f  
is N + 1 and that of Qj

c,f  is ⌈(N + 1)/M⌉ . The total num-
ber of other values do not depend on N. The query 
length is ℓ and shares of Rj

c,f  , Q
j
c,f  , and other values are 

necessary for each query character. Therefore, time 
complexity is O(ℓN ) and communication complexity is 
O(ℓNm+ ℓ⌈N/M⌉n).

For Search phase, ADD , MULT , Reconst , CastUp and 
Comp are computed a few times for 2ℓ times in Line 4-16 
and Equality is computed ℓ times in Line 17-19. Since 
each time and communication and round complexities of 
these subprotocols are O(1), those of the entire protocol 
become O(ℓ).

Experiment
We implemented Protocol  3 (Secure LPM), Protocol  4 
(Secure LMEM) and Protocol  5. For comparison, we 
also implemented baseline protocols (Baseline LPM and 
Baseline LMEM). Details of the baseline protocols are 
provided in Appendix 3. All protocols were implemented 
by Python 3.5.2. The dataset was created from Chromo-
some 1 of the human genome. We extracted substrings of 
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length N = 103 , 104 , 105 , 106 , and 107 for databases, and 
ℓ = 10 , 25, 50, 75, and 100 for queries. Share was run 
with n = 16 and n = 32 for N < 105 and 105 ≤ N  in the 
proposed protocols, and n = 1 for a Boolean share and 
n = 8 for an arithmetic share in the baseline protocols. 
We did not implement a data transfer module, and each 
protocol is implemented as a single program. Therefore, 
the search time of the protocols was measured by the 
time consumed by either one of P0 and P1 . To assess the 
influence of communication on a realistic environment, 
we theoretically estimated delays caused by network 
bandwidth and latency. We assume three environments: 
LAN (0.2 ms/10 Gbps), WAN1 (10 ms/100 Mbps), and 
WAN2 (50 ms/10 Mbps). During the run of Search phase, 
we stored all the data that were transferred from P0 to P1 
in a file and measured the file size as an actual commu-
nication size. Note that the communication is symmet-
ric and data transfer size from P0 to P1 is equal to that 
from P1 to P0 . Based on the data transfer size D byte, we 
estimate the communication delay by D/k + eT/1000 , 
where k is bandwidth, e is latency and T is a round of 
communication. All the protocols were run with a single 
thread on the same machine equipped with Intel Xeon 
2.2 GHz CPU and 256 GB memory. We also tested the 
C++ implementation of [19], which is based on AHE. 
The algorithm for LPM in [17] for the string with |�| ≤ 4 

(e.g., genome sequence) is the same as [19]. Sudo et  al. 
[19] is implemented as a server-client software, and the 
client and the server were run with individual single 
threads on the same machine. Therefore, the results of 
[19] do not include delays caused by bandwidth limita-
tion and latency, so we also estimated delays based on 
the data transfer size and round of communication in the 

Table 3  Offline time (Time), offline size (Size), DB preparation time (Time), DB preparation size (Size), Search time on a local machine 
(Time), Search communication size (Size), estimated Search time for three environments: LAN (0.2 ms/10 Gbps), WAN1 (10 ms/100 
Mbps), and WAN2 (50 ms/10 Mbps), for N = 10

4 (only for Baseline LMEM), 105, 106, 107 , and ℓ = 100

The size unit is MB and the time unit is s except for the cell describing “20 h<”

N Offline DB preparation Search Estimated timeon network

Time Size Time Size Time Size LAN WAN1 WAN2

Secure 105 0.166 0.013 123 305 0.141 0.010 0.181 2.162 10.249

LPM 106 0.141 0.013 1248 3051 0.113 0.010 0.153 2.134 10.221

(proposed) 107 0.150 0.013 12628 30517 0.126 0.010 0.167 2.147 10.234

Secure 105 2.318 0.162 123 77 2.888 0.040 3.028 9.911 38.020

LPM2 106 2.317 0.162 1236 774 2.878 0.040 3.018 9.901 38.010

(proposed) 107 2.342 0.162 12387 7748 2.939 0.040 3.079 9.962 38.071

105 – – – – 691 163 691 707 838

[19] 106 – – – – 7817 517 7818 7863 8261

107 – – – – 20 h< – – – -

Baseline (LPM) 105 3995 184 0.146 0.095 13 122 13 24 118

106 38767 1841 1.522 0.954 164 1227 165 268 1196

107 20 h< – – – – – – – –

Secure 105 7.619 1.704 435 1068 4.817 0.999 5.577 42.900 195.654

LMEM 106 7.882 1.704 4467 10681 4.926 0.999 5.686 43.009 195.763

(proposed) 107 8.457 1.704 46384 106811 5.740 0.999 6.501 43.824 196.578

Baseline 104 12747 611 0.015 0.010 46 407 46 80 389

(LMEM) 105 20 h< – – – – – – – –

Fig. 5  Estimated time (actual search time on a local machine + 
estimated data-transfer time) for various N 
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same manner. Each run of the program was terminated if 
the total runtime of all phases exceeded 20 h.

Comparison to baseline protocols
Table 3 shows the offline time and size, DB preparation 
time and size, and Search time and communication size 
for N = 105, 106, 107 , and ℓ = 100 . It also shows the 
result of Baseline LMEM for N = 104 , as the runs for 
N > 104 did not finish within 20 h. The Search times and 
communication sizes of Secure LPM and Secure LMEM 
are several orders of magnitudes faster and smaller than 
those of Baseline LPM and Baseline LMEM. Since the 
round and communication complexities of the proposed 
protocols do not depend on N, their estimated Search 
time remains small even on WAN environments. Fig-
ure  5 shows the estimated Search time on WAN1 for 
N = 103, 104, . . . , 107 and ℓ = 100 . The times of Secure 
LPM and Secure LMEM do not increase, while those 
of the baseline protocols increase linearly to N. Fig-
ure  6 shows the estimated Search time on WAN1 for 
ℓ = 10, 25, . . . , 100 for N = 106 . We can not show the 
results of Baseline LMEM because none of its runs were 
finished within the time limit. As shown in the graph, 
the time of Secure LPM increases linearly to ℓ and that 
of Baseline LPM increases proportionally to ℓ2 , which 
are in good agreement with the theoretical complexities 
in Table  2. According to the graph, the time of Secure 
LMEM also increases linearly to ℓ though its time and 
communication complexities are O(ℓ2) . This is because 
the CPU times are much smaller than the delays caused 
by network latency that are influenced by the round com-
plexity O(ℓ).

We have preliminary results for testing Secure LPM 
and Baseline LPM on the actual network (10 ms/100 

Mbps). The results were 40 s for Secure LPM and 1739 
s for Baseline LPM when N = 106 . Though both of the 
preliminary implementations have room for improve-
ment in the performance of data transfer, the results also 
indicate that our protocol outperforms the baseline pro-
tocol and the previous study.

The time and size of Secure LPM and Secure LMEM 
are several orders of magnitude better than those of the 
baseline protocols for the offline phase, and vice versa for 
the DB preparation phase. The total time of the offline 
and DB preparation phases of our protocols are more 
than one order magnitude faster than that of baseline 
protocols. For the total size of the offline and DB prep-
aration phases, Secure LMEM was better than Baseline 
LMEM, but Baseline LPM was better than Secure LPM 
though the complexity is better for Secure LPM. This is 
because the majority of the shares were Boolean in the 
baseline protocols, while all of the shares were arithmetic 
in the proposed protocols.

Comparison to [19]
[19] is a two-party MPC based on AHE. Each homo-
morphic operation is time consuming and has no offline 
and DB preparation phases. As shown in Table  3, the 
Search time of Secure LPM is four orders of magnitude 
faster than [19] for N = 106 . Since time complexity of 
[19] includes a factor of N, the difference in Search time 
becomes greater as N becomes large. Moreover, our pro-
tocols have a further advantage in communication for a 
query response when the network environment is poor, 
as the round complexity of [19] and our protocols are the 
same while [19] requires O(

√
N ) communication size. 

The entire runtimes including all the phases are still six 
times faster for N = 105 and N = 106 . We can compute 
LMEM by examining [19] for all the positions in a query 
string, but this approach consumed 3406 s and 2.6 GByte 
of communication for N = 104.

Result of the approach in section "Reducing size of shares 
in DB preparation phase"
We also implemented Protocol 5 (Secure LPM2) to inves-
tigate a trade-off between reduction of the size of shares 
in DB preparation phase and increase in search time and 
communication overhead in Search phase. We used the 
same programming language (i.e., Python 3.5.2) for the 
implementation and used the same datasets. Share was 
run with n = 8 when generating the arithmetic shares 
of R. For the generation of rest of the arithmetic shares, 
Share was run with n = 16 and n = 32 for N < 105 and 
105 ≤ N  . (i.e., m = 8 , n = 16 ( N < 105 ), and n = 32 
( 105 ≤ N  ) for the notation used in section  "Reduc-
ing size of shares in DB preparation phase"). The results 
are shown in Table  3. The total size of shares in DB 

Fig. 6  Estimated time (actual search time on a local machine + 
estimated data-transfer time) for various ℓ
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preparation phase was 7.7GB for Protocol 5 and 30.5GB 
for Protocol 3, which is in good agreement with the theo-
retical complexities discussed in section  "Reducing size 
of shares in DB preparation phase". The search time of 
Protocol  5 is around 2 s longer than that of Protocol  3. 
We consider the increase in search time is mainly caused 
by using rather costly subprotocols: CastUp , Comp and 
MULT more times, which also increases the number of 
communication rounds. Although the increase in search 
time, Protocol 5 is still more than two orders of magni-
tude faster than Baseline LPM and three orders of mag-
nitude faster than [19], so we consider that Protocol  5 
offers a reasonable trade-off between performance in DB 
preparation phase and Search phase.

Discussion
As clearly shown by the results, Search time of the pro-
posed protocols are significantly efficient. Considering 
the importance of query response time for real applica-
tions, it is realistic to reduce Search time at the cost of 
DB preparation time. Since the total times for offline and 
DB preparation phases of the proposed protocols were 
significantly better than those of the well-designed base-
line protocols, we consider the trade-off between Search 
and DB preparation times in our approach to be efficient. 
For further reduction of DB preparation time, paralleliz-
ing the share generation is a feasible approach. Regard-
ing the DB preparation phase, the data transfer between 
the server and the computing nodes is problematic when 
the number of queries and the length of the database 

are large. To mitigate the problem, we also proposed 
the approach that uses arithmetic shares of a shorter bit 
length, which offers a reasonable trade-off between the 
reduction of data size in DB preparation phase and the 
increase in time and communication overhead in Search 
phase. Another solution that potentially mitigate the 
problem is to use an AES-based random number gen-
eration that is similar to the technique used in [33]. To 
explain it briefly, when the server needs to distribute a 
share of x, (1) the server and P0 generate the same ran-
domness r using a pre-shared key and a pseudorandom 
function, and (2) the server computes x − r and sends it 
to P1 . Although P0 ’s computation cost increases, we can 
remove the data transfer from the server to P0 . In our 
protocols, the generation of shares in the DB preparation 
phase cannot be outsourced because they are depend-
ent on the database. Designing an efficient algorithm 
to outsource the share generation is an important open 
question.

Appendices
Appendix 1: Examples of a aearch with FM‑Index 
and auxiliary data structures
Let us show examples of a search with FM-Index, LCP 
array, PSV and NSV. In addition to the data structures 
defined in section  "Index structure for string search", 
we also define a string F such that F [i] = S[SA[i]] . For 
the case of S =ATG​AAT​GCGA, the indices become 
SA = (9, 3, 0, 4, 7, 8, 2, 6, 1, 5) , L = GGA​AGC​TTAA, and 

Fig. 7  An example of search by FM-Index
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F = AAA​ACG​GGTT. Figure 7 illustrates the example of 
a backward search to find the longest suffix of the query 
(ATG) that matches the database, and Fig.  8 illustrates 
the search for MEMs with the query (CGC) by using LCP 
array, PSV, and NSV. As shown in the upper center panel 
of Fig.  8, the search failed when the backward search 
with ‘C’ after finding the interval [7, 8) that corresponds 
to GC. Since LCP[8] ≤ LCP[7] , the parent lcp-interval 
becomes [PSV[7] = 5,NSV[7] = 8) , which corresponds 
to ‘G’. The match CG is then searched with the backward 
search with ‘C’ from the parent lcp-interval.

Appendix 2: Semi‑honest security
Here, we recall the simulation-based security notion in 
the presence of semi-honest adversaries (for two-party 
computation), as in [32].

Definition 2  Let f : ({0, 1}∗)2 → ({0, 1}∗)2 be a proba-
bilistic 2-ary functionality and fi(�x) denote the i-th ele-
ment of f (�x) for �x = (x0, x1) ∈ ({0, 1}∗)2 and i ∈ {0, 1} ; 
f (�x) = (f0(�x), f1(�x)) . Let � be a 2-party protocol to com-
pute the functionality f. The view of party Pi for i ∈ {0, 1} 
during an execution of � on input �x = (x0, x1) ∈ ({0, 1}∗) 
where |x0| = |x1| , denoted by View�

i (�x) , consists of 
(xi, ri,mi,1, . . . ,mi,t) , where xi represents Pi ’s input, ri 
represents its internal random coins, and mi,j repre-
sents the j-th message that Pi has received. The out-
put of all parties after an execution of � on input �x is 
denoted as Output�(�x) . Then, for each party Pi , we say 
that � privately computes f in the presence of semi-honest 

corrupted party Pi if there exists a probabilistic polyno-
mial-time algorithm S such that

where the symbol ≡ means that the two probability dis-
tributions are statistically indistinguishable.

As described in [32], the composition theorem for the 
semi-honest model holds; that is, any protocol is pri-
vately computed as long as its subroutines are privately 
computed.

Appendix 3: Our secure baseline LPM and LMEM
In this section, we show our secure baseline LCP and 
LMEM based on secret sharing. We explain how to 
construct LCP, since we can obtain LMEM by (paral-
lelly) executing LCP for all positions in the query. Note 
that �x = (x1, x2, · · · ) , �xi denotes an i-th element of �x , 
[[�t]] = ([[�t]]0, [[�t]]1) , and (|�x|, |�y|) = (L,N ) . Here, we 
assume N > L . When [[�x]] = ([[x1]], [[x2]], · · · , [[xp]]) , 
[[�x]] ≫ 1 means ([[0]], [[x1]], · · · , [[x]]p−1) . In our protocol, 
we use two subprotocols as follows:

•	 All-AND takes a list [[�t]] (with p Boolean shares) as 
input and outputs [[t1 ∧ · · · ∧ tp]]B . We can compute 
this function with ⌈p⌉ communication rounds (by 
appropriate parallelization) and O(p)-bit data transfer.

•	 All-OR takes a list [[�u]] (with p Boolean shares) as 
input and outputs [[u1 ∨ · · · ∨ up]]B . We can com-
pute this function with ⌈p⌉ communication rounds (by 
appropriate parallelization) and O(p)-bit data transfer.

{(S(i, xi, fi(�x)), f (�x))} ≡ {(View�
i (�x), Output�(�x))},

Fig. 8  An example of search by FM-ndex, LCP array, PSV and NSV
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Our protocol is as in Protocol  A1. In the following, we 
explain the details of our baseline longest common prefix 
search protocol using an example that strings �x = “TGA” 
and �y = “ATTGC”. In this example, w = 2 since there 
exists “TG” in �y , but “TGA” does not. For better under-
standing, we introduce a more straightforward approach 
and analyze its efficiency before explaining our baseline 
protocol. In the straightforward approach, we securely 
check whether the first letter of �x (i.e., “T”) exists in y or 
not. Next, we check every pattern up to the second let-
ter of �x (i.e., “TG”) for a match anywhere in �y . We also 
execute the same operations for up to the third latter of 
�x (i.e., “TGA”). In these processes, we necessary to exe-
cute the “check if the characters match”, “check if all the 
characters match”, and “check if at least one of the perfect 

matches exist”. For these operations, we need to use 
O(N), O(NL), and O(N) secure AND gates, respectively. 
Since we execute these operations for all L candidates, 
the number of AND gates we need for are O(NL), O(NL2) , 
and O(NL), respectively. In these operations, We do not 
need to compute the letters match for each time since 
the string is fixed. In our baseline protocol, therefore, we 
compute whether the letter is matched or not beforehand 
and repeatedly use them. Since we can check this check 
with O(NL), however, our baseline still requires O(NL2) 
AND gates. Although it may be possible to reduce the 
number of AND gates via increasing other costs (e.g., 
communication rounds), it will not be easy to construct 
the protocol with N-independent online cost like the pro-
posed one with this strategy.
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Why the offline cost of our baseline is so significant: In 
secure computation, it is impossible in principle to change 
the behavior depending on the computation results in the 
middle. In other words, we are always forced to perform the 
worst-case computation. In the previous example, for exam-
ple, we consider the case for checking whether the first let-
ter of �x (i.e., “T”) matches any of the letters in y. If it is done 
in plain text, the moment we find “T” in the second letter 
of �y , we don’t have to worry about the rest of the letters in 
�y . In secure computation, however, we have to check eve-
rything, including the rest, since we cannot find that the 
match has already existed. In addition, we consider the case 
that we check the match for up to the first two letters in �x 
(i.e., “TG”) and the first two letters in �y (i.e., “AT”). In this 
case, the moment we see A, we can decide there is no match 
and terminate the process in plaintext computation. In 
secure computation, however, this is impossible. As we see 
above, we are always forced to consider the worst-case com-
puting cost in secure computation. Note that offline costs 
for secure computation are linear to the number of AND 
gates. We need O(NL2) offline cost in our baseline (and 
straightforward) protocol, and N is large in our setting. This 
is why the offline cost of our baseline protocol is so large. 
Our proposed protocol successfully avoids this problem by 
developing a new secure primitive and combining it with an 
appropriate data structure.
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