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Abstract 

Systems research spanning fields from biology to finance involves the identification of models to represent the under-
pinnings of complex systems. Formal approaches for data-driven identification of network interactions include statisti-
cal inference-based approaches and methods to identify dynamical systems models that are capable of fitting multi-
variate data. Availability of large data sets and so-called ‘big data’ applications in biology present great opportunities 
as well as major challenges for systems identification/reverse engineering applications. For example, both inverse 
identification and forward simulations of genome-scale gene regulatory network models pose compute-intensive 
problems. This issue is addressed here by combining the processing power of Graphics Processing Units (GPUs) and a 
parallel reverse engineering algorithm for inference of regulatory networks. It is shown that, given an appropriate data 
set, information on genome-scale networks (systems of 1000 or more state variables) can be inferred using a reverse-
engineering algorithm in a matter of days on a small-scale modern GPU cluster.
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Background
One of the outstanding challenges of systems biology is 
to reconstruct and simulate genome-scale regulatory 
networks based on genome-scale data. This challenge is 
made difficult by the sparseness and noisiness of genome-
scale expression and proteomics data [1, 2], as well as the 
inherent computational complexity of the problem  [3, 
4]. Specifically, here we consider an ill-posed problem of 
identifying network models from high-throughput time-
course data from large scale dynamical systems [5] using 
parallel computing platforms.

Graphics Processing Units (GPUs) facilitate paral-
lel calculations in applications that can be scaled from a 
desktop to a high-performance computing environment. 
GPU computing has impacted computational modeling 
with applications in various fields of research such as 
bioinformatics  [6], molecular dynamics  [7], and density 

functional theory  [8]. The availability of GPUs has ena-
bled researchers to address larger scale problems and 
drastically reduce the time taken by simulations com-
pared to traditional methods [6–8].

Inference of network models from high-dimensional 
data has two bottlenecks: the size of the problem [9], and 
robustness of the network inference algorithm  [10, 11]. 
The processing power of GPUs can help overcome the 
first bottleneck by using an algorithm optimized for the 
parallel architecture of GPUs. To help overcome the sec-
ond bottleneck, a variety of network inference algorithms 
have been developed   [10–16]. Bazil et  al. developed 
a method for reverse engineering of genetic pathways 
based on a distributed parallel algorithm  [4, 17]. With 
this algorithm the number of calculations for a network 
size of N variables scales as O(N 2) [4]. This O(N 2) scaling 
is an improvement over deterministic model-inference 
techniques, where computation costs scale as O(N 3), 
and information theory based approaches, where com-
putational costs scale as O(N 2 logN ). Even though its 
computational cost scales as O(N 2), current applications 
of this algorithm have been limited to 100–200 variables 
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to obtain results in reasonable timescales [17]. However, 
the algorithm is perfectly suited for a GPU platform 
and significant speedups on a GPU platform relative to 
a central processing unit (CPU) platform are expected. 
Indeed, adaptation of this algorithm to a GPU platform 
is expected to facilitate genome-scale network analysis in 
tractable timescales.

Yet GPU computing is challenging due to the 
required programming [18]. Effective GPU applica-
tions must minimize the data transfer between the host 
(CPU) and the device (GPU), and the memory require-
ments on the device (GPU). Implementing the Bazil 
et al. algorithm on a GPU platform requires considera-
tion of these details to obtain effective performance. 
A tailored approach is essential to utilize processing 
power of GPU architecture  [19]. Optimum usage of 
shared memory and asynchronous data transfers  [20], 
exploiting global memory usage and multiple streams 
of execution  [21], and usage of GPU-optimized data 
structures  [22] have been shown to yield significant 
speedups [19].

This article reports an updated version of the Bazil 
et  al. algorithm tailored for a GPU architecture applied 
to reverse-engineer a 1000 node network from high-
throughput time-course in silico data. The application is 
developed using the NVIDIA® CUDA® compiler. It cent-
ers on solving non-linear ordinary differential equations 
(ODE) describing the interactions between genes. Two 
variants of the algorithm utilizing different ODE solvers 
are implemented on the GPU platform. The first one is 
ODEINT  [23], which utilizes THRUST libraries  [24] to 
solve the ODE on a GPU, and the second one is a LSODA 
implementation  [25] on a GPU  [26]. Application to a 
1000-variable in silico data set illustrates the viability of 
reverse engineering of genome-scale biological networks. 
Results from the GPU method were compared with a 
widely used method called TIGRESS   [15]. TIGRESS 
combines least angle regression (LARS)  [27] with stabil-
ity selection  [28, 29] and was ranked among the top five 
network inference methods in the DREAM5 gene recon-
struction challenge  [11].

Methods
Distributed network inference algorithm
The distributed algorithm developed by Bazil et  al. is 
suited for analyzing large-scale data sets including, but 
not limited to, time-course mRNA expression data. The 
time-course inverse problem of determining regulatory 
networks is decomposed into N one-dimensional prob-
lems, one for each of the N variables in the network. 
The algorithm involves searching for maximally likely 
versions of the one-dimensional model for each state 
variable. In practice, its application requires integrating 

millions of different realizations of the basic underlying 
ODE model.

The governing ODE used to describe regulatory path-
ways between genes in a network is similar to the ODE 
described in the community-wide challenge within the 
DREAM project [10]. The mRNA expression level xj for 
the jth gene is governed by a mass balance equation [4]:

with initial condition xj(0) = x0j. The rate at which the 
jth gene is transcribed is rj(t) and dj is the degradation 
constant for the jth gene. The rate is modeled by com-
petitive binding of activating and inhibiting transcription 
factors subject to co-operativity and saturation:

where IAj and IIj are sets of indices of variables that act 
as activators and inhibitors of mRNA level for the jth 
gene. The maximal rate of mRNA production is r0,j. The 
parameter τ represents a time delay for mRNA transcrip-
tion, translation, and post-translational signaling events. 
Cooperative, non-linear binding is assumed with the Hill 
coefficient n > 1 for the binding constants KAi,j and KIi,j. 
Externally stimulated or constitutive transcription is cap-
tured by the term ej.

According to these governing equations, gene tran-
scription is determined by a competition among inhibi-
tory and activating factors. There is no single weight 
associated with a given activating or inhibiting edge. 
Rather each activation interaction has an associated value 
of KAi,j. When the effector gene concentration/activity is 
greater than the KAi,j for a given edge, it has a strong acti-
vating effect on the target gene. Similarly, for an inhibi-
tory edge, when the effector gene concentration/activity 
is greater than the KIi,j for a given edge, it has a strong 
inhibitor effect on the target gene.

Since the algorithm developed by Bazil et al. splits the 
network problem for N genes into N independent one-
dimensional problems (sub-networks) for each gene, 
these independent one-dimensional problems can be 
run in parallel to search for trial models for each gene. 
This implementation of independent sub-networks is 
described in pseudo-code in Algorithm  1. The ODE 
solver is run on the GPU so that millions of independent 
candidate sub-networks can be evaluated simultaneously. 
A final global network is then generated by combining 
all the sub-networks generated for each gene and filter-
ing out unlikely interactions. To test the application of 
GPU computing to this problem, computational costs 

(1)
dxj(t)

dt
= rj(t)− djxj(t) ,

(2)rj(t) = r0,j
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for simulating large numbers of realizations of the gene 
expression model are determined for implementations on 
CPU versus GPU.

The algorithm is implemented using two different 
ODE solver packages, ODEINT and cuLsoda, on the 
GPU. ODEINT is developed in a C++ environment by 
Ahnert and Mulansky [23]. cuLsoda is a CUDA® version 
of the LSODE ODE solver developed by Hindmarsh and 
Petzold [30]. To test the performance of these two ODE 
solvers we use a single-variable model with two activators 
and no inhibitors. The governing equation (1) reduces to

where x2 and x3 represent activators for the target gene 
1. Values of x2(t) and x3(t) used in calculating the right-
hand side in Eq. (3) are determined using a cubic spline 
interpolation of time-course pseudo-data for these vari-
ables. A value of 1 (arbitrary time units) is used for the 
time delay τ and the value of Hill coefficient is set as 2. 
The binding constants, r0,1, e1, and d1 are varied over a 
range with minimum values of 10−2 and maximum values 
of 102.

(3)
dx1(t)

dt
= r1(t)− d1x1(t) ,

(4)r1(t) = r0,1

(

x2(t−1)
KA2,1

+
x3(t−1)
KA3,1

)2
+ e1

1+
(

x2(t−1)
KA2,1

+
x3(t−1)
KA3,1

)2
+ e1

,

ODE solvers on the GPU
ODEINT
ODEINT uses Thrust [24], which is a parallel algorithms 
library resembling the C++ Standard Template Library 
(STL), to run the ODE solver on the GPU. Using Thrust 
has the advantage that the same application can be run 
on a multi-core CPU using OpenMP or a GPU by a 
switch in the compilation instructions. The Dormand-
Price 5 algorithm [23] is used to solve the governing ODE 
presented in Eq. (1), which is an explicit solver not ideal 
for stiff systems. In general, this is a disadvantage since 
the governing ODE can be stiff in nature. Here for bench-
marking the forward ODE solvers, parameters of the 
governing ODE in Eq.  (3) are fixed so that the problem 
solved using ODEINT remains non-stiff.

CPU calculations for the case of ODEINT are con-
ducted using a quad-core Intel i5 processor where 
OpenMP, via Thrust, is used to utilize all the four cores 
of the CPU. The parameters of the governing ODE 
are declared with single (using single precision float-
ing point) precision in one case and double precision in 
another.

LSODA
LSODE was originally developed in FORTRAN as part 
of a systematized collection of ODE solvers by Hind-
marsh  [25]. Thompson converted a FORTRAN version 
of LSODA, a variant version of LSODE solver, into a C 
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version to be run on a CPU as well as a CUDA® compat-
ible version to be run on a GPU  [26]. A full Jacobian is 
calculated by LSODA requiring a number of extra calls 
to the right hand side of the governing ODE presented in 
Eq. (1). LSODA switches automatically between stiff and 
non-stiff methods so the user does not need to choose 
the appropriate method. An Adams method [25] is used 
for non-stiff problems and the backward differentiation 
formula 5 (BDF5) method [25] is used for stiff problems. 
Stiff solvers require more memory to record previous 
time steps and matrices used for solving implicit equa-
tions. The Thompson version of LSODA is used by Zhou 
et al. in the CUDA-sim package written in Python  [31]. 
Zhou et al. report a speedup of around 50 fold, on a sin-
gle Tesla C2050 GPU relative to a single Intel Core i7 
Extreme Edition CPU, for a single non-stiff ODE which 
is solved for a variety of different parameters. For com-
parisons using LSODA speedup is determined on a Tesla 
K20 GPU relative to a single core of an Intel Xeon E5 
Sandy Bridge processor. Another SODA implementa-
tion in CUDA is cupSODA which relies on a C version of 
LSODA. cupSODA is a cross-platform tool which can be 
run on multiple operating systems. Speedup relative to 
COmplex PAthways SImulator (COPASI [32]) was found 
to be in the range of 23× to 86× for different test mod-
els [33]. The GPU used for the test models is a NVIDIA 
GeForce GTX 590 compared with a quad-core CPU Intel 
Core i7- 2600.

The LSODA/CUDA implementation of sub-network 
identification component of the Bazil et  al. algorithm is 
distributed on GitHub [34].

Network identification
The GPU implementation of the reverse-engineering 
algorithm is validated by applying it to identify connec-
tions for a target gene in a 10 gene network generated in 

silico. This allows us to verify whether the GPU imple-
mentation of the algorithm performs equivalently for the 
same test problems used by Bazil et al. [4]. Performance 
of the GPU implementation is then analyzed for a 1000-
node network, which is also generated in silico.

10‑Gene network
The 10-gene network model illustrated in Figure  3 of 
Bazil et al. [4] is reverse-engineered first to get an initial 
benchmark and as a test of functionality of the algorithm 
on a GPU.

1000‑Gene network
To test speed and accuracy of the reverse-engineering 
algorithm a 1000 gene in silico network is generated. The 
method is implemented using MATLAB R2013b (The 
Mathworks, Inc.). The network generation algorithm gener-
ates connections for each gene and assigns kinetic param-
eters associated with these connections described in Eq. (1).

The number of connections to each gene are deter-
mined from a random distribution in order achieve a 
power law decay in the number of incoming edges into 
each gene. Figure  1 illustrates frequency distributions 
of the edges coming into and going out of the genes in the 
network. The initial condition for each gene is set as 1 at 
time t = 0. The binding constants and other parameters 
of the governing ODE of Eq. (1) are bounded. The binding 
constants KA and KI are bounded between 0.25 and 9.75. 
The values of the r0 and d are randomly generated for each 
target gene and ej is bounded between a value of 1 and 21. 
The time delay for mRNA transcription, translation, and 
post-translational signaling events represented by τ is set 
as one hour. A delay differential function is used to gener-
ate time-course profiles of all the genes using MATLAB. 
The data is generated for 12 time points (over 11 h). The 
time points are equally spaced and range from 0 to 11.

a b

Fig. 1 1000-node network characteristics. Histogram of incoming edges (a) and outgoing edges (b) are presented for the 1000-gene network
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The two independent experiments generated in silico 
are done by stimulating different subsets of genes for 
each experiment. External stimuli are associated to a 
certain subset of genes which are chosen at random. In 
the case of experiment 1, 250 of them are activated exter-
nally, whereas in the case of experiment 2, 200 of them 
are activated externally.

Comparison to TIGRESS
The TIGRESS MATLAB code was downloaded from the 
SVN repository hosted by researchers at MINES Par-
isTech  [35]. The 1000 Node Network in-silico data was 
converted into TIGRESS input data format. A scores 
matrix was obtained with predictions of connections 
among the genes and transcription factors. The per-
centage recovery (number of true edges recovered by 
TIGRESS in %) and false positive rate per gene were cal-
culated for 4 threshold values. Here threshold value is the 
minimum value above which a true edge is recovered. 
The threshold or cutoff metric used in TIGRESS is user 
controlled. To infer the regulatory network from expres-
sion data, a score is computed to assess the evidence that 
each candidate regulation is true. Then a true regulation 
pair is predicted for which the score is larger than thresh-
old. TIGRESS only focuses on finding a good ranking for 
the candidate regulation, by reducing score so as to push 
the true regulation to the top of the list. This method lets 
the user control the level of false positive and false nega-
tive that is acceptable by the user.

TIGRESS was ranked in the top 3 GRN inference meth-
ods at the 2010 DREAM5 challenge. It performs on par 
with other state of the art such as GENIE3 method for 
in silico network  [36]. However, it does not perform as 
well as GENIE3 in in vivo networks. This is perhaps due 
to the fact the assumed linear relationship used between 

Transcription Factor and Target Gene used by TIGRESS 
is an oversimplification.

Results and discussion
Computation costs for ODE solvers: CPU versus GPU
ODEINT
Speeds of calculation on the GPU versus the CPU are 
compared in Fig. 2. A speedup of greater than an order of 
magnitude is observed when the number of ODEs solved 
on the GPU exceeds a million. (Speedup is defined as 
the time to complete integrations of a given number of 
realizations of the model on the CPU divided by the time 
taken on the GPU). State variables declared as single pre-
cision led to ≈2× speedup relative to the case where state 
variables are declared as double precision, when problem 
sizes are larger than a million.

For the CPU implementation to provide useful speed-
ups, the time spent on a single kernel call must be long 
compared to the latency to access data from memory. 
Simulation times are illustrated in Fig.  2b. We can see, 
from either the speedup plot or the simulation times, that 
a single kernel call to the GPU has to be approximately 
the size of a million ODE integration calls or more to 
achieve an order of magnitude speedup on the GPU rela-
tive to a multi-core CPU. One million independent one-
dimensional ODEs are integrated in a fraction of a second 
on the GPU and in seconds on the multi-core CPU.

LSODA
Speedup statistics are presented in Fig.  3a. Only dou-
ble precision designation is considered for state vari-
ables. The speedup achieved by LSODA is found to 
be an order of magnitude for problem sizes larger 
than approximately 103. Since the stiff solver requires 
more memory the number of ODEs that can be solved 

a b

Fig. 2 Performance statistics for ODEINT. Speedup (a) and time statistics (b) for solving ODEs obtained on a Tesla K20 GPU relative to time taken on 
8 cores of Intel Xeon E5 Sandy Bridge processor using ODEINT. These statistics are generated for the test problem described in Eq. (3)
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simultaneously on the GPU using LSODA is lower 
when compared with ODEINT. We find that no more 
than approximately 2000 jobs may be submitted in a 
single kernel call. For applications described below, 
jobs are submitted in blocks of 1600 ODEs iteratively. 
This number was determined via empirical experimen-
tation. As a result, GPU speedup saturates when the 
number of ODEs solved on the GPU is greater than 
1600. Comparison of timescales for the simulations on 
the Intel Xeon CPU and Tesla K20 GPU are presented 
in Fig.  3b. The time taken by the single core of Intel 
Xeon processor is linear with M, the number of ODEs 
integrated, as expected for a serial process. In the case 
of the Tesla K20 GPU it becomes linear for problem 
sizes greater than 1600.

10‑Gene in silico network
Data from the 10-gene network model illustrated in Fig-
ure 3 of Bazil et al.  [4, 17] were analyzed here to deter-
mine putative regulatory interactions associated with one 
gene in the network. The specific gene analyzed is gene 
ID #4 in the network, the same variable and same data 
used by Bazil et al. to test the first step in the inference 
algorithm. This step, which represents a major bottleneck 
in the process, involves finding a large number of “sub-
networks” for a given variable in the network, and then 
determining which regulatory interactions (or ‘edges’ in 
the network) are required to explain the data. Both the 
“True”, and inferred regulatory networks associated with 
gene ID #4 in this example and time-course data for this 
variable are shown in Fig. 4a.

a b

Fig. 3 Performance statistics for LSODA. Speedup (a) and time statistics (b) for solving ODEs obtained on a Tesla K20 GPU relative to time taken on 
a single core of an Intel Xeon E5 Sandy Bridge processor using LSODA. These statistics are generated for the test problem described in Eq. (3)

3 

4 

2 

8 7 

 

a b

Fig. 4 Description of subnetwork for gene #4. Subnetwork topology (a) and mRNA expression profiles (b) for target gene #4 from the 10-gene net-
work analyzed by Bazil et al. [4]. In a, solid black lines represent edges recovered by the algorithm, which are present in the true network and dashed 
gray line represents edge not recovered by the algorithm, but which is present in the true network. In b, the mRNA expression profile described 
by the regulator genes determined by the algorithm is presented for the target gene 4. The profiles for the regulator genes are presented as cubic 
splines using mRNA expression data. The number against each profile represents the gene index
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The true network associated with target gene ID #4 has 
2 activators (genes 7 and 8) and two inhibitors (genes 2 
and 3). The algorithm works by finding as many models 
(sets of activators and inhibitors) that can explain the 
time course data as possible. In practice, several thou-
sand candidate subnetworks are generated at random. 
(In the GPU implementation 1600 trial networks are 
evaluated in a single call to the GPU). These subnet-
works are evaluated by finding optimal parameter values 
(for activation and inhibition constants associated with 
each model) that best fit the time course data. Trial sub-
networks that can effectively fit the data are accepted as 
potential connections. These recovered connections are 
described for gene ID #4. Figure 4b shows simulated time 
courses for 10 models which are determined to effectively 
fit the data. Finally, the relative frequency with which a 
given edge appears in the set of putative subnetworks is 
taken as a measure of the likelihood of that edge belong-
ing to the true network underlying the dynamical system 
that generated the data.

Histograms of inferred activator and inhibitor edges 
for this system are illustrated in Fig. 5. These histograms 
indicate the relative frequency that each edge appeared 
in a total of 2051 trial networks for the GPU and 500 
trial networks for the CPU are found to effectively match 
the time-course data for this variable. Using the value 
of 0.45 (as determined by Bazil et al.) as an appropriate 
cutoff to select edges, our results are similar to those of 
Bazil et al. [4]. Activation of gene ID #4 by gene ID #8 is 
found in all sampled subnetworks, and inhibition by gene 
3 is found in greater than 80% of sampled subnetworks. 
These two true positives were recovered by Bazil et al. as 
well. In addition, in the current implementation the edge 
associated with inhibition by gene ID #2 is present in 
approximately 50% of sampled subnetworks.

Although this test problem represents an idealized 
data set, the important finding is that the GPU imple-
mentation of the algorithm returns effectively the same 
results as the CPU implementation. This is an independ-
ent validation for the GPU version of the algorithm. On 
the architectures used here, the GPU implementation is 
approximately 6 times faster than the CPU implementa-
tion. This speedup is obtained by comparing time taken 
to generate 2051 trial networks on the GPU and 500 trial 
networks on the CPU. If same number of networks (2000) 
on both CPU and GPU are generated then the speedup 
factor on the GPU reaches approximately 24.

For any application, obtaining useful speedup on a GPU 
architecture requires reducing the amount of time spent 
in data transfer between the host (CPU) and the device 
(GPU). For NVIDIA® devices the NVIDIA® profiler 
gives insight into how the two ODE solvers, ODEINT 
and LSODA, perform on the GPU. The fraction of total 
simulation time spent on data transfer between host 
and device, represented by f, relative to the size of the 
problem M, the number of ODEs solved, is illustrated in 
Fig. 6. In the case of ODEINT, f drops down considerably 
as the problem size goes up yielding larger speedups for 
problem sizes larger than a million. This is why the num-
ber of jobs must be close to a million for the ODEINT 
solver in order to obtain any significant speedup on the 
GPU. In the case of LSODA, f does not dominate to the 
same extent for smaller problem sizes and saturates after 
the problem size exceeds 1600.

More than an order of magnitude speedup is observed, 
close to 100× in some cases, for the Tesla K20 GPU rela-
tive to an Intel Xeon E5 8 cores processor using ODE 
solver ODEINT. An order of magnitude speedup is 
observed for the GPU relative to a single core of Intel 
Xeon E5 8 cores processor utilizing ODE solver LSODA. 

a b

Fig. 5 Histograms of activators and inhibitors for gene #4. Value of fractions that each gene appears as an activator (a) or an inhibitor (b) in the 
ensemble of subnetworks generated for time course illustrated in Fig. 4
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This is comparable to speedups found in other studies 
done on the GPU [31, 37]. The cost of a Tesla K20 GPU 
is approximately $2000 (February 2017), which is about 
an order of magnitude larger than the cost of a single 
quad core CPU. Thus, based only on the costs of the pro-
cessing units, the GPU and CPU deliver comparable per-
dollar performance. NVIDIA® has developed CUDA as 
well as GPU hardware since release of Tesla K20 GPUs. 
However, there are other avenues for speedup which 
can be explored such as: Shared memory and asynchro-
nous data transfers [20], exploiting global memory usage 
and multiple streams of execution  [21], and usage of 

GPU-optimized data structures  [22]. However, factor-
ing in the cost of the computer chassis, and power con-
sumption, the economic advantage of the GPU becomes 
apparent. Taking into account the ease of programming 
on the CPU, with relatively less attention paid to mem-
ory handling with respect to GPUs, it is evident that 
developing the application on a CPU environment is rel-
atively easier. Hence, GPU computing as an alternative 
for large scale biochemical network simulations has to 
be considered on a case-by-case basis with consideration 
to factors such as programming effort, timing for simu-
lations, power consumption, and cost of the machines.

1000‑Gene in silico network
To determine the performance characteristics of the 
algorithm applied in a realistic setting, the inference algo-
rithm is applied to time-course in silico data generated in 
silico from a 1000 gene network. Figure 7a illustrates the 
connections for the 1000 gene network, with 3700 con-
nections or close to 4 connections per gene. Determin-
ing the true 3700 actual connections out of the possible 
2× 106 is an extremely ill-posed problem.

We generated time-course in silico data from this net-
work from two independent simulation experiments. 
This approach is used to represent two independent 
experiments on a biological system. For these two experi-
ments, the internal network connections and kinetic 
parameters remain unchanged. Different dynamic behav-
ior in the two experiments is obtained through two dif-
ferent sets of external stimuli, as detailed in the appendix. 

Fig. 6 Resource usage on the GPU. Fraction of time in a simulation 
spent in data transfer (f) between host (CPU) and device (GPU) for 
ODEINT and LSODA GPU ODE solvers

a b

Fig. 7 Description of the 1000-node network. Network representation of the 1000 node in silico network is presented in a. mRNA expression pro-
files for the first 16 genes for Experiment 1 are presented in b. In silico data are plotted as circles. Subnetwork model fits to data are plotted as solid 
lines. Visualization of the network uses Cytoscape [38]
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In brief, a random subset of the 1000 genes is activated 
in each experiment by assigning a non-zero value for the 
terms ej in Eq. (1).

Expression profiles of first 16 genes are illustrated in 
Fig.  7b for Experiment 1. Many profiles are similar in 
nature, with repeated motifs include simple exponential 
decay. Genes 2, 3, 9, and 14 show the trend of expres-
sion levels saturating after the initial time points. Since 
the algorithm developed here is purely data driven and it 
is not able to distinguish between activation or inhibition 
effects of genes with similar profiles, yielding a large num-
ber of false positives. As will be illustrated below, per-
forming multiple independent experiments provides an 
effective means of reducing the number of false positives.

The time taken to reverse-engineer connections for this 
1000 node network for one experiment is 13.1 days on 5 
T K20 GPUs. Here the regulatory network determined 
for two genes, gene ID #645 and gene ID #614, are ana-
lyzed in greater detail. Gene 645 is a case where our strat-
egy succeeds and gene 614 is a case where the algorithm 
is less successful.

The “true” network for gene 645 consists of three acti-
vators 359, 594, and 973 and is illustrated in Fig.  8a. 
Applying our algorithm to determine subnetworks for 
this gene that can fit the data from each individual exper-
iment, 107 trial models were evaluated, with at least 5000 
subnetworks able to fit the in silico data. Assembling the 
edges that appear with significant frequency in the sets 
of acceptable subnetworks we find 31 putative activa-
tor genes based on analysis from Experiment 1 and 46 
putative activator genes from the analysis of Experiment 
2. The 31 putative activators from Experiment 1 and 46 
putative activators from Experiment 2 are chosen from 
the ensemble of all subnetworks as the activators that 
appear with a frequency of a pvalue of < 0.01 relative to 
random selection.

The frequency distribution of putative activators for 
this gene is presented for the two experiments in Fig. 8e 
and f. Each of these sets of putative activators, identified 
based on pvalue of < 0.01 relative to random selection, is 
listed in Fig. 8b. There is one true positive gene 359 iden-
tified from both experiments. The mRNA expression 
profiles of relevant genes from the two experiments are 
shown in Fig. 8c and d, respectively. In summary, for this 
gene, our algorithm identifies one true positive edge. The 
intersection of the putative activators from the two inde-
pendent experiments include this true positive as well 
as four false positives. Taking the intersection of sets of 
identified activators, we dramatically reduce the number 
of false positives.

Results for gene 614 are illustrated in Fig. 9. Here the 
predicted expression time course for Experiment 1 is a 
simple monotonic saturating increase. The frequency 

distribution of identified activators for this experiment is 
shown in Fig. 9c. Here, in contrast to the frequency dis-
tributions for gene 645, there are no clear outliers from 
Experiment 1 for gene 614. This is because the time-
course profile for the target gene contains little infor-
mation to select from the trial models. Experiment 2 for 
this gene does contain useful information, and there are 
153 gene activators identified as potentially significant, 
as illustrated in Fig. 9b. For this case, although the false 
positive rate is high, 1 of the 5 true positives appear in the 
set of significant edges obtained from Experiment 2. The 
expression time courses for the top three activators (gene 
205, gene 331 and gene 826) for Experiment 2 appear-
ing in the frequency distribution in Fig. 9f are shown in 
Fig. 9d.

For this case, since we obtain no useful information 
from Experiment 1, it is not useful to take the intersec-
tion of identified edges to improve the false positive rate. 
For the 1000 gene in silico data set analyzed here, 58.5% 
of genes fall into the category of gene 645, with both 
experiments yielding sets of positive edges. For 22.0% 
of genes, only one of the two experiments yields useful 
information. For roughly 19.5%, neither experiment yields 
significant putative edges.

Figure  10 reports the performance of the algorithm, 
using two different values for pvalue are used to select 
significant putative regulating genes (activators and 
inhibitors). For a single experiment, 18.3% of true edges 
are recovered using pvalue = 0.01 and 26.4% using 
pvalue = 0.05. As we have observed, the number of false 
positives is high, and is higher for high values of pvalue 
used. Taking the union of identified genes from the two 
independent experiments increases the fraction of true 
edges recovered, but also increases the false positive rate. 
Taking the intersection leads to reduction in the false 
positive rate by a factor of 5, but also leads to reduction 
in true edge recovery rate which is 7.5% for pvalue = 0.01 . 
To improve the edge recovery rate, we analyze which 
experiments have useful information using a co-efficient 
of variation (CV > 0.05) metric, which is standard devia-
tion divided by the mean. This metric is used to deter-
mine whether the algorithm can make a prediction 
depending on the time-course profile of the target gene. 
Based on this criterion, the information obtained from a 
given experiment for a given target gene is accepted or 
rejected before taking the intersection of results from the 
two independent experiments. If one of the two experi-
ments is judged to be uninformative for a given target 
gene, the intersection of results from two experiments is 
not applied. Applying this step improves the edge recov-
ery rate from 7.5 to 14.2% for pvalue = 0.01 as illustrated 
in Fig. 10b. This increase in edge recovery rate is accom-
panied by increase in number of false positives.
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Comparison to TIGRESS
In TIGRESS, the percentage true edge recovered was 
higher at lower threshold values with the highest recov-
ery rate of 6.2% for no threshold used, 1.9% for a thresh-
old value of 0.01 and 0.3% for a threshold value of 0.1. The 

performance of TIGRESS on this problem is summarized 
in Table  1. The true edge recovery rates attained with 
TIGRESS are significantly lower than true edge recovery 
rate from our reverse engineering method where the true 
edges recovered are 7.2%, for one experiment, and 14.2% , 

Expt 1 Expt 2

21 56 201 238 316 435 
444 457 477 489 520 
592 638 686 695 705 
716 731 739 821 840 
846 893 945 950 969 

47 76 103 120 139 141 
155 156 174 227 284 
301 309 319 346 362 
405 418 466 472 509 
536 568 573 602 607 
614 696 710 727 844 
861 865 867 898 914 
924 958 962 980 987 

187
290 
359
587 
953

3

973594

359

645

a b

c d

e f

Fig. 8 Determination of incoming edges for gene #645 in 1000-node network. The true connections for gene 645 is presented in a. Connections 
recovered by the algorithm are shown in solid black lines and those not recovered are shown by dashed lines. In b the intersection of activators from 
reverse-engineering networks from the two experiments is presented in the form of a Venn diagram. In c and d, connections in the actual network 
recovered in each experiment are shown in green, and the false positives common to both experiments are shown in red. mRNA expression profiles 
for gene 645 for the two experiments with profiles from Experiment 1 are presented in c and profiles from Experiment 2 are presented in d. The 
profile for gene 645 is represented by circles, true edges recovered by the algorithm are shown in green, activators appearing as false positives are 
shown in red, and connections missed by the algorithm are shown in blue. e (Experiment 1) and f (Experiment 2): histogram of frequency of the 
number of times an activator appears in all the acceptable “submodels” generated by the algorithm for target gene 645 is presented
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for two experiments. This 14.2% recovery rate is associ-
ated with a 140 false positive per gene rate. Thus the GPU 
method performed better in recovering true edges with a 
higher false positive rate. The cutoff metric or threshold 
value is determined by user for TIGRESS.

Thus our algorithm performed better than TIGRESS 
for this trial problem in recovering true edges, while 
generating more false positives. TIGRESS generated 
significantly fewer edges overall and a marginally lower 
false positive rate. Moreover, this comparison is biased 

Expt 2
4 6 8 17 25 29 41 52 55 57 68 81 95 104 
105 113 114 116 117 118 123 131 139 141 
156 163 167 169 176 183 205 211 222 227 
229 244 249 255 256 259 292 293 299 307 
309 313 314 315 327 331 335 348 353 361 
366 368 373 378 379 394 402 418 419 427 
428 429 445 455 461 464 466 468 485 502 
504 506 507 515 523 536 537 540 544 551 
552 564 616 618 621 625 626 647 648 652 
658 660 664 669 674 676 680 684 690 692 
695 709 712 721 724 727 735 737 751 752 
763 766 769 772 773 778 796 799 802 806 
807 809 826 835 845 847 850 863 864 874 
877 884 887 891 897 899 905 923 928 930 
940 947 949 962 969 970 982 988 990 

3

269550

988

614

3149

3711

a b

c d

e f

Fig. 9 Determination of incoming edges for gene #614 in 1000-node network. The true connections for gene 614 is presented in a. Connections 
recovered by the algorithm are shown in solid black lines and those not recovered are shown by dashed lines. In b only results from the accepted 
experiment are shown in right circle and the results reject from Experiment 1 are show in circle with dashed lines. Connections in the actual network 
recovered in Experiment 2 are shown in green. In c and d, connections in the actual network recovered in each experiment are shown in green, and 
the false positives common to both experiments are shown in red. mRNA expression profiles for gene 614 for the two experiments with profiles 
from Experiment 1 are presented in c and profiles from Experiment 2 are presented in d. The profile for gene 614 is represented by circles, true 
edges recovered by the algorithm are shown in green, activators appearing as false positives are shown in red, and connections missed by the 
algorithm are shown in blue. e (Experiment 1) and f (Experiment 2): histogram of frequency of the number of times an activator appears in all the 
acceptable “submodels” generated by the algorithm for target gene 614 is presented
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in favor of our algorithm since the in silico data used for 
the test are generated from a model that uses the same 
underlying mathematical structure as assumed by our 
inference algorithm. Practical applications to real data 
may draw on multiple algorithms, each with its own rela-
tive advantages and disadvantages  [10–16].

Conclusions
The algorithm presented here is able to reverse-engineer 
network connections in a 1000-node network from high 
dimensional time-course data within 2 weeks on 5 T K20 
GPUs. The parallel algorithm scales linearly with number 
of processors employed.

By leveraging multiple GPU’s, network inference on the 
scale of thousands of variables becomes feasible. Thus, 
genome-scale biological network inference is becom-
ing feasible using the current generation of GPU-archi-
tecture computing clusters. The network prediction of 
GPU method is comparable to other GRN methods such 
a TIGRESS. The main advantage of GPU method is in 
its ability to process large data sets in a relatively short 
period of time.

The data-driven approach used by the algorithm 
depends on the information available for each node for 
a particular experiment. So in order to identify a given 
interaction in the network, data must contain extractable 
information pertaining to a particular interaction. Fur-
thermore, when multiple genes show similar time-course 
behavior, it is difficult to distinguish true interactions 
from false positives. This shortcoming can potentially 
be overcome by utilizing robust clustering algorithms 
when applying the reverse-engineering algorithm to high 
dimension biological time-course data [17].
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Fig. 10 Performance statistics for the reverse-engineering algorithm. False positive rate and fraction (a) of true edges recovered (b, in %) for set 
of 1000 genes analyzed using a sensitivity analysis are presented. Results using two cutoff values, 0.01 and 0.05, using a pvalue relative to a chance 
that a connection appears using a random binomial distribution. Union represents a union of sets of results obtained from both experiments, CV 
represents the cutoff metric based upon co-efficient variation mentioned in the text, and Int represents intersection of results obtained from both 
experiments

Table 1 TIGRESS performance described in  terms of  true 
edges recovered and false positive rate

Threshold True edges  
recovered (%)

FP rate 
per gene

0 6.2 98.5

0.01 1.9 21.1

0.1 0.3 4.1

0.2 0.1 1.9
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