
Thiagarajan et al. Algorithms Mol Biol (2017) 12:8
DOI 10.1186/s13015-017-0100-5

SOFTWARE ARTICLE

The feasibility of genome-scale
biological network inference using Graphics
Processing Units
Raghuram Thiagarajan1,2, Amir Alavi2,4, Jagdeep T. Podichetty2, Jason N. Bazil2,3 and Daniel A. Beard2*

Abstract

Systems research spanning fields from biology to finance involves the identification of models to represent the under-
pinnings of complex systems. Formal approaches for data-driven identification of network interactions include statisti-
cal inference-based approaches and methods to identify dynamical systems models that are capable of fitting multi-
variate data. Availability of large data sets and so-called ‘big data’ applications in biology present great opportunities
as well as major challenges for systems identification/reverse engineering applications. For example, both inverse
identification and forward simulations of genome-scale gene regulatory network models pose compute-intensive
problems. This issue is addressed here by combining the processing power of Graphics Processing Units (GPUs) and a
parallel reverse engineering algorithm for inference of regulatory networks. It is shown that, given an appropriate data
set, information on genome-scale networks (systems of 1000 or more state variables) can be inferred using a reverse-
engineering algorithm in a matter of days on a small-scale modern GPU cluster.

Keywords: Network inference, Reverse engineering, Genetic regulatory networks, GPU

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
One of the outstanding challenges of systems biology is
to reconstruct and simulate genome-scale regulatory
networks based on genome-scale data. This challenge is
made difficult by the sparseness and noisiness of genome-
scale expression and proteomics data [1, 2], as well as the
inherent computational complexity of the problem [3,
4]. Specifically, here we consider an ill-posed problem of
identifying network models from high-throughput time-
course data from large scale dynamical systems [5] using
parallel computing platforms.

Graphics Processing Units (GPUs) facilitate paral-
lel calculations in applications that can be scaled from a
desktop to a high-performance computing environment.
GPU computing has impacted computational modeling
with applications in various fields of research such as
bioinformatics [6], molecular dynamics [7], and density

functional theory [8]. The availability of GPUs has ena-
bled researchers to address larger scale problems and
drastically reduce the time taken by simulations com-
pared to traditional methods [6–8].

Inference of network models from high-dimensional
data has two bottlenecks: the size of the problem [9], and
robustness of the network inference algorithm [10, 11].
The processing power of GPUs can help overcome the
first bottleneck by using an algorithm optimized for the
parallel architecture of GPUs. To help overcome the sec-
ond bottleneck, a variety of network inference algorithms
have been developed [10–16]. Bazil et al. developed
a method for reverse engineering of genetic pathways
based on a distributed parallel algorithm [4, 17]. With
this algorithm the number of calculations for a network
size of N variables scales as O(N 2) [4]. This O(N 2) scaling
is an improvement over deterministic model-inference
techniques, where computation costs scale as O(N 3),
and information theory based approaches, where com-
putational costs scale as O(N 2 logN). Even though its
computational cost scales as O(N 2), current applications
of this algorithm have been limited to 100–200 variables

Open Access

Algorithms for
Molecular Biology

*Correspondence: beardda@umich.edu
2 Department of Molecular and Integrative Physiology, University
of Michigan, North Campus Research Complex, Ann Arbor, MI, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0100-5&domain=pdf

Page 2 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

to obtain results in reasonable timescales [17]. However,
the algorithm is perfectly suited for a GPU platform
and significant speedups on a GPU platform relative to
a central processing unit (CPU) platform are expected.
Indeed, adaptation of this algorithm to a GPU platform
is expected to facilitate genome-scale network analysis in
tractable timescales.

Yet GPU computing is challenging due to the
required programming [18]. Effective GPU applica-
tions must minimize the data transfer between the host
(CPU) and the device (GPU), and the memory require-
ments on the device (GPU). Implementing the Bazil
et al. algorithm on a GPU platform requires considera-
tion of these details to obtain effective performance.
A tailored approach is essential to utilize processing
power of GPU architecture [19]. Optimum usage of
shared memory and asynchronous data transfers [20],
exploiting global memory usage and multiple streams
of execution [21], and usage of GPU-optimized data
structures [22] have been shown to yield significant
speedups [19].

This article reports an updated version of the Bazil
et al. algorithm tailored for a GPU architecture applied
to reverse-engineer a 1000 node network from high-
throughput time-course in silico data. The application is
developed using the NVIDIA® CUDA® compiler. It cent-
ers on solving non-linear ordinary differential equations
(ODE) describing the interactions between genes. Two
variants of the algorithm utilizing different ODE solvers
are implemented on the GPU platform. The first one is
ODEINT [23], which utilizes THRUST libraries [24] to
solve the ODE on a GPU, and the second one is a LSODA
implementation [25] on a GPU [26]. Application to a
1000-variable in silico data set illustrates the viability of
reverse engineering of genome-scale biological networks.
Results from the GPU method were compared with a
widely used method called TIGRESS [15]. TIGRESS
combines least angle regression (LARS) [27] with stabil-
ity selection [28, 29] and was ranked among the top five
network inference methods in the DREAM5 gene recon-
struction challenge [11].

Methods
Distributed network inference algorithm
The distributed algorithm developed by Bazil et al. is
suited for analyzing large-scale data sets including, but
not limited to, time-course mRNA expression data. The
time-course inverse problem of determining regulatory
networks is decomposed into N one-dimensional prob-
lems, one for each of the N variables in the network.
The algorithm involves searching for maximally likely
versions of the one-dimensional model for each state
variable. In practice, its application requires integrating

millions of different realizations of the basic underlying
ODE model.

The governing ODE used to describe regulatory path-
ways between genes in a network is similar to the ODE
described in the community-wide challenge within the
DREAM project [10]. The mRNA expression level xj for
the jth gene is governed by a mass balance equation [4]:

with initial condition xj(0) = x0j. The rate at which the
jth gene is transcribed is rj(t) and dj is the degradation
constant for the jth gene. The rate is modeled by com-
petitive binding of activating and inhibiting transcription
factors subject to co-operativity and saturation:

where IAj and IIj are sets of indices of variables that act
as activators and inhibitors of mRNA level for the jth
gene. The maximal rate of mRNA production is r0,j. The
parameter τ represents a time delay for mRNA transcrip-
tion, translation, and post-translational signaling events.
Cooperative, non-linear binding is assumed with the Hill
coefficient n > 1 for the binding constants KAi,j and KIi,j.
Externally stimulated or constitutive transcription is cap-
tured by the term ej.

According to these governing equations, gene tran-
scription is determined by a competition among inhibi-
tory and activating factors. There is no single weight
associated with a given activating or inhibiting edge.
Rather each activation interaction has an associated value
of KAi,j. When the effector gene concentration/activity is
greater than the KAi,j for a given edge, it has a strong acti-
vating effect on the target gene. Similarly, for an inhibi-
tory edge, when the effector gene concentration/activity
is greater than the KIi,j for a given edge, it has a strong
inhibitor effect on the target gene.

Since the algorithm developed by Bazil et al. splits the
network problem for N genes into N independent one-
dimensional problems (sub-networks) for each gene,
these independent one-dimensional problems can be
run in parallel to search for trial models for each gene.
This implementation of independent sub-networks is
described in pseudo-code in Algorithm 1. The ODE
solver is run on the GPU so that millions of independent
candidate sub-networks can be evaluated simultaneously.
A final global network is then generated by combining
all the sub-networks generated for each gene and filter-
ing out unlikely interactions. To test the application of
GPU computing to this problem, computational costs

(1)
dxj(t)

dt
= rj(t)− djxj(t) ,

(2)rj(t) = r0,j

(

∑

i∈IAj
xi(t−τ)
KAi,j

)n
+ ej

1+

(

∑

i∈IIj
xi(t−τ)
KIi,j

)n
+

(

∑

i∈IAj
xi(t−τ)
KAi,j

)n
+ ej

,

Page 3 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

for simulating large numbers of realizations of the gene
expression model are determined for implementations on
CPU versus GPU.

The algorithm is implemented using two different
ODE solver packages, ODEINT and cuLsoda, on the
GPU. ODEINT is developed in a C++ environment by
Ahnert and Mulansky [23]. cuLsoda is a CUDA® version
of the LSODE ODE solver developed by Hindmarsh and
Petzold [30]. To test the performance of these two ODE
solvers we use a single-variable model with two activators
and no inhibitors. The governing equation (1) reduces to

where x2 and x3 represent activators for the target gene
1. Values of x2(t) and x3(t) used in calculating the right-
hand side in Eq. (3) are determined using a cubic spline
interpolation of time-course pseudo-data for these vari-
ables. A value of 1 (arbitrary time units) is used for the
time delay τ and the value of Hill coefficient is set as 2.
The binding constants, r0,1, e1, and d1 are varied over a
range with minimum values of 10−2 and maximum values
of 102.

(3)
dx1(t)

dt
= r1(t)− d1x1(t) ,

(4)r1(t) = r0,1

(

x2(t−1)
KA2,1

+
x3(t−1)
KA3,1

)2
+ e1

1+
(

x2(t−1)
KA2,1

+
x3(t−1)
KA3,1

)2
+ e1

,

ODE solvers on the GPU
ODEINT
ODEINT uses Thrust [24], which is a parallel algorithms
library resembling the C++ Standard Template Library
(STL), to run the ODE solver on the GPU. Using Thrust
has the advantage that the same application can be run
on a multi-core CPU using OpenMP or a GPU by a
switch in the compilation instructions. The Dormand-
Price 5 algorithm [23] is used to solve the governing ODE
presented in Eq. (1), which is an explicit solver not ideal
for stiff systems. In general, this is a disadvantage since
the governing ODE can be stiff in nature. Here for bench-
marking the forward ODE solvers, parameters of the
governing ODE in Eq. (3) are fixed so that the problem
solved using ODEINT remains non-stiff.

CPU calculations for the case of ODEINT are con-
ducted using a quad-core Intel i5 processor where
OpenMP, via Thrust, is used to utilize all the four cores
of the CPU. The parameters of the governing ODE
are declared with single (using single precision float-
ing point) precision in one case and double precision in
another.

LSODA
LSODE was originally developed in FORTRAN as part
of a systematized collection of ODE solvers by Hind-
marsh [25]. Thompson converted a FORTRAN version
of LSODA, a variant version of LSODE solver, into a C

Page 4 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

version to be run on a CPU as well as a CUDA® compat-
ible version to be run on a GPU [26]. A full Jacobian is
calculated by LSODA requiring a number of extra calls
to the right hand side of the governing ODE presented in
Eq. (1). LSODA switches automatically between stiff and
non-stiff methods so the user does not need to choose
the appropriate method. An Adams method [25] is used
for non-stiff problems and the backward differentiation
formula 5 (BDF5) method [25] is used for stiff problems.
Stiff solvers require more memory to record previous
time steps and matrices used for solving implicit equa-
tions. The Thompson version of LSODA is used by Zhou
et al. in the CUDA-sim package written in Python [31].
Zhou et al. report a speedup of around 50 fold, on a sin-
gle Tesla C2050 GPU relative to a single Intel Core i7
Extreme Edition CPU, for a single non-stiff ODE which
is solved for a variety of different parameters. For com-
parisons using LSODA speedup is determined on a Tesla
K20 GPU relative to a single core of an Intel Xeon E5
Sandy Bridge processor. Another SODA implementa-
tion in CUDA is cupSODA which relies on a C version of
LSODA. cupSODA is a cross-platform tool which can be
run on multiple operating systems. Speedup relative to
COmplex PAthways SImulator (COPASI [32]) was found
to be in the range of 23× to 86× for different test mod-
els [33]. The GPU used for the test models is a NVIDIA
GeForce GTX 590 compared with a quad-core CPU Intel
Core i7- 2600.

The LSODA/CUDA implementation of sub-network
identification component of the Bazil et al. algorithm is
distributed on GitHub [34].

Network identification
The GPU implementation of the reverse-engineering
algorithm is validated by applying it to identify connec-
tions for a target gene in a 10 gene network generated in

silico. This allows us to verify whether the GPU imple-
mentation of the algorithm performs equivalently for the
same test problems used by Bazil et al. [4]. Performance
of the GPU implementation is then analyzed for a 1000-
node network, which is also generated in silico.

10‑Gene network
The 10-gene network model illustrated in Figure 3 of
Bazil et al. [4] is reverse-engineered first to get an initial
benchmark and as a test of functionality of the algorithm
on a GPU.

1000‑Gene network
To test speed and accuracy of the reverse-engineering
algorithm a 1000 gene in silico network is generated. The
method is implemented using MATLAB R2013b (The
Mathworks, Inc.). The network generation algorithm gener-
ates connections for each gene and assigns kinetic param-
eters associated with these connections described in Eq. (1).

The number of connections to each gene are deter-
mined from a random distribution in order achieve a
power law decay in the number of incoming edges into
each gene. Figure 1 illustrates frequency distributions
of the edges coming into and going out of the genes in the
network. The initial condition for each gene is set as 1 at
time t = 0. The binding constants and other parameters
of the governing ODE of Eq. (1) are bounded. The binding
constants KA and KI are bounded between 0.25 and 9.75.
The values of the r0 and d are randomly generated for each
target gene and ej is bounded between a value of 1 and 21.
The time delay for mRNA transcription, translation, and
post-translational signaling events represented by τ is set
as one hour. A delay differential function is used to gener-
ate time-course profiles of all the genes using MATLAB.
The data is generated for 12 time points (over 11 h). The
time points are equally spaced and range from 0 to 11.

a b

Fig. 1 1000-node network characteristics. Histogram of incoming edges (a) and outgoing edges (b) are presented for the 1000-gene network

Page 5 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

The two independent experiments generated in silico
are done by stimulating different subsets of genes for
each experiment. External stimuli are associated to a
certain subset of genes which are chosen at random. In
the case of experiment 1, 250 of them are activated exter-
nally, whereas in the case of experiment 2, 200 of them
are activated externally.

Comparison to TIGRESS
The TIGRESS MATLAB code was downloaded from the
SVN repository hosted by researchers at MINES Par-
isTech [35]. The 1000 Node Network in-silico data was
converted into TIGRESS input data format. A scores
matrix was obtained with predictions of connections
among the genes and transcription factors. The per-
centage recovery (number of true edges recovered by
TIGRESS in %) and false positive rate per gene were cal-
culated for 4 threshold values. Here threshold value is the
minimum value above which a true edge is recovered.
The threshold or cutoff metric used in TIGRESS is user
controlled. To infer the regulatory network from expres-
sion data, a score is computed to assess the evidence that
each candidate regulation is true. Then a true regulation
pair is predicted for which the score is larger than thresh-
old. TIGRESS only focuses on finding a good ranking for
the candidate regulation, by reducing score so as to push
the true regulation to the top of the list. This method lets
the user control the level of false positive and false nega-
tive that is acceptable by the user.

TIGRESS was ranked in the top 3 GRN inference meth-
ods at the 2010 DREAM5 challenge. It performs on par
with other state of the art such as GENIE3 method for
in silico network [36]. However, it does not perform as
well as GENIE3 in in vivo networks. This is perhaps due
to the fact the assumed linear relationship used between

Transcription Factor and Target Gene used by TIGRESS
is an oversimplification.

Results and discussion
Computation costs for ODE solvers: CPU versus GPU
ODEINT
Speeds of calculation on the GPU versus the CPU are
compared in Fig. 2. A speedup of greater than an order of
magnitude is observed when the number of ODEs solved
on the GPU exceeds a million. (Speedup is defined as
the time to complete integrations of a given number of
realizations of the model on the CPU divided by the time
taken on the GPU). State variables declared as single pre-
cision led to ≈2× speedup relative to the case where state
variables are declared as double precision, when problem
sizes are larger than a million.

For the CPU implementation to provide useful speed-
ups, the time spent on a single kernel call must be long
compared to the latency to access data from memory.
Simulation times are illustrated in Fig. 2b. We can see,
from either the speedup plot or the simulation times, that
a single kernel call to the GPU has to be approximately
the size of a million ODE integration calls or more to
achieve an order of magnitude speedup on the GPU rela-
tive to a multi-core CPU. One million independent one-
dimensional ODEs are integrated in a fraction of a second
on the GPU and in seconds on the multi-core CPU.

LSODA
Speedup statistics are presented in Fig. 3a. Only dou-
ble precision designation is considered for state vari-
ables. The speedup achieved by LSODA is found to
be an order of magnitude for problem sizes larger
than approximately 103. Since the stiff solver requires
more memory the number of ODEs that can be solved

a b

Fig. 2 Performance statistics for ODEINT. Speedup (a) and time statistics (b) for solving ODEs obtained on a Tesla K20 GPU relative to time taken on
8 cores of Intel Xeon E5 Sandy Bridge processor using ODEINT. These statistics are generated for the test problem described in Eq. (3)

Page 6 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

simultaneously on the GPU using LSODA is lower
when compared with ODEINT. We find that no more
than approximately 2000 jobs may be submitted in a
single kernel call. For applications described below,
jobs are submitted in blocks of 1600 ODEs iteratively.
This number was determined via empirical experimen-
tation. As a result, GPU speedup saturates when the
number of ODEs solved on the GPU is greater than
1600. Comparison of timescales for the simulations on
the Intel Xeon CPU and Tesla K20 GPU are presented
in Fig. 3b. The time taken by the single core of Intel
Xeon processor is linear with M, the number of ODEs
integrated, as expected for a serial process. In the case
of the Tesla K20 GPU it becomes linear for problem
sizes greater than 1600.

10‑Gene in silico network
Data from the 10-gene network model illustrated in Fig-
ure 3 of Bazil et al. [4, 17] were analyzed here to deter-
mine putative regulatory interactions associated with one
gene in the network. The specific gene analyzed is gene
ID #4 in the network, the same variable and same data
used by Bazil et al. to test the first step in the inference
algorithm. This step, which represents a major bottleneck
in the process, involves finding a large number of “sub-
networks” for a given variable in the network, and then
determining which regulatory interactions (or ‘edges’ in
the network) are required to explain the data. Both the
“True”, and inferred regulatory networks associated with
gene ID #4 in this example and time-course data for this
variable are shown in Fig. 4a.

a b

Fig. 3 Performance statistics for LSODA. Speedup (a) and time statistics (b) for solving ODEs obtained on a Tesla K20 GPU relative to time taken on
a single core of an Intel Xeon E5 Sandy Bridge processor using LSODA. These statistics are generated for the test problem described in Eq. (3)

3

4

2

8 7

a b

Fig. 4 Description of subnetwork for gene #4. Subnetwork topology (a) and mRNA expression profiles (b) for target gene #4 from the 10-gene net-
work analyzed by Bazil et al. [4]. In a, solid black lines represent edges recovered by the algorithm, which are present in the true network and dashed
gray line represents edge not recovered by the algorithm, but which is present in the true network. In b, the mRNA expression profile described
by the regulator genes determined by the algorithm is presented for the target gene 4. The profiles for the regulator genes are presented as cubic
splines using mRNA expression data. The number against each profile represents the gene index

Page 7 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

The true network associated with target gene ID #4 has
2 activators (genes 7 and 8) and two inhibitors (genes 2
and 3). The algorithm works by finding as many models
(sets of activators and inhibitors) that can explain the
time course data as possible. In practice, several thou-
sand candidate subnetworks are generated at random.
(In the GPU implementation 1600 trial networks are
evaluated in a single call to the GPU). These subnet-
works are evaluated by finding optimal parameter values
(for activation and inhibition constants associated with
each model) that best fit the time course data. Trial sub-
networks that can effectively fit the data are accepted as
potential connections. These recovered connections are
described for gene ID #4. Figure 4b shows simulated time
courses for 10 models which are determined to effectively
fit the data. Finally, the relative frequency with which a
given edge appears in the set of putative subnetworks is
taken as a measure of the likelihood of that edge belong-
ing to the true network underlying the dynamical system
that generated the data.

Histograms of inferred activator and inhibitor edges
for this system are illustrated in Fig. 5. These histograms
indicate the relative frequency that each edge appeared
in a total of 2051 trial networks for the GPU and 500
trial networks for the CPU are found to effectively match
the time-course data for this variable. Using the value
of 0.45 (as determined by Bazil et al.) as an appropriate
cutoff to select edges, our results are similar to those of
Bazil et al. [4]. Activation of gene ID #4 by gene ID #8 is
found in all sampled subnetworks, and inhibition by gene
3 is found in greater than 80% of sampled subnetworks.
These two true positives were recovered by Bazil et al. as
well. In addition, in the current implementation the edge
associated with inhibition by gene ID #2 is present in
approximately 50% of sampled subnetworks.

Although this test problem represents an idealized
data set, the important finding is that the GPU imple-
mentation of the algorithm returns effectively the same
results as the CPU implementation. This is an independ-
ent validation for the GPU version of the algorithm. On
the architectures used here, the GPU implementation is
approximately 6 times faster than the CPU implementa-
tion. This speedup is obtained by comparing time taken
to generate 2051 trial networks on the GPU and 500 trial
networks on the CPU. If same number of networks (2000)
on both CPU and GPU are generated then the speedup
factor on the GPU reaches approximately 24.

For any application, obtaining useful speedup on a GPU
architecture requires reducing the amount of time spent
in data transfer between the host (CPU) and the device
(GPU). For NVIDIA® devices the NVIDIA® profiler
gives insight into how the two ODE solvers, ODEINT
and LSODA, perform on the GPU. The fraction of total
simulation time spent on data transfer between host
and device, represented by f, relative to the size of the
problem M, the number of ODEs solved, is illustrated in
Fig. 6. In the case of ODEINT, f drops down considerably
as the problem size goes up yielding larger speedups for
problem sizes larger than a million. This is why the num-
ber of jobs must be close to a million for the ODEINT
solver in order to obtain any significant speedup on the
GPU. In the case of LSODA, f does not dominate to the
same extent for smaller problem sizes and saturates after
the problem size exceeds 1600.

More than an order of magnitude speedup is observed,
close to 100× in some cases, for the Tesla K20 GPU rela-
tive to an Intel Xeon E5 8 cores processor using ODE
solver ODEINT. An order of magnitude speedup is
observed for the GPU relative to a single core of Intel
Xeon E5 8 cores processor utilizing ODE solver LSODA.

a b

Fig. 5 Histograms of activators and inhibitors for gene #4. Value of fractions that each gene appears as an activator (a) or an inhibitor (b) in the
ensemble of subnetworks generated for time course illustrated in Fig. 4

Page 8 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

This is comparable to speedups found in other studies
done on the GPU [31, 37]. The cost of a Tesla K20 GPU
is approximately $2000 (February 2017), which is about
an order of magnitude larger than the cost of a single
quad core CPU. Thus, based only on the costs of the pro-
cessing units, the GPU and CPU deliver comparable per-
dollar performance. NVIDIA® has developed CUDA as
well as GPU hardware since release of Tesla K20 GPUs.
However, there are other avenues for speedup which
can be explored such as: Shared memory and asynchro-
nous data transfers [20], exploiting global memory usage
and multiple streams of execution [21], and usage of

GPU-optimized data structures [22]. However, factor-
ing in the cost of the computer chassis, and power con-
sumption, the economic advantage of the GPU becomes
apparent. Taking into account the ease of programming
on the CPU, with relatively less attention paid to mem-
ory handling with respect to GPUs, it is evident that
developing the application on a CPU environment is rel-
atively easier. Hence, GPU computing as an alternative
for large scale biochemical network simulations has to
be considered on a case-by-case basis with consideration
to factors such as programming effort, timing for simu-
lations, power consumption, and cost of the machines.

1000‑Gene in silico network
To determine the performance characteristics of the
algorithm applied in a realistic setting, the inference algo-
rithm is applied to time-course in silico data generated in
silico from a 1000 gene network. Figure 7a illustrates the
connections for the 1000 gene network, with 3700 con-
nections or close to 4 connections per gene. Determin-
ing the true 3700 actual connections out of the possible
2× 106 is an extremely ill-posed problem.

We generated time-course in silico data from this net-
work from two independent simulation experiments.
This approach is used to represent two independent
experiments on a biological system. For these two experi-
ments, the internal network connections and kinetic
parameters remain unchanged. Different dynamic behav-
ior in the two experiments is obtained through two dif-
ferent sets of external stimuli, as detailed in the appendix.

Fig. 6 Resource usage on the GPU. Fraction of time in a simulation
spent in data transfer (f) between host (CPU) and device (GPU) for
ODEINT and LSODA GPU ODE solvers

a b

Fig. 7 Description of the 1000-node network. Network representation of the 1000 node in silico network is presented in a. mRNA expression pro-
files for the first 16 genes for Experiment 1 are presented in b. In silico data are plotted as circles. Subnetwork model fits to data are plotted as solid
lines. Visualization of the network uses Cytoscape [38]

Page 9 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

In brief, a random subset of the 1000 genes is activated
in each experiment by assigning a non-zero value for the
terms ej in Eq. (1).

Expression profiles of first 16 genes are illustrated in
Fig. 7b for Experiment 1. Many profiles are similar in
nature, with repeated motifs include simple exponential
decay. Genes 2, 3, 9, and 14 show the trend of expres-
sion levels saturating after the initial time points. Since
the algorithm developed here is purely data driven and it
is not able to distinguish between activation or inhibition
effects of genes with similar profiles, yielding a large num-
ber of false positives. As will be illustrated below, per-
forming multiple independent experiments provides an
effective means of reducing the number of false positives.

The time taken to reverse-engineer connections for this
1000 node network for one experiment is 13.1 days on 5
T K20 GPUs. Here the regulatory network determined
for two genes, gene ID #645 and gene ID #614, are ana-
lyzed in greater detail. Gene 645 is a case where our strat-
egy succeeds and gene 614 is a case where the algorithm
is less successful.

The “true” network for gene 645 consists of three acti-
vators 359, 594, and 973 and is illustrated in Fig. 8a.
Applying our algorithm to determine subnetworks for
this gene that can fit the data from each individual exper-
iment, 107 trial models were evaluated, with at least 5000
subnetworks able to fit the in silico data. Assembling the
edges that appear with significant frequency in the sets
of acceptable subnetworks we find 31 putative activa-
tor genes based on analysis from Experiment 1 and 46
putative activator genes from the analysis of Experiment
2. The 31 putative activators from Experiment 1 and 46
putative activators from Experiment 2 are chosen from
the ensemble of all subnetworks as the activators that
appear with a frequency of a pvalue of < 0.01 relative to
random selection.

The frequency distribution of putative activators for
this gene is presented for the two experiments in Fig. 8e
and f. Each of these sets of putative activators, identified
based on pvalue of < 0.01 relative to random selection, is
listed in Fig. 8b. There is one true positive gene 359 iden-
tified from both experiments. The mRNA expression
profiles of relevant genes from the two experiments are
shown in Fig. 8c and d, respectively. In summary, for this
gene, our algorithm identifies one true positive edge. The
intersection of the putative activators from the two inde-
pendent experiments include this true positive as well
as four false positives. Taking the intersection of sets of
identified activators, we dramatically reduce the number
of false positives.

Results for gene 614 are illustrated in Fig. 9. Here the
predicted expression time course for Experiment 1 is a
simple monotonic saturating increase. The frequency

distribution of identified activators for this experiment is
shown in Fig. 9c. Here, in contrast to the frequency dis-
tributions for gene 645, there are no clear outliers from
Experiment 1 for gene 614. This is because the time-
course profile for the target gene contains little infor-
mation to select from the trial models. Experiment 2 for
this gene does contain useful information, and there are
153 gene activators identified as potentially significant,
as illustrated in Fig. 9b. For this case, although the false
positive rate is high, 1 of the 5 true positives appear in the
set of significant edges obtained from Experiment 2. The
expression time courses for the top three activators (gene
205, gene 331 and gene 826) for Experiment 2 appear-
ing in the frequency distribution in Fig. 9f are shown in
Fig. 9d.

For this case, since we obtain no useful information
from Experiment 1, it is not useful to take the intersec-
tion of identified edges to improve the false positive rate.
For the 1000 gene in silico data set analyzed here, 58.5%
of genes fall into the category of gene 645, with both
experiments yielding sets of positive edges. For 22.0%
of genes, only one of the two experiments yields useful
information. For roughly 19.5%, neither experiment yields
significant putative edges.

Figure 10 reports the performance of the algorithm,
using two different values for pvalue are used to select
significant putative regulating genes (activators and
inhibitors). For a single experiment, 18.3% of true edges
are recovered using pvalue = 0.01 and 26.4% using
pvalue = 0.05. As we have observed, the number of false
positives is high, and is higher for high values of pvalue
used. Taking the union of identified genes from the two
independent experiments increases the fraction of true
edges recovered, but also increases the false positive rate.
Taking the intersection leads to reduction in the false
positive rate by a factor of 5, but also leads to reduction
in true edge recovery rate which is 7.5% for pvalue = 0.01 .
To improve the edge recovery rate, we analyze which
experiments have useful information using a co-efficient
of variation (CV > 0.05) metric, which is standard devia-
tion divided by the mean. This metric is used to deter-
mine whether the algorithm can make a prediction
depending on the time-course profile of the target gene.
Based on this criterion, the information obtained from a
given experiment for a given target gene is accepted or
rejected before taking the intersection of results from the
two independent experiments. If one of the two experi-
ments is judged to be uninformative for a given target
gene, the intersection of results from two experiments is
not applied. Applying this step improves the edge recov-
ery rate from 7.5 to 14.2% for pvalue = 0.01 as illustrated
in Fig. 10b. This increase in edge recovery rate is accom-
panied by increase in number of false positives.

Page 10 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

Comparison to TIGRESS
In TIGRESS, the percentage true edge recovered was
higher at lower threshold values with the highest recov-
ery rate of 6.2% for no threshold used, 1.9% for a thresh-
old value of 0.01 and 0.3% for a threshold value of 0.1. The

performance of TIGRESS on this problem is summarized
in Table 1. The true edge recovery rates attained with
TIGRESS are significantly lower than true edge recovery
rate from our reverse engineering method where the true
edges recovered are 7.2%, for one experiment, and 14.2% ,

Expt 1 Expt 2

21 56 201 238 316 435
444 457 477 489 520
592 638 686 695 705
716 731 739 821 840
846 893 945 950 969

47 76 103 120 139 141
155 156 174 227 284
301 309 319 346 362
405 418 466 472 509
536 568 573 602 607
614 696 710 727 844
861 865 867 898 914
924 958 962 980 987

187
290
359
587
953

3

973594

359

645

a b

c d

e f

Fig. 8 Determination of incoming edges for gene #645 in 1000-node network. The true connections for gene 645 is presented in a. Connections
recovered by the algorithm are shown in solid black lines and those not recovered are shown by dashed lines. In b the intersection of activators from
reverse-engineering networks from the two experiments is presented in the form of a Venn diagram. In c and d, connections in the actual network
recovered in each experiment are shown in green, and the false positives common to both experiments are shown in red. mRNA expression profiles
for gene 645 for the two experiments with profiles from Experiment 1 are presented in c and profiles from Experiment 2 are presented in d. The
profile for gene 645 is represented by circles, true edges recovered by the algorithm are shown in green, activators appearing as false positives are
shown in red, and connections missed by the algorithm are shown in blue. e (Experiment 1) and f (Experiment 2): histogram of frequency of the
number of times an activator appears in all the acceptable “submodels” generated by the algorithm for target gene 645 is presented

Page 11 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

for two experiments. This 14.2% recovery rate is associ-
ated with a 140 false positive per gene rate. Thus the GPU
method performed better in recovering true edges with a
higher false positive rate. The cutoff metric or threshold
value is determined by user for TIGRESS.

Thus our algorithm performed better than TIGRESS
for this trial problem in recovering true edges, while
generating more false positives. TIGRESS generated
significantly fewer edges overall and a marginally lower
false positive rate. Moreover, this comparison is biased

Expt 2
4 6 8 17 25 29 41 52 55 57 68 81 95 104
105 113 114 116 117 118 123 131 139 141
156 163 167 169 176 183 205 211 222 227
229 244 249 255 256 259 292 293 299 307
309 313 314 315 327 331 335 348 353 361
366 368 373 378 379 394 402 418 419 427
428 429 445 455 461 464 466 468 485 502
504 506 507 515 523 536 537 540 544 551
552 564 616 618 621 625 626 647 648 652
658 660 664 669 674 676 680 684 690 692
695 709 712 721 724 727 735 737 751 752
763 766 769 772 773 778 796 799 802 806
807 809 826 835 845 847 850 863 864 874
877 884 887 891 897 899 905 923 928 930
940 947 949 962 969 970 982 988 990

3

269550

988

614

3149

3711

a b

c d

e f

Fig. 9 Determination of incoming edges for gene #614 in 1000-node network. The true connections for gene 614 is presented in a. Connections
recovered by the algorithm are shown in solid black lines and those not recovered are shown by dashed lines. In b only results from the accepted
experiment are shown in right circle and the results reject from Experiment 1 are show in circle with dashed lines. Connections in the actual network
recovered in Experiment 2 are shown in green. In c and d, connections in the actual network recovered in each experiment are shown in green, and
the false positives common to both experiments are shown in red. mRNA expression profiles for gene 614 for the two experiments with profiles
from Experiment 1 are presented in c and profiles from Experiment 2 are presented in d. The profile for gene 614 is represented by circles, true
edges recovered by the algorithm are shown in green, activators appearing as false positives are shown in red, and connections missed by the
algorithm are shown in blue. e (Experiment 1) and f (Experiment 2): histogram of frequency of the number of times an activator appears in all the
acceptable “submodels” generated by the algorithm for target gene 614 is presented

Page 12 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

in favor of our algorithm since the in silico data used for
the test are generated from a model that uses the same
underlying mathematical structure as assumed by our
inference algorithm. Practical applications to real data
may draw on multiple algorithms, each with its own rela-
tive advantages and disadvantages [10–16].

Conclusions
The algorithm presented here is able to reverse-engineer
network connections in a 1000-node network from high
dimensional time-course data within 2 weeks on 5 T K20
GPUs. The parallel algorithm scales linearly with number
of processors employed.

By leveraging multiple GPU’s, network inference on the
scale of thousands of variables becomes feasible. Thus,
genome-scale biological network inference is becom-
ing feasible using the current generation of GPU-archi-
tecture computing clusters. The network prediction of
GPU method is comparable to other GRN methods such
a TIGRESS. The main advantage of GPU method is in
its ability to process large data sets in a relatively short
period of time.

The data-driven approach used by the algorithm
depends on the information available for each node for
a particular experiment. So in order to identify a given
interaction in the network, data must contain extractable
information pertaining to a particular interaction. Fur-
thermore, when multiple genes show similar time-course
behavior, it is difficult to distinguish true interactions
from false positives. This shortcoming can potentially
be overcome by utilizing robust clustering algorithms
when applying the reverse-engineering algorithm to high
dimension biological time-course data [17].

Authors’ contributions
 RT designed, developed, and implemented the algorithm. AA contributed to
coding and setup of the public repository. JP compared the GPU algorithm
with TIGRESS. JNB contributed to modifications of the algorithm and helped
validate the implementations. RT and DAB wrote the manuscript. DAB con-
ceived the idea and supervised the research. All authors read and approved
the final manuscript.

Author details
1 Present Address: Pratt & Miller Engineering, WK Smith Drive, New Hudson,
MI, USA. 2 Department of Molecular and Integrative Physiology, University
of Michigan, North Campus Research Complex, Ann Arbor, MI, USA. 3 Present
Address: Department of Physiology, Michigan State University, 567 Wilson
Road, East Lansing, MI, USA. 4 Present Address: Computational Biology Depart-
ment, School of Computer Science, Carnegie Mellon University, 5000 Forbes
Ave., Pittsburgh, PA, USA.

Acknowledgements
This work was supported by the Virtual Physiological Rat Project funded
through NIH Grant P50-GM094503. The authors thank NVIDIA® for their dona-
tion of two Tesla K20 GPU cards through an academic research grant. This
research was supported in part through computational resources and services
provided by Advanced Research Computing at the University of Michigan,
Ann Arbor.

Competing interests
The authors declare that they have no competing interests.

a b

Fig. 10 Performance statistics for the reverse-engineering algorithm. False positive rate and fraction (a) of true edges recovered (b, in %) for set
of 1000 genes analyzed using a sensitivity analysis are presented. Results using two cutoff values, 0.01 and 0.05, using a pvalue relative to a chance
that a connection appears using a random binomial distribution. Union represents a union of sets of results obtained from both experiments, CV
represents the cutoff metric based upon co-efficient variation mentioned in the text, and Int represents intersection of results obtained from both
experiments

Table 1 TIGRESS performance described in terms of true
edges recovered and false positive rate

Threshold True edges
recovered (%)

FP rate
per gene

0 6.2 98.5

0.01 1.9 21.1

0.1 0.3 4.1

0.2 0.1 1.9

Page 13 of 13Thiagarajan et al. Algorithms Mol Biol (2017) 12:8

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Availability of data and materials
Relevant data and material can be accessed at the GitHub page [34].

Received: 7 August 2016 Accepted: 13 March 2017

References
 1. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to infer

gene networks from expression profiles. Mol Syst Biol. 2007;3(1):78.
 2. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regula-

tory network inference: data integration in dynamic models-a review.
Biosystems. 2009;96(1):86–103.

 3. Karlebach G, Shamir R. Modelling and analysis of gene regulatory net-
works. Nat Rev Mol Cell Biol. 2008;9(10):770–80.

 4. Bazil JN, Qi F, Beard DA. A parallel algorithm for reverse engineering of
biological networks. Integr Biol. 2011;3(12):215–1223.

 5. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: cur-
rent approaches and outstanding challenges. PLOS Comp Biol.
2012;8(2):1002375.

 6. Schatz M, Trapnell C, Delcher A, Varshney A. High-throughput sequence
alignment using graphics processing units. BMC Bioinform. 2007;8(1):474.

 7. Anderson JA, Lorenz CD, Travesset A. General purpose molecular
dynamics simulations fully implemented on graphics processing units. J
Comput Phys. 2008;227(10):5342–59.

 8. Genovese L, Ospici M, Deutsch T, Mehaut J-F, Neelov A, Goedecker S.
Density functional theory calculation on many-cores hybrid central
processing unit-graphic processing unit architectures. J Chem Phys.
2009;131(3):034103.

 9. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the
human genome. Nature. 2001;409(6822):860–921.

 10. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G.
Revealing strengths and weaknesses of methods for gene network infer-
ence. Proc Natl Acad Sci. 2010;107(14):6286–91.

 11. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, Allison
KR, Kellis M, Collins JJ, Stolovitzky G. Wisdom of crowds for robust gene
network inference. Nat Methods. 2012;9(8):796–804.

 12. Shaw OJ, Harwood C, Steggles LJ, Wipat A. SARGE: a tool for creation of
putative genetic networks. Bioinformatics. 2004;20(18):3638–40.

 13. Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, Cali-
fano A. ARACNE: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinform. 2006;7(Suppl
1):7.

 14. Bozdag S, Li A, Wuchty S, Fine HA. FastMEDUSA: a parallelized tool to infer
gene regulatory networks. Bioinformatics. 2010;26(14):1792–3.

 15. Haury A-C, Mordelet F, Vera-Licona P, Vert J-P. TIGRESS: trustful inference of
gene regulation using stability selection. BMC Syst Biol. 2012;6(1):145.

 16. Belle A, Thiagarajan R, Soroushmehr S, Navidi F, Beard DA, Najar-
ian K. Big data analytics in healthcare. BioMed Res Int. 2015;2015;16.
doi:10.1155/2015/370194.

 17. Bazil JN, Stamm KD, Li X, Thiagarajan R, Nelson TJ, Tomita-Mitchell A,
Beard DA. The inferred cardiogenic gene regulatory network in the mam-
malian heart. PLOS ONE. 2014;9(6):e100842.

 18. Dematté L, Prandi D. GPU computing for systems biology. Brief Bioinform.
2010;11(3):323–33.

 19. Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing
units in bioinformatics, computational biology and systems biology. Brief
Bioinform. 2016;058:bbw058.

 20. Vigelius M, Lane A, Meyer B. Accelerating reaction-diffusion simula-
tions with general-purpose graphics processing units. Bioinformatics.
2011;27(2):288–90.

 21. Mrozek D, Brożek M, Małysiak-Mrozek B. Parallel implementation of 3d
protein structure similarity searches using a GPU and the CUDA. J Mol
Model. 2014;20(2):1–17.

 22. Nobile MS, Cazzaniga P, Besozzi D, Pescini D, Mauri G. Cutauleaping: a
GPU-powered tau-leaping stochastic simulator for massive parallel analy-
ses of biological systems. PLoS ONE. 2014;9(3):91963.

 23. Ahnert K, Mulansky M. Odeint—solving ordinary differential equations in
c++. AIP Conf Proc. 2011;1389:1586–9.

 24. Hoberock J, Bell N. Thrust: a parallel template library. Version 1.7.0. 2010.
http://thrust.github.io/

 25. Hindmarsh AC. A systematized collection of ODE solvers. IMACS Trans Sci
Comput. 1983;1:55–64.

 26. Thompson P. cuLsoda: LSODA Solver for GPUs (2009). https://github.com/
Celemourn/cuLsoda. Accessed 8 Oct 2013.

 27. Efron B, Hastie T, Johnstone I, Tibshirani R, et al. Least angle regression.
Ann Stat. 2004;32(2):407–99.

 28. Bach FR. Bolasso: model consistent lasso estimation through the boot-
strap. In: Proceedings of the 25th international conference on machine
learning. ACM; 2008. pp. 33–40.

 29. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc B Stat Meth-
odol. 2010;72(4):417–73.

 30. Hindmarsh AC, Petzold LR. Algorithms and software for ordinary differ-
ential equations and differential-algebraic equations, part ii: higher-order
methods and software packages. Comput Phys. 1995;9(2):148–55.

 31. Zhou Y, Liepe J, Sheng X, Stumpf MPH, Barnes C. GPU accelerated bio-
chemical network simulation. Bioinformatics. 2011;27(6):874–6.

 32. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L,
Mendes P, Kummer U. COPASI-a complex pathway simulator. Bioinformat-
ics. 2006;22(24):3067–74.

 33. Nobile MS, Cazzaniga P, Besozzi D, Mauri G. GPU-accelerated simula-
tions of mass-action kinetics models with cupSODA. J Supercomput.
2014;69(1):17–24.

 34. Thiagarajan R, Alavi A, Beard D. Subnetwork generator on GPU. 2015.
https://github.com/Beard-Group/subnetwork_generator.

 35. Haury A-C, Mordelet F, Vera-Licona P, Vert J-P. TIGRESS: trustful inference
of gene regulation using stability selection. 2012. http://cbio.ensmp.fr/
tigress.

 36. Irrthum A, Wehenkel L, Geurts P, et al. Inferring regulatory networks from
expression data using tree-based methods. PLoS ONE. 2010;5(9):12776.

 37. Fischer C. Massive parallel implementation of ODE solvers. In: Programs
and algorithms of numerical mathematics, proceedings of seminar.
Institute of Mathematics AS CR; 2008. pp. 33–40.

 38. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new
features for data integration and network visualization. Bioinformatics.
2011;27(3):431–2.

http://dx.doi.org/10.1155/2015/370194
http://thrust.github.io/
https://github.com/Celemourn/cuLsoda
https://github.com/Celemourn/cuLsoda
https://github.com/Beard-Group/subnetwork%5fgenerator
http://cbio.ensmp.fr/tigress
http://cbio.ensmp.fr/tigress

	The feasibility of genome-scale biological network inference using Graphics Processing Units
	Abstract
	Background
	Methods
	Distributed network inference algorithm
	ODE solvers on the GPU
	ODEINT
	LSODA

	Network identification
	10-Gene network
	1000-Gene network

	Comparison to TIGRESS

	Results and discussion
	Computation costs for ODE solvers: CPU versus GPU
	ODEINT
	LSODA

	10-Gene in silico network
	1000-Gene in silico network
	Comparison to TIGRESS

	Conclusions
	Authors’ contributions
	References

