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Abstract 

Background: Cophylogeny reconciliation is a powerful method for analyzing host‑parasite (or host‑symbiont) co‑
evolution. It models co‑evolution as an optimization problem where the set of all optimal solutions may represent 
different biological scenarios which thus need to be analyzed separately. Despite the significant research done in the 
area, few approaches have addressed the problem of helping the biologist deal with the often huge space of optimal 
solutions.

Results: In this paper, we propose a new approach to tackle this problem. We introduce three different criteria under 
which two solutions may be considered biologically equivalent, and then we propose polynomial‑delay algorithms 
that enumerate only one representative per equivalence class (without listing all the solutions).

Conclusions: Our results are of both theoretical and practical importance. Indeed, as shown by the experiments, we 
are able to significantly reduce the space of optimal solutions while still maintaining important biological information 
about the whole space.
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Background
Reconstructing the evolutionary history of parasites (or 
symbionts) and their hosts has many applications such as 
for example identifying and tracing the origins of emerg-
ing infectious diseases [1–3]. These studies have become 
increasingly more important with the large amount of 
publicly available sequence data. A powerful framework 
for modeling host-parasite co-evolution is provided by 
cophylogeny models which derive evolutionary scenarios 
for both hosts and parasites (usually evolutionary trees 
are computed from DNA sequence data). Co-evolution 
is usually modeled as a problem of mapping the phy-
logenetic tree of the parasites to the one of the hosts 
(see e.g. [4–7]). Such mapping, called a reconciliation, 
allows the identification of some biologically motivated 
events: (a) cospeciation, when the parasite diverges in 

correspondence to the divergence of a host species; (b) 
duplication, when the parasite diverges but not the host; 
(c) host-switching, when a parasite switches from one 
host species to another independent of any host diver-
gence; and (d) loss, which can describe for instance spe-
ciation of the host species independently of the parasite, 
which then follows just one of the new host species. Find-
ing the “best” reconciliation is modeled as an optimiza-
tion problem by assigning a cost to each of the different 
types of events and then seeking the reconciliations that 
minimize the total cost (computed in an additive way). 
In practice, there may often be many optimal solutions 
which, although having the same total cost, can be quite 
different among them and correspond to different biolog-
ical scenarios. Most of the software proposed in the liter-
ature therefore do not rely only on one optimal solution 
but enumerate all of them (e.g. [6–10]). A crucial issue is 
that often the number of optimal solutions is unrealisti-
cally large (exponential in the size of the trees) [6, 11–14], 
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making it practically impossible to analyze each one of 
them separately.

To tackle this problem, we observe that although many 
of the solutions can be indeed very different, a large 
number of them are quite similar and can be considered 
biologically equivalent. We thus first propose various 
equivalence relations for grouping the reconciliations 
that may be considered biologically equivalent, then we 
provide algorithms which efficiently enumerate only the 
equivalence classes or one representative reconciliation 
per class.

State of the art
Many methods have been proposed in the literature to 
deal with the large number of optimal reconciliations. 
Some early approaches propose sampling the space of 
optimal reconciliations uniformly at random [15, 16]. 
However, as the optimal reconciliation space can be both 
large and heterogeneous [17], this does not guarantee 
that important information is not lost.

Other methods try to understand the structure of the 
space of solutions by computing some global proper-
ties such as the frequency of the events across the space 
[16], the diameter of the space [17], the pairwise dis-
tance among the optimal reconciliations [18]. In a similar 
direction, other methods propose a single reconciliation 
(e.g. a “median” reconciliation) to represent the whole 
space of optimal ones [11, 14, 19]. However, the results 
presented in [12, 14, 17, 18] show that the space can be 
very diverse and making inferences from a single recon-
ciliation might lead to conclusions that can be contra-
dicted by other optimal reconciliations. The method in 
[19] has been generalized in [20] in order to find a set of k 
medoids, or k centers that represent the space. However, 
these algorithms have a running time of O (nk+3 log k) 
(where k is the number of clusters and n is the size of the 
trees) and are thus not applicable in practice. Finally, in 
[10, 13] the solutions are clustered using a similarity dis-
tance among the reconciliations. However, in some cases 
the results of the clustering can be hard to interpret (see 
Section “Experimental results”).

Our contribution
In this paper, we propose an approach that is entirely dif-
ferent from the ones discussed in the state of the art sec-
tion. We first formally define under what conditions two 
solutions can be considered biologically equivalent. Some 
first steps in this direction were done in [21] where two 
notions of equivalence were first considered. However, 
the method presented in [21] requires first the listing (i.e. 
the enumeration) of all the optimal solutions and then 
clustering them according to the equivalence notion.

Here we introduce three different equivalence rela-
tions. We then propose an algorithm that efficiently 
enumerates the set of “equivalence classes” or that enu-
merates one representative per class without having to 
first generate all of them. The algorithms that we present 
are polynomial-delay, meaning that the time between the 
output of any solution and the next one is bounded by a 
polynomial function of the input size. Our results are of 
both practical and theoretical importance. Indeed, the 
problem of enumerating equivalence classes, and par-
ticularly the generation of representative solutions is a 
challenge in the context of enumeration algorithm. It 
has been identified as a need in different areas, such as 
genome rearrangements [22], artificial intelligence [23], 
pattern matching [24, 25], or the study of RNA shapes 
[26].

It is worth mentioning that the theoretical results in 
this paper have inspired the introduction of a general 
framework to enumerate equivalence classes for a whole 
class of problems which can be addressed by dynamic 
programming algorithms [27].

Model description
Definitions
In this section, we formally present the phylogenetic tree 
reconciliation problem that was originally introduced by 
Goodman et al. in 1979 [28]. We start by providing some 
definitions that will be used in the paper.

For a directed graph G, we denote by V (G) and A (G) 
respectively the set of nodes and the set of arcs of G. The 
out-neighbors of a node v are called its children. We con-
sider ordered rooted trees in which arcs are directed away 
from the root. For a tree T, we denote by L (T) the set of 
leaf nodes, i.e. those nodes without children, and denote 
by r (T) the root of T; the non-leaf nodes are called the 
internal nodes of T. A full rooted binary tree is a rooted 
tree in which every internal node has two children.

We denote by p (w) the parent of a node w. The chil-
dren of a node w are denoted by a couple (i.e. an ordered 
pair) ch(w) . If there exists a directed path from a node v 
to a node w, the node w is called a descendant of v, and v 
is called an ancestor of w; if moreover v  = w , we say that 
w is a proper descendant of v, and that v is a proper ances-
tor of w. If neither w is an ancestor of v nor w is an ances-
tor of v, we say that the two nodes are incomparable, and 
denote this as v  ∼ w . We denote by LCA (v,w) the low-
est common ancestor of two nodes v and w. The subtree 
of T rooted at a node v containing all descendants of v 
is denoted by T |v . Finally, we denote by dT (v,w) the dis-
tance, i.e. the number of arcs on a directed path, between 
two comparable nodes v and w in T.

We define next the phylogenetic tree recon-
ciliation problem (for short, the reconciliation 
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problem). Let H and P be respectively the rooted phylo-
genetic trees of the host and parasite species, both binary 
and full. Let σ be a function from L (P) to L (H),   rep-
resenting the parasite/host associations between extant 
species. A reconciliation is a function φ that assigns, for 
each parasite node p ∈ V (P) , a host node φ(p) ∈ V (H) , 
and satisfies the conditions stated in Definition 1. A rec-
onciliation must induce an event function Eφ on V(P) 
which associates each parasite node p to an event Eφ(p) . 
The set of events is denoted by E := {C, D, S, T} ; the leaf 
parasite node has a special event T ; for internal para-
site nodes, the event Eφ(p) is one among three options: 

cospeciation C , duplication D , and host-switch S . The 
event for an internal node p will depend on the hosts 
that are assigned by φ to p and to the two children p1 and 
p2 of p. In Definition 1, this dependency is expressed by 
Eφ (p) := E (φ (p),φ (p1),φ (p2)).

Definition 1 (Reconciliation, Event of a node) Given two 
phylogenetic trees H and P, and a function σ : L(P) → L(H) , 
a reconciliation of (H ,P, σ) is a function φ : V (P) → V (H) 
satisfying the following: 

1 For every leaf node p ∈ L(P), φ(p) is equal to σ(p) , 
and Eφ(p) = T.

2 For every internal node p ∈ V (P) \ L(P) with chil-
dren (p1, p2), exactly one of the following applies: 

(a) E(φ(p),φ(p1),φ(p2)) = S , that is, either 
φ(p1)  ∼ φ(p) and φ(p2) is a descendant of 
φ(p) , or φ(p2)  ∼ φ(p) and φ(p1) is a descend-
ant of φ(p),

(b) E(φ(p),φ(p1),φ(p2)) = C , that is, 
LCA(φ(p1),φ(p2)) = φ(p) , and φ(p1)  ∼ φ(p2),

(c) E(φ(p),φ(p1),φ(p2)) = D, that is, φ(p1) and 
φ(p2) are descendants of φ(p) , and the previous 
two cases do not apply.

In a reconciliation, an internal parasite node can be 
additionally associated to a number of loss events. The 
loss event is denoted by L . A loss can only occur in con-
junction with another event ( S , C , or D ), and the defi-
nition of the number of losses splits into several cases 

according to the accompanying event. We give in Defini-
tion 2 the number of loss events associated to an inter-
nal node p, called the loss contribution ξφ(p) . Since the 
loss contribution is also determined by the hosts that are 
assigned to p and to the children of p, we will also write 
ξφ(p) := ξ(φ(p),φ(p1),φ(p2)).

Definition 2 (Loss contribution) Let φ : V (P) → V (H) 
be a reconciliation. Let p be an internal node of the para-
site tree with children p1, p2. Its loss contribution ξφ(p) is 
defined by:

The function Eφ partitions the set of internal parasite 
nodes into three disjoint subsets according to their event; 
these subsets are denoted by VC(P), VD(P), V S(P) . 
The number of occurrences of each of the three events 
together with the number of losses make up the event 
vector of the reconciliation φ:

Definition 3 (Event vector) The event vector of a rec-
onciliation φ is a vector of four integers consisting of the 
total number of each type of events C, D, S, and L , i.e.

Given a cost vector �c := (c(C), c(D), c(S), c(L)) assign-
ing a real number to each type of event, the cost of a rec-
onciliation φ is equal to the dot product between the cost 
vector and the event vector cost (φ) := �c · �e (φ) . We are 
now ready to formulate the optimization version of the 
reconciliation problem: Given two phylogenetic trees 
H and P, a function σ : L(P) → L(H), and a cost vector �c , 
find a reconciliation φ of (H ,P, σ) of minimum cost.

In Fig. 1, we show two different reconciliations on the same 
input (H ,P, σ) . Depending on the cost vector, these recon-
ciliations may or may not be optimal. Notice that if the cost 
vector is (0, 0, 0, 0), any valid reconciliation will be optimal.

Dynamic programming algorithm
The reconciliation problem can be solved by 
dynamic programming. One of the first methods which 
took into account all the events described in the previous 
section was introduced by Michael Charleston in 1998 
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[29] and has been improved since by different authors. 
These methods have different ways of dealing with time 
feasibility which makes the problem hard on undated 
trees. We will not discuss this further in the present 
paper, except for mentioning that in the dynamic pro-
gramming approach presented in this section, the trees 
are considered undated, and the time feasibility issue can 

be dealt with in a subsequent step as described in [6]. 
On the other hand, we show in this section a formula-
tion of the dynamic programming algorithm in terms of 
a certain directed graph which we will define. The graph 
structure can be seen as a means for efficiently enumer-
ating all optimal solutions of the optimization problem, 
and more importantly, we will use it later in Section 
“Algorithmic results” for enumerating equivalence classes 
of optimal reconciliations.

Recurrence relations
Given an instance (H ,P, σ , �c) , the minimum cost of a recon-
ciliation can be found by dynamic programming. Recall that 
E := {C, D, S, T} is the set of possible events for a node. 
Let U := V (P)× V (H)× E . We call a triple (p, h, e) ∈ U 
a cell of the dynamic programming table. Consider a func-
tion f : U → R ∪ {∞} , where the value of a cell f (p, h, e) is 
defined to be the minimum cost of a reconciliation between 
the subtree P|p (i.e., the subtree of P rooted at the node p) 
and the host tree H mapping p to h, such that the event of p 
is e. Then f can be computed as follows: 

1 If p is a leaf, 

2 Otherwise, p is an internal node with children 
(p1, p2). In this case, 

The minimum cost of a reconciliation is then given by 
minh∈V (H),e∈E f (r(P), h, e).

ad‑AND/OR graphs and solution subtrees
In order to find one optimal reconciliation or to effi-
ciently enumerate all optimal reconciliations, a directed 
graph can be constructed from the recurrence rela-
tions Eqs. (2) and (3): it is a compact representation of 
all series of computations performed by dynamic pro-
gramming which result in the optimal cost value. To do 
this, we rely on a well-known structure in Computer 
Science, that is the AND/OR graph [30]. More specifi-
cally, we consider a particular flavor of AND/OR graphs 
that we call acyclic decomposable AND-OR graphs. This 
structure is known for having an intimate relationship 
with dynamic programming on a tree.

Definition 4 (ad-AND/OR graph) A directed graph G 
is an acyclic decomposable AND/OR graph (an ad-AND/
OR graph) if it satisfies the following:

• G is a DAG.

(2)f (p, h, e) =

{

0 if h = σ(p) and e = T,
∞ otherwise.

(3)
f (p, h, e) = min

E(h, h1, h2) = e
h1, h2 ∈ V (H)

e1, e2 ∈ E

f (p1, h1, e1)+ f (p2, h2, e2)+ c(e)+ c(L) ξ(h, h1, h2) .

Eφ1(p0) = C

ξφ1(p0) = 1

Eφ1(p1) = S

ξφ1(p1) = 0

e (φ1) = (1, 0, 1, 1)

p0

p1

pbpc

h0

h1

hchbpa ha

φ1 Eφ2(p0) = C

ξφ2(p0) = 1

Eφ2(p1) = S

ξφ2(p1) = 0

e (φ2) = (1, 0, 1, 1)

p0

p1

pbpc

h0

h1

hchbpa ha

φ2

Fig. 1 Example of two reconciliations φ1 and φ2 on the same input. For each reconciliation, we draw the parasite tree on the left, the host tree on 
the right; the solid edges represent the associations for the leaf parasite nodes; the dashed edges represent the associations for the internal parasite 
nodes



Page 5 of 16Wang et al. Algorithms for Molecular Biology            (2022) 17:2  

• G is bipartite: its node set V(G) can be partitioned 
into (A,O) so that all arcs of G are between these 
two sets. Nodes in A are called AND nodes; nodes 
in O are called OR+  nodes.

• Every AND node has in-degree at least one and 
out-degree at least one. The set of nodes with out-
degree zero is then a subset of O and is called the 
set of goal nodes; the remaining OR+ nodes are 
simply the OR nodes. The subset of OR nodes of in-
degree zero is the set of start nodes.

• G is decomposable: for any AND node, the sets of 
nodes that are reachable from each one of its child 
nodes are pairwise disjoint.

Definition 5 (Solution subtree) A solution subtree T of 
an ad-AND/OR graph G is a subgraph of G which: (1) 
contains exactly one start node; (2) for any OR node in T 
it contains exactly one of its child nodes in G, and for any 
AND node in T it contains all its children in G.

The set of solution subtrees of G is denoted by T (G) . 
It is immediate to see that a solution subtree is indeed 
a subtree of G: it is a rooted tree, the root of which is a 
start node. If we would drop the requirement of G being 
decomposable, the object defined in Definition 5 would 
not be guaranteed to be a tree.

Definition 6 (Subgraph starting from a set of nodes) Let 
G be an ad-AND/OR graph. Let O be a set of OR+ nodes 
of G. The subgraph of G starting from O , denoted by G/O , 
is the subgraph obtained from G by setting O as the new 
set of start nodes (i.e. by removing all nodes that are not 
reachable from O through directed paths).

The reconciliation graph
The reconciliation graph is a concept already present in 
the literature [6, 16, 31]. Since, depending on the applica-
tion, slightly different definitions of this structure exist, 
to avoid ambiguity, we describe how to construct the rec-
onciliation graph of a given instance of the reconcilia-
tion problem from the recurrence Eqs. (2, 3).

The construction is done in two steps. In the first step, 
we build a graph in which every node retains an addi-
tional attribute, its value, and every OR+ node is uniquely 
labeled by a dynamic programming cell (p, h, e) ∈ U . In 
the second step, we prune the graph by removing nodes 
that do not yield optimal values. 

1 For each (p, h, e) ∈ U such that p is a leaf, cre-
ate a goal node labeled by (p, h, e); its value is equal 
to 0 if h = σ(p) and ∞ otherwise. Then, for each 
(p, h, e) ∈ U in the post-order of V (P), let p1, p2 be 
the two children of p, 

 i. For each (p1, h1, e1) and each (p2, h2, e2) such 
that E(h, h1, h2) = e , create an AND node, 
connect it to the two OR+ nodes respectively 
labeled by (p1, h1, e1) and (p2, h2, e2) . Its value 
is equal to the sum of the values of its two chil-
dren, plus c (e)+ c(L) ξ (h, h1, h2).

 ii. Create a single OR node, connect it to every 
AND node created in the previous step. Its 
label is (p, h, e), and its value is the minimum 
of the values of its children.

2 For each (r (P), h, e) ∈ U  , remove the OR node 
labeled by that cell unless its value is equal to the 
optimal cost. For each OR node s, remove the arc to 
its child AND node si if the value of si is not equal 
to the value of s. Finally, remove recursively all AND 
nodes without incoming arcs.

It can be checked that the reconciliation graph is indeed 
an ad-AND/OR graph as defined in Definition 4. An 
OR+ node labeled by (p, h, e) is a start node if and only 
if p = r (P) , and is a goal node if and only if p ∈ L (P) . It 
is also immediate to see that each AND node in the rec-
onciliation graph has exactly one in-neighbor and exactly 
two children. We will consider the two children as a 
couple: for an AND node s, if its in-neighbor is labeled 
by (p, h, e) and its two children s1 and s2 are respectively 
labeled by (p1, h1, e1) and (p2, h2, e2) , we will say that s1 is 
the first child and s2 is the second child of s if p1 and p2 
are respectively the first and second child of p; otherwise, 
we say that s1 is the second child and s2 is the first child. 
Keeping the correct order of the children, we can extend 
the notation “ ch ” to the set of nodes of the reconciliation 
graph: if s is an AND node, ch(s) is the couple (ordered 
pair) of the two child OR+ nodes of s; if s is an OR node, 
ch(s) is simply the set of its AND child nodes. For an OR 
node, we will typically be interested not in its children 
but in its set of “grandchildren”, hence we introduce here 
a new notation. If s is an OR node, we call the grandchild 
couples, denoted by gch(s) , the union of the children of 
its child AND nodes (it is a set of couples of OR+ nodes): 
gch(s) :=

⋃

si∈ch(s)
ch(si) . Notice that an OR+ node can 

appear as grandchild of two different nodes, and can 
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also appear in two different grandchild couples of a same 
node (see Fig. 2). 

The dynamic programming algorithms for the rec-
onciliation problem which enable the efficient enu-
meration of all optimal reconciliations are based on the 
following observation:

Proposition 7 Let (H ,P, σ , �c) be a given instance of 
the reconciliation problem. The reconciliation graph 
G, constructed as described in the previous paragraph 
is an ad-AND/OR graph, and the set T (G) of solution 
subtrees of G correspond bijectively to the set of optimal 
reconciliations.

To see this, consider an OR+ node s labeled by a cell 
(p, h, e) ∈ U of the dynamic programming table. For 
the subgraph G/{s} (see Definition 6), the following can 
be proven by induction: the set of solution subtrees 
T (G/{s}) corresponds bijectively to the set of optimal 
reconciliations of the dynamic programming subprob-
lem at (p,  h,  e), i.e. the optimal reconciliations between 
the subtree P|p and H such that p is mapped to h and the 
event of p is e. In practice, to convert a solution subtree 
T1 ∈ T (G) into a reconciliation φ , we only need to look 
at the labels (p, h, e) of the OR+ nodes in T1 (a reconcilia-
tion can simply be viewed as a collection of triples of the 
form (p,  h,  e)). We will henceforth use interchangeably 
the terms solution subtrees of the reconciliation graph 
and optimal reconciliations of the problem instance.

The reconciliation graph can be constructed using 
O(|V (P)||V (H)|3) time and space complexity [6]. 
After the construction, the total number of optimal 

reconciliations can also be computed. It is a well-known 
folklore result that the set of solution subtrees of an ad-
AND/OR graph can be enumerated efficiently: the delay 
between outputting two consecutive solutions is linear 
in the size of the solution. Therefore, there is an algo-
rithm with a O(|V (P)||V (H)|3) time pre-processing step 
and O(|V(P)|) time delay for enumerating the optimal 
reconciliations.

Figure  2 shows a reconciliation graph based on the 
same input (H ,P, σ) as in Fig. 1 with nine solution sub-
trees. Among these nine reconciliations, four have event 
vector (0, 0, 2, 0), two have (1, 0, 1, 0), two have (1, 0, 1, 1) 
( φ1 and φ2 of Fig. 1), and one has (2, 0, 0, 0). The event 
vector of the reconciliation shown in bold is (1, 0, 1, 1).

Definitions of the equivalence relations
In this section, we first introduce four definitions of 
equivalence between reconciliations and study the rela-
tionship between them, then we explain the motivation 
for defining such equivalence relations and state the 
problems of enumerating the equivalence classes and 
counting the size of each class. The algorithmic contribu-
tion solving these problems and the experimental results 
will be presented in the subsequent sections.

Definitions
In Definition 8, 9, 10, we give three equivalence rela-
tions on the set of optimal reconciliations. One is based 
on a global property, the event vector, which is already 
defined in Definition 3. The other two equivalence rela-
tions are based on “local properties”, i.e. on the event 

p0, hb,S p0, h0,C p0, ha,S p0, hc,S p0, h1, S

p1, hb, S

pc, hc,T

pa, ha,T p1, h1,C

pb, hb,T

p1, hc,S

Fig. 2 Example of a reconciliation graph for the input (H, P, σ) in Fig. 1. Crossed circles are AND nodes. Rectangles are OR+ nodes. The cells with 
which the OR+ nodes are labeled are written inside. One solution subtree is shown in bold
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Eφ(p) and the host φ(p) that are assigned by φ for each 
parasite node p.

Definition 8 (V-equivalence) Two reconciliations φ1 
and φ2 are Vector-equivalent, or for short V-equivalent, if 
their event vectors are equal: �e (φ1) = �e (φ2).

Definition 9 (E-equivalence) Two reconciliations φ1 
and φ2 are Event-equivalent, or for short E-equivalent, if 
Eφ1(p) = Eφ2(p) for all p ∈ V (P).

Definition 10 (CD-equivalence) Two reconciliations φ1 
and φ2 are Cospeciation-Duplication-equivalent, or for short 
CD-equivalent, if Eφ1(p) = Eφ2(p) for all p ∈ V (P) (i.e. they 
are E-equivalent), and the hosts of non-host-switch parasite 
nodes are the same: Eφ1(p)  = S =⇒ φ1(p) = φ2(p).

Each one of these equivalence relation splits the set of 
optimal reconciliations of a given instance into equiva-
lence classes, i.e. subsets of pairwise equivalent recon-
ciliations. One representative of an equivalence class is 
simply a reconciliation in the corresponding subset. We 
will abuse the terminology and call equivalence classes 
the objects that best represent the common property of 
the reconciliations in that subset. A reconciliation in a 
particular equivalence class will then be a reconcilia-
tion satisfying that property.

Definition 11 (Equivalence classes) In this paper, 
the term equivalence class has the following meanings, 
depending on the equivalence relation:

• For the V-equivalence relation, a V-equivalence class 
is an event vector �e , i.e. a vector of four integers.

• For the E-equivalence relation, an E-equivalence class 
is a function E : V (P) → E that associates each node 
of the parasite tree with an event.

• For the CD-equivalence relation, a CD-equivalence 
class is a function ECD : V (P) → E × (V (H) ∪ {?}) 
that associates each node of the parasite tree with an 
ordered pair (e, h), where either

– e is an event between T , C and D and h is a node of 
the host tree, or

– e is the host-switch event S and h is a special sym-
bol ?.

We can make the following remarks about the relation-
ships between these equivalence relations. CD-equivalent 
reconciliations are also E-equivalent. Being E-equivalent 
implies that the first three elements of their event vec-
tors are equal. As we only consider reconciliations having 
the same minimum cost, if the cost of a loss event c(L) 
is nonzero, E-equivalent reconciliations necessarily have 
the same number of losses, hence are also V-equivalent. 
On the other hand, if c(L) = 0 , E-equivalent reconcilia-
tions are not necessarily V-equivalent.

In Fig. 1, the pair φ1 and φ2 are equivalent under all three 
equivalence relations. In Fig. 2, the nine reconciliations split 
into four V-equivalence classes (the four event vectors).

Motivation and challenges
The first and foremost motivation of defining equiva-
lence relations is the need of capturing useful biological 
information from the set of optimal reconciliations, when 
this set is too large for manual analyses or for exhaustive 
enumeration. The V-equivalence classes already conveys 
some information about the co-evolutionary history 
of the hosts and their parasites. Indeed, a high number 
of cospeciations may indicate that hosts and parasites 
evolved together, while a high number of host-switches 
may indicate that the parasites are able to infect different 
host species. Under the scope of the E-equivalence rela-
tion, we are also interested in which parasites are associ-
ated to each type of event (disregarding losses).

The CD-equivalence relation is motivated by the idea 
that when a host-switch happens, there may be various 
hosts that can be selected as the parasite’s “landing site”. 
In this case, we choose to consider as equivalent those 
reconciliations for which, while the hosts that receive the 
switching parasites may differ, all the other parasite-host 
associations (not corresponding to a host-switch) are the 
same. These reconciliations are similar and often indis-
tinguishable without additional biological information. 
Indeed, take the two reconciliations φ1 and φ2 in Fig.  1: 
they are identical except for one switching parasite p1 , 
which is mapped to hb by φ1 and to hc by φ2 . Since hb and 
hc are two sibling nodes sharing the same parent in the 
host tree, without further information, there is no good 
way to tell apart the two reconciliations φ1 and φ2 , hence 
we consider them as equivalent.

Equipped with our definitions of equivalence classes, 
we aim at studying the features of the set of optimal 
reconciliations by enumerating the equivalence classes. 
Naively, one would iterate through every reconciliation 
and record their properties, then report the equivalence 
classes, and, only at the end, report the statistics of the 
reconciliations in each equivalence class. However, when 
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the number of reconciliations is too large, for example, 
> 1042 (see Section “Experimental results” and [32]), the 
naive method is not feasible.

The challenge is then to enumerate directly the equiva-
lence classes of optimal reconciliations without enumer-
ating the latter explicitly. Concretely, the set of optimal 
reconciliations will be represented implicitly as T (G) , the 
set of solution subtrees of a reconciliation graph G. Given 
a reconciliation graph as input, we will tackle the follow-
ing problems:

• Count the number of equivalence classes.
• Enumerate the equivalence classes.
• Study a particular equivalence class. That is, given an 

equivalence class,

– Count the number of reconciliations in that class,
– Find one representative (i.e. one optimal reconcilia-

tion) of that class,
– Enumerate all reconciliations of that class.

Algorithmic results
V‑equivalence class enumeration
The enumeration of V-equivalence classes (i.e. all event 
vectors among the optimal reconciliations) can be 
achieved by a simple modification of the dynamic pro-
gramming algorithm.

First, we can notice that the number of different event 
vectors is bounded by a polynomial. Let n = |V (H)| and 
m = |V (P)| . The first three elements of any event vector 
necessarily sum up to m−1

2  , the number of internal para-
site nodes, hence there are only O(m2) possible combina-
tions. The loss contribution ξφ(p) for each parasite node 
p for any φ is at most twice the diameter of the host tree 
(i.e. twice the maximum distance between two nodes), 
so the fourth element of any event vector is bounded 
by O(nm). Therefore, the number of event vectors is 
bounded by O(nm3).

We are interested in the following two problems: list-
ing all event vectors, and, given a particular event vector, 

listing one (or all) optimal reconciliations of that event 
vector. Both can be done without much difficulty by 
doing some additional book-keeping in the dynamic pro-
gramming algorithm, i.e. during the construction of the 
reconciliation graph. The idea is to remember the set of 
event vectors in every step, corresponding to the event 
vectors of the optimal solutions of the current dynamic 
programming subproblem. Then, for each event vector, 
one reconciliation (or all reconciliations) of the V-equiva-
lence class can be found by backtracking.

Recall that if s is an OR+ node of the reconciliation 
graph, the solution subtrees of the subgraph G/{s} corre-
spond to the optimal reconciliations of the dynamic pro-
gramming subproblem identified by the cell (p, h, e) with 
which s is labeled. We now define the set EV of an OR+ 
node s to be the set of event vectors of T (G/{s}) , that is 
the event vectors of the set of optimal reconciliations of 
the corresponding dynamic programming subproblem. 
Then, the sets EV can be computed as follows (for sim-
plicity, we will identify an OR+ node with the cell (p, h, e) 
with which it is labeled):

• For each goal node (p, h,T) , EV(p, h,T) := {(0, 0, 0, 0}
.

• For each OR node (p, h, e), let {((pi
1
, hi

1
, ei

1
), (pi

2
, hi

2
, ei

2
)
)

}1≤i≤k 
be its set of grandchild couples, then EV(p, h, e) can 
be computed as 

The set of event vectors of T (G) that we seek is the union 
⋃

s EV(s) taken over the set of start nodes of G, i.e. the 
OR+ nodes labeled with a cell of the form (r(P), h, e).

Overall, for each of the O (n3m) nodes of the reconcili-
ation graph, we need to keep an extra set of size O (nm3) . 
The space complexity is therefore O (n4m4) . For each OR 
node and for each of its O (n2) grandchild couples, we 
need to compute the Cartesian sum of two sets of EV s 
of size O (nm3) each; this can be done naively in time 
O (n2m6) (to improve this, see, e.g. [33]). The overall time 
complexity is O(n5m7).

The backtracking technique for finding one optimal 
reconciliation given its event vector is quite standard. 
Here we present it concisely without proof. We define 

(4)
�

1≤i≤k

�

�u ∈ EV(pi1, h
i
1, e

i
1)

�w ∈ EV(pi2, h
i
2, e

i
2)







�u+ �w + (0, 0, 0, ξ(h, h1, h2))+







(1, 0, 0, 0) if e = C

(0, 1, 0, 0) if e = D

(0, 0, 1, 0) otherwise, e = S







.
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a function backtrack that takes two parameters: an 
OR+ node s in the reconciliation graph G and a vec-
tor �v satisfying �v ∈ EV(s) . The function returns an opti-
mal subproblem reconciliation φs ∈ T (C/{s}) such that 
�e (φs) = �v . We choose to represent a reconciliation as 
a sequence of triples of the form (p,  h,  e). The function 
backtrack(s, �v ) can be implemented as follows: 

1 Let (p, h, e) be the cell with which s is labeled. Output 
the triple (p, h, e). If s is a goal node, stop. Otherwise, 
go to Step 2.

2 Let {
(

(pi1, h
i
1, e

i
1), (p

i
2, h

i
2, e

i
2)
)

}1≤i≤k be the grandchild 
couples of s. Find any index i such that there exists 
�u ∈ EV(pi1, h

i
1, e

i
1) and �w ∈ EV(pi2, h

i
2, e

i
2) such that 

the sum inside the big braces of Eq. (4) is equal to 
�v (such i necessarily exists). Choose any such �u and 
�w . Then do backtrack((pi1, h

i
1, e

i
1), �u ) and back-

track((pi2, h
i
2, e

i
2), �w).

Given a start node s and an event vector �v ∈ EV(s) , it suf-
fices to call backtrack(s, �v ) to get one representative 
of the V-equivalence class �v . Finally, if we replace “any” 
by “all” in Step 2 of backtrack, we can easily adapt the 
algorithm in such a way that it enumerates all recon-
ciliations, or counts the number of reconciliations of a 
V-equivalence class.

E‑equivalence class enumeration
By Definition 11, an E-equivalence class is a function 
from the set of nodes V(P) of the parasite tree to the set 
E := {C,D, S,T} of events. In this section, we will rep-
resent an E-equivalence class as a set T of ordered pairs 
of the form (p,  e) where p ∈ V (P) and e ∈ E . In the 
same manner, a reconciliation φ , i.e. a solution subtree 
in T (G) , can be written as a set of ordered triples of the 
form (p, h, e). We say that a reconciliation φ belongs to the 
E-equivalence class T, and denote it as π(φ) = T  , if for 
each (p, h, e) ∈ φ , there exists a unique couple (p, e) ∈ T  . 
Using this notation, a set of couples of the form (p, e) is 
an E-equivalence class if and only if there exists φ ∈ T (G) 
such that π(φ) = T  ; the set of all E-equivalence classes is 
denoted by π(T (G)).

The problem of studying a particular E-equivalence 
class is easy: given an E-equivalence class T, the recon-
ciliation graph G can be pruned in such a way that its set 
of solution subtrees corresponds to the reconciliations 
that belong to the class T (we simply need to remove all 
OR nodes unless its label (p, h, e) corroborates the given 
class: (p, e) ∈ T  ). Counting and enumerating the E-equiv-
alence classes are, however, more challenging problems. 
We will at present concentrate on the problem of enu-
merating all E-equivalence classes.

The algorithm is based on the simple idea of traversing 
the reconciliation graph in a top-down fashion (a similar 
approach can be used in the algorithm that finds all the 
solution subtrees). In order to obtain a polynomial time 
delay algorithm, during the traversal, we can no longer 
consider the nodes one by one; the sets of nodes that are 
in the solution subtrees of the same E-equivalence class 
must be traversed together. To make this clear, it is con-
venient to define the color of the OR+ nodes; an E-equiv-
alence class will then simply be a set of colors.

Definition 12 (Color of a node, Color couple) 

• If an OR+ node s in the reconciliation graph is labeled 
by (p, h, e) ∈ U , we say that s is colored by the ordered 
pair (p, e) ∈ V (P)× E.

• Let s1 and s2 be two OR+ nodes colored respec-
tively by (p1, e1) and by (p2, e2) . The color couple of 
the couple of nodes (s1, s2) is the couple of colors 
((p1, e1), (p2, e2)).

To enumerate the E-equivalence classes by a top-
down recursive traversal of the reconciliation graph, 
our algorithm should achieve the following goal: given a 
set O of OR+ nodes of the same color (p, e), enumerate 
π(T (G/O)) , i.e. all E-equivalence classes of the subgraph 
G/O . Any such a class will include the color (p,  e). If p 
is not a leaf, the events of the two children of the node 
p are given by the color couples of the grandchild cou-
ples gch (O) (by extension, gch of a set of nodes is the 
union of gch of every node in the set). A naive algo-
rithm can be described as follows: for each color couple 
((p1, e1), (p2, e2)) of gch (O) , first take the union O1 of the 
first grandchildren of color (p1, e1) and the union O2 of 
the second grandchildren of color (p2, e2) , then call the 
algorithm on O1 and independently on O2 , and finally 
combine the results together, that is, perform a Cartesian 
product between π(T (G/O1)) and π(T (G/O2)).

The pitfall of the naive approach is that not every 
combination between the E-equivalence classes of the 
reconciliations of the two child subtrees is valid. Our 
algorithm, shown in Algorithm  1, can be viewed as an 
improved version of the naive algorithm in which par-
ticular care has been taken to ensure that only valid com-
binations are outputted. Along with each E-equivalence 
class T, it also outputs a set ˜O which is a subset of the 
input set O : it is equal the union of the root OR+ nodes 
of all solution subtrees φ ∈ T (G/O) such that π(φ) = T  . 
Notice that in Algorithm  1 we employ both the return 
and the yield statements for the output, the difference 
being that the latter does not halt the algorithm.
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Before the proof of correctness, let us recall some 
important notations. For a subgraph G/O of the rec-
onciliation graph G, a solution subtree is denoted by 
φ ∈ T (G/O) . The root OR+ node of a solution subtree 
φ is denoted by r(φ) . If the root node r(φ) is labeled by 
(p, h, e), the solution subtree φ is interpreted as an opti-
mal reconciliation between the parasite subtree P|p and 
the host tree H such that p is mapped to h and the event 
of p is e (for short, we say that φ is a reconciliation of P|p). 
We will use interchangeably the terms solution subtree 
and reconciliation, and we will represent a reconciliation 
φ as a set of triples.

Lemma 13 In Algorithm 1,  Enumerate(p, e, O ) out-
puts all E-equivalence classes in π(T (G/O)) exactly 
once, and for each outputted pair of T and ˜O , we have 
˜O =

⋃

φ {r(φ) | π(φ) = T , φ ∈ T (G/O)}.

Proof The proof is by induction on the height hp of the 
P|p . We use the fact that the pre-condition in the Require 
statement in Algorithm 1 is true for all recursive calls of 

Enumerate (easy induction). When hp = 0 , p is a leaf 
and {(p, σ(p),T)} is the only reconciliation in T (G/O) , 
therefore, {(p, e)} is the only E-equivalence class. The out-
putted set O contains in this case the unique goal node of 
G labeled by (p, σ(p),T) . Now we assume hp > 0.

(First direction) Consider a fixed pair of 
T := T1 ∪ T2 ∪ {(p, e)} and ˜O outputted at Line  16, and 
take a node s in ˜O . We show that there exists a reconcilia-
tion φ ∈ T (G/O) such that s = r(φ) and π(φ) = T  (i.e. T 
is a valid E-equivalence class). By the induction hypoth-
eses, T1 is an E-equivalence class so there exists a recon-
ciliation φ1 of P|p1 such that π(φ1) = T1 . Let s1 := r(φ1) . 
Take a node s2 ∈ O2 such that (s1, s2) ∈ gch(s) . By 
the induction hypotheses, there exists a reconcilia-
tion φ2 of P|p2 such that r(φ2) = s2 and π(φ2) = T2 . 
Define φ := φ1 ∪ φ2 ∪ {(p, h, e)} , where (p,  h,  e) is the 
label of s. Then φ is a valid reconciliation in T (G/O) 
(notice that φ is a solution subtree of G/O if and only if 
(s1, s2) ∈ gch(s) ), and satisfies π(φ) = T .
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(Second direction) Consider an E-equivalence class 
T ∈ π(T (G/O)) , and take a reconciliation φ ∈ T (G/O) 
such that π(φ) = T  . We show that T is outputted exactly 
once at Line 16 together with a set ˜O containing the root 
node of φ . Assume that the root node s := r(φ) is labeled 
with the triple (p,  h,  e), then φ can be uniquely written 
as the union φ1 ∪ φ2 ∪ {(p, h, e)} where φ1 and φ2 are 
respectively reconciliations of P|p1 and P|p2 . Furthermore, 
T can be uniquely written as the union T1 ∪ T2 ∪ {(p, e)} 
where T1 = π(φ1) and T2 = π(φ2) . Notice that T1 and T2 
do not depend on the choice of φ ; for T to be outputted 
exactly once, it suffices to show that each of T1 and T2 is 
outputted exactly once. For i = 1, 2 , let si := r(φi) and 
let (pi, ei) be the color of si . At Line 10, we only need to 
consider the iteration corresponding to the color couple 
((p1, e1), (p2, e2)) , as no other iteration can output T1 or 
T2 from a recursive call. Since s1 ∈ O1 and φ1 ∈ T (G/O1) , 
by the induction hypotheses, T1 is outputted exactly once 
in Line 12 together with a set ˜O1 containing s1 . For this 
pair of T1 and ˜O1 , the set O2 computed at Line  13 con-
tains the node s2 . Hence, by applying again the induc-
tion hypotheses to φ2 ∈ T (G/O2) , T2 is outputted exactly 
once in Line 14 together with ˜O2 containing s2 . It remains 
to check that the set O outputted together with T does 
contain the node s. As si ∈ ˜Oi for i = 1, 2 , this is straight-
forward from the computation of O . �

Theorem  14 Using Algorithm  1, the E-equivalence 
classes of a reconciliation graph can be enumerated in 
O(mn2) time delay, where m = |V (P)| and n = |V (H)|.

Proof To obtain all E-equivalence classes π(T (G)) , it 
suffices to first partition the set of start nodes of the rec-
onciliation graph according to their colors, then, for each 
subset Oi of start nodes of color (p, e), make one call of 
Enumerate (p, e, O ). By Lemma 13, we output every 
E-equivalence class of T (G/O) exactly once. Since any 
E-equivalence class of T (G) is an E-equivalence class of 
T (G/Ok) for a unique k, we output every E-equivalence 
class of T (G) exactly once.

For the complexity, consider the recursion tree formed by 
the recursive calls of Enumerate. Notice that each node 
p of the parasite tree corresponds to exactly one recursive 
call, the size of the recursion tree is thus O(m). In each 
recursive call, the partitioning of gch(O) and the compu-
tation of the sets O1 , O2 , and ˜O can all be done in time 
linear in the size of gch(O) , which is O(n2) . Therefore, 
O(mn2) time is needed in the worst case between output-
ting two E-equivalence classes. �
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Fig. 3 X‑axis: All 46 instances (i.e. the pairs of datasets and cost vectors). Y‑axis: In logarithmic scale, the Reduction value that is equal to the number 
of equivalence classes over the total number of reconciliations. For each instance, three points are plotted: the blue circle, the red triangle, and the 
black X, corresponding respectively to the V‑, E‑, and CD‑equivalence relations. Four points of Reduction values less than 10−6 are omitted
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CD‑equivalence class enumeration
For the CD-equivalence relation, the problems of enu-
merating the equivalence classes and studying one par-
ticular equivalence class can be solved using the exact 
same method as for the E-equivalence relation. One only 
needs to adapt the Definition 12 of the color of an OR+ 
node. Instead of the couple (p,  e), the color of an OR+ 
node labeled by (p, h, e) ∈ U is now a triple: the triple 
(p, h, e) for e  = S , or, when e = S , the triple (p, ?, S) (see 
Definition 11).

Experimental results
To evaluate the usefulness of the equivalence classes in 
practice, we obtained 20 real datasets from the literature. 
The choice of the datasets was motivated by the goal of 
covering many different situations (such as different sizes 
of the trees), different contexts (such as the genes/spe-
cies one that has been shown to be very closely related 
to the hosts/parasites context, see for instance [34, 35]), 
different topologies, etc. We also chose five cost vectors 
�c := (c(C), c(D), c(S), c(L)) from the literature, namely 
(−1, 1, 1, 1) (maximizing the cospeciation), (0,  1,  1,  1) 
(minimizing the events that lead to incongruencies 
between the tree topologies), (0, 1, 2, 1), (0, 2, 3, 1) (host-
switches are more penalized), and (0, 1, 1, 0) which is a 
vector chosen only for theoretical purposes and does not 
penalize cospeciations and losses.

Reducing the space of the optimal solutions
The goal of the first set of experiments is to check that 
when the number of all optimal reconciliations is large, 
the number of equivalence classes is significantly smaller. 
To this end, we ran the algorithm on all the datasets with 
all the five cost vectors, and computed the number of 
optimal solutions and the number of equivalence classes. 
For each instance (i.e. dataset and cost vector) having at 

least 50 optimal reconciliations, we computed for each 
equivalence relation a value that we called Reduction 
and which is equal to the number of equivalence classes 
over the number of optimal reconciliations. In Fig.  3, 
each x coordinate corresponds to an instance; for each 
instance we plotted three points that correspond to the 
Reduction values for the three equivalence relations. One 
can observe that the Reduction values of the V- and the 
E-equivalence relations (blue circles and red triangles) 
are almost all below the value of 0.1. In other words, for 
these two definitions of equivalence, one can strongly 
hope for at least a ten-fold decrease, and in some cases 
for a thousand-fold decrease in the number of recon-
ciliations that need to be analyzed. As expected, the V- 
and the E-equivalence relations are the ones that usually 
lead to a small number of equivalence classes, while the 
CD-equivalence relation may lead to a larger number of 
classes, sometimes close to the optimal reconciliations 
(Reduction close to 1).

The utility of equivalence classes enumeration 
in the analysis of real datasets
We show now that the equivalence classes not only allow 
us to reduce the number of reconciliations to consider, 
but also provide useful information about the set of opti-
mal reconciliations. In particular, we will see that even 
when the number of optimal reconciliations are too large 
for exhaustive enumeration, the number of event vectors 
(V-equivalence classes) can still remain small, and there 
can be already much biological insight to be gained from 
the event vectors alone.

To illustrate the utility of our algorithms, we focus on 
two real datasets among the ones used in the previous 
experiment. The first is the FD dataset which consists in 
a host tree of 20 taxa corresponding to species of fish and 
a tree of their parasites Dactylogyrus of 51 taxa [36, 37]. 

Table 1 Experimental results for the FD and Wolbachia dataset and for each cost vector

|L(H)| and |L(S)| are the number of leaves of the host tree and the parasite tree; |R| is the number of optimal reconciliations; |Veq| , |Peq| , and |CDeq| are respectively the 
number of V-, E-, and CD-equivalent classes. The dash indicates that the counting of the equivalence classes did not finish

Dataset |L(H)| |L(S)| Cost vector |R| |Veq| |Eeq| |CDeq|

FD [36, 37] 20 51 (−1. 1, 1, 1) 944 8 14 18

(0, 1, 1, 1) 25184 11 52 72

(0, 1, 2, 1) 408 10 20 20

(0, 2, 3, 1) 80 2 2 2

(0, 1, 1, 0) ≈ 1015 2146 54336 ≈ 1013

WOLB [38, 39] 387 387 (−1. 1, 1, 1) ≈ 1047 10 4080 24192

(0, 1, 1, 1) ≈ 1048 11 40960 76800

(0, 1, 2, 1) ≈ 1047 10 4080 24192

(0, 2, 3, 1) ≈ 1042 7 96 1152

(0, 1, 1, 0) ≈ 10136 – ≈ 1027 –
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The second is the WOLB dataset representing the Wol-
bachia genus and the various arthropods that host them 
[38, 39]. This dataset was selected because of its size: the 
trees have each 387 leaves. In Table  1, we present the 
detailed results obtained for these datasets and the five 
cost vectors.

First notice that even for trees of medium size like 
in the FD dataset, for the cost vector (0,  1,  1,  1) that is 
commonly used in the literature, we have 25184 optimal 
reconciliations which are impossible to be analyzed man-
ually. However, the number of event vectors is only 11; 
the vectors are: (9, 17, 24, 2), (9, 16, 25, 2), (7, 16, 27, 0), 
(7,  17,  26,  0), (7,  18,  25,  0), (8,  16,  26,  1), (8,  18,  24,  1), 
(10, 16, 24, 3), (10, 17, 23, 3), (8, 17, 25, 1), (9, 18, 23, 2). 
These vectors are all very similar, and can indicate that 
the parasites have a strong capacity to change hosts (high 
number of host-switches), while the hosts have a strong 
capacity to retain their parasites (low number of losses). 
This is in agreement with what is suggested in the litera-
ture that host-switching plays an important role in the 
evolutionary history of the Dactylogyrus species [40]. 
Moreover, as the number of cospeciations is always lower 
than the number of duplications, there is evidence that, 
for this cost vector, the parasites evolve faster than their 
hosts.

For what concerns the WOLB dataset all the cost vec-
tors lead to a number of optimal reconciliations that is 
at least 1042 , a number too large for any exhaustive enu-
meration method. However, in all cases there are only 
a small number of optimal event vectors (except for the 
least biologically meaningful cost vector (0, 1, 1, 0)). For 
the cost vector (0, 2, 3, 1), the seven optimal event vectors 
are: (102,  0,  284,  36), (103,  0,  283,  39), (104,  0,  282,  42), 
(105,  0,  281,  45), (106,  0,  280,  48), (107,  0,  279,  51), and 
(108, 0, 278, 54). From the list of event vectors, one can 
see that the dataset can be explained by a large number 
of host-switches and cospeciations, and that there have 

probably been no duplication.Again this seems in agree-
ment with what is known in the literature as duplications 
are believed to be a rare event in the evolutionary history 
of Wolbachia whereas host-switches are common [38, 39].

Therefore, by simply considering the equivalence 
classes one already has an idea of the diversity of the 
optimal reconciliations. Our approach is thus helpful for 
drawing conclusions about the co-evolutionary history of 
this pair of host/parasite association for which few prior 
analysis methods apply.

Estimation of event reliability
As there can be a large number of equally optimal rec-
onciliations, the reliability of the predicted evolutionary 
events may be questioned. It is thus interesting to define 
support measures that estimate the event reliability (see 
for example [19]). These measures are mostly based on 
the idea that in the space of optimal reconciliations, each 
reconciliation is equally likely and then the support of an 
event is proportional to the number of optimal reconcili-
ations that confirm it. In this direction, the support of an 
event can be thought as a rough estimation of the prob-
ability of that event in the space of optimal solutions.

The algorithms proposed in this paper allow us to com-
pute these measures efficiently and accurately. Indeed, 
we can compute not only the equivalence classes but also 
their size. Once we have the list of event-vectors and the 
size of each V-equivalence class, we have an accurate 
estimate of the probabilities of the four types of events, 
assuming that each optimal reconciliation is equally 
probable. In Table 2 for the WOLB dataset and cost vec-
tor (0, 2, 3, 1) we list the V-equivalence classes (i.e., the 
event vectors) together with their size as proportions of 
the solution space (i.e., the proportion of optimal recon-
ciliations in each V-equivalence class among all optimal 
reconciliations). We can immediately see that ≈ 85% of 
the optimal reconciliations have 105± 1 cospeciations 
and it is less probable to find reconciliations with a num-
ber of cospeciations far from 105. 

We could also extend this argument to the E-equiva-
lence classes. Recall that an E-equivalence class can be 
viewed as a labeling of the nodes of the parasite tree with 
an event type. In this case, the support of the pair (node 
of the parasite tree, event) is proportional to the number 
of optimal reconciliations that confirm it. In particular, 
it is interesting to identify the nodes of the parasite tree 
that are labeled by the same event in all the E-equiva-
lence classes. This may seem a strong requirement but 
in practice, for the datasets we analyzed, this number 
is significant. For the WOLB dataset, only 15 nodes are 
assigned to different event types, in other words, all the 
other 371 internal nodes receive a consistent event type 
across the entire solution space. This means that we have 

Table 2 The V‑equivalence classes for the WOLB dataset, cost 
vector (0, 2, 3, 1) and their size, as proportions of the solution 
space, sorted in the decreasing order of the size

Event vector Proportion of the 
solution space 
(%)

(105, 0, 281, 45) 36.5425

(106, 0, 280, 48) 29.5704

(104, 0, 282, 42) 18.7570

(107, 0, 279, 51) 10.5588

(103, 0, 283, 39) 3.1628

(108, 0, 278, 54) 1.3807

(102, 0, 284, 36) 0.0277
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further confirmed that the diversity of the solution space 
is low: not only the event vectors are similar, the distribu-
tions of the events on the nodes of the parasite tree are 
also similar.

Finally, the algorithm is quite efficient in practice, as 
for example for the cost vector (−1, 1, 1, 1) , to enumerate 
all the optimal event vectors, it took around 8 minutes 
for the dataset of Wolbachia and their arthropod hosts 
on a single thread of the Intel Core i5-3380M CPU. The 
enumeration of equivalence classes, together with other 
features such as the visualization of the E- and the CD-
equivalence classes, is freely available in the software 
Capybara; more information can be found in [32].

Discussion
Comparison with eMPRess
eMPRess [10, 13] is a tool that includes the possibility 
for the user to cluster the space of optimal solutions using 
agglomerative hierarchical clustering. The user can define 
the desired final number of clusters and a lower bound 
for the initial number of clusters (the actual initial num-
ber depends on the structure of the reconciliation graph, 
and can be much larger than the chosen lower bound). 
Then, pairs of clusters are merged using a linkage crite-
rion until the desired number of clusters is obtained. The 
authors consider two different linkage criteria: (i) mini-
mizing the average distance between the solutions within 
each cluster with respect to a given distance metric (the 
symmetric distance or the path distance), (ii) maximizing 
the average event support in each cluster.

As already mentioned in the introduction, the approach 
of eMPRess is fundamentally different from the one we 
propose. We believe that it is interesting to remark some 
of the differences between the two methods that the user 
should keep in mind when applying one method or the 
other.

It is important to notice that the results obtained with 
our algorithm and with eMPRess can be very differ-
ent. Two solutions that may be considered equivalent 
may have a large symmetric or path distance. Indeed, 
the symmetric distance between two reconciliations is 
defined as the number of associations that are found in 
one reconciliation or the other but not in both. Inside an 
E-equivalence class, even though the type of the events 
is consistent among the reconciliations, all the associa-
tions can potentially be different, so the symmetric dis-
tance can take the largest possible value. Moreover, when 
using the event support criterion, it is important to keep 
in mind that within a cluster, by construction, the more 
ancestral events are more supported than the more 
recent events. While this may be biologically motivated, 
it is a bias that we may not want in some datasets.

These differences are also seen in practice as we applied 
eMPRess to some of the datasets used in the previous 
section, requiring that the number of final clusters is the 
same (or slightly larger) than the number of equivalence 
classes that we have found for that dataset. By analyzing 
the median reconciliations of the final clusters, we saw 
that, even for the V-equivalence relation (which is among 
those most analyzed in practical studies), some classes 
are not represented.

Finally, the worst case running time of the clustering 
method of eMPRess depends quadratically on the ini-
tial number of clusters and the time can be a limitation 
in practice. When we applied it to the Wolbachia dataset 
with the default cost vector (0, 2, 3, 1) and the symmet-
ric distance criterion, by starting with 336 initial clusters 
(level L = 6 in [13]) and choosing 10 as the final number 
of clusters, the software did not finish within 24 h.

Conclusion
In this paper, we proposed a method that lists representa-
tive reconciliations from the (often huge) space of opti-
mal solutions. To this purpose, we first defined when two 
reconciliations can be considered equivalent and then 
we provided efficient algorithms that output in polyno-
mial delay only one reconciliation from each equivalence 
class. We proposed three different biologically motivated 
equivalence relations. We applied our algorithms to real 
datasets and showed that we were able to analyze the 
space of optimal reconciliations even in cases when the 
latter has a huge size (e.g. 1042 ). As a future direction, 
we plan to extend our algorithms to other definitions of 
equivalence for reconciliations.
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