Dayhoff M, Schwartz R, Orcutt B: A model of evolutionary change in proteins. Atlas of Protein Sequence and Structure. Edited by: Dayhoff M. 1978, 5: 345-358. Washington D.C.: National Biomedical Research Foundation
Google Scholar
Henikoff S, Henikoff JG: Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA. 1992, 89: 10915-10919. 10.1073/pnas.89.22.10915
Article
PubMed
CAS
PubMed Central
Google Scholar
Jung J, Lee B: Use of residue pairs in protein sequence-sequence and sequence-structure alignments. Protein Sci. 2000, 9: 1576-1588.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gonnet GH, Cohen MA, Benner SA: Analysis of Amino-Acid Substitution During Divergent Evolution – the 400 by 400 Dipeptide Substitution Matrix. Biochem Biophys Res Commun. 1994, 199: 489-496. 10.1006/bbrc.1994.1255
Article
PubMed
CAS
Google Scholar
Crooks GE, Green RE, Brenner SE: Pairwise alignment incorporating dipeptide covariation. Bioinformatics. 2005, 21: 3704-3710. 10.1093/bioinformatics/bti616
Article
PubMed
CAS
Google Scholar
Zuker M, Somorjai RL: The alignment of protein structures in three dimensions. Bull Math Biol. 1989, 51: 55-78.
Article
PubMed
CAS
Google Scholar
Russell RB, Barton GJ: Multiple protein sequence alignment from tertiary structure comparison. Proteins. 1992, 14: 309-323. 10.1002/prot.340140216
Article
PubMed
CAS
Google Scholar
Holm L, Sander C: Protein-Structure Comparison by Alignment of Distance Matrices. J Mol Biol. 1993, 233: 123-138. 10.1006/jmbi.1993.1489
Article
PubMed
CAS
Google Scholar
Subbiah S, Laurents DV, Levitt M: Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core. Curr Biol. 1993, 3: 141-148. 10.1016/0960-9822(93)90255-M
Article
PubMed
CAS
Google Scholar
Alexandrov NN: SARFing the PDB. Protein Eng. 1996, 9: 727-732. 10.1093/protein/9.9.727
Article
PubMed
CAS
Google Scholar
Gibrat J-F, Madej T, Bryant SH: Surprising similarities in structure comparison. Curr Opin Struct Biol. 1996, 6: 377-385. 10.1016/S0959-440X(96)80058-3
Article
PubMed
CAS
Google Scholar
Orengo CA, Taylor WR: SSAP: Sequential structure alignment program for protein structure comparison. Method Enzymol. 1996, 266: 617-635.
Article
CAS
Google Scholar
Suyama M, Matsuo Y, Nishikawa K: Comparison of protein structures using 3D profile alignment. J Mol Evol. 1997, 44: S163-173. 10.1007/PL00000065
Article
PubMed
CAS
Google Scholar
Shindyalov IN, Bourne PE: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 1998, 11: 739-747. 10.1093/protein/11.9.739
Article
PubMed
CAS
Google Scholar
Holm L, Park J: DaliLite workbench for protein structure comparison. Bioinformatics. 2000, 16: 566-567. 10.1093/bioinformatics/16.6.566
Article
PubMed
CAS
Google Scholar
Jung J, Lee B: Protein structure alignment using environmental profiles. Protein Eng. 2000, 13: 535-543. 10.1093/protein/13.8.535
Article
PubMed
CAS
Google Scholar
Lackner P, Koppensteiner WA, Sippl MJ, Domingues FS: ProSup: a refined tool for protein structure alignment. Protein Eng. 2000, 13: 745-752. 10.1093/protein/13.11.745
Article
PubMed
CAS
Google Scholar
Ortiz AR, Strauss CEM, Olmea O: MAMMOTH (Matching molecular models obtained from theory): An automated method for model comparison. Protein Sci. 2002, 11: 2606-2621. 10.1110/ps.0215902
Article
PubMed
CAS
PubMed Central
Google Scholar
Shatsky M, Nussinov R, Wolfson HJ: Flexible protein alignment and hinge detection. Proteins. 2002, 48: 242-256. 10.1002/prot.10100
Article
PubMed
CAS
Google Scholar
Blankenbecler R, Ohlsson M, Peterson C, Ringnér M: Matching protein structures with fuzzy alignments. Proc Natl Acad Sci USA. 2003, 100: 11936-11940. 10.1073/pnas.1635048100
Article
PubMed
CAS
PubMed Central
Google Scholar
Kawabata T: MATRAS: a program for protein 3D structure comparison. Nucl Acids Res. 2003, 31: 3367-3369. 10.1093/nar/gkg581
Article
PubMed
CAS
PubMed Central
Google Scholar
Ilyin VA, Abyzov A, Leslin CM: Structural alignment of proteins by a novel TOPOFIT method, as a superimposition of common volumes at a topomax point. Protein Sci. 2004, 13: 1865-1874. 10.1110/ps.04672604
Article
PubMed
CAS
PubMed Central
Google Scholar
Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst D. 2004, 60: 2256-2268. 10.1107/S0907444904026460
Article
CAS
Google Scholar
Ochagavia ME, Wodak H: Progressive combinatorial algorithm for multiple structural alignments: Application to distantly related proteins. Proteins. 2004, 55: 436-454. 10.1002/prot.10587
Article
PubMed
CAS
Google Scholar
Shapiro J, Brutlag D: FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web. Nucl Acids Res. 2004, 32: W536-W541. 10.1093/nar/gkh389
Article
PubMed
CAS
PubMed Central
Google Scholar
Carpentier M, Brouillet S, Pothier J: YAKUSA: A fast structural database scanning method. Proteins. 2005, 61: 137-151. 10.1002/prot.20517
Article
PubMed
CAS
Google Scholar
Chen L, Zhou T, Tang Y: Protein structure alignment by deterministic annealing. Bioinformatics. 2005, 21: 51-62. 10.1093/bioinformatics/bth467
Article
PubMed
Google Scholar
Chen Y, Crippen GM: A novel approach to structural alignment using realistic structural and environmental information. Protein Sci. 2005, 14: 2935-2946. 10.1110/ps.051428205
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang Y, Skolnick J: TM-align: a protein structure alignment algorithm based on the TM-score. Nucl Acids Res. 2005, 33: 2302-2309. 10.1093/nar/gki524
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhu JH, Weng ZP: FAST: A novel protein structure alignment algorithm. Proteins. 2005, 58: 618-627. 10.1002/prot.20331
Article
PubMed
CAS
Google Scholar
Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM: MUSTANG: A multiple structural alignment algorithm. Proteins. 2006, 64: 559-574. 10.1002/prot.20921
Article
PubMed
CAS
Google Scholar
Lisewski AM, Lichtarge O: Rapid detection of similarity in protein structure and function through contact metric distances. Nucl Acids Res. 2006, 34: E152- 10.1093/nar/gkl788
Article
PubMed
PubMed Central
Google Scholar
Taubig H, Buchner A, Griebsch J: PAST: fast structure-based searching in the PDB. Nucl Acids Res. 2006, 34: W20-W23. 10.1093/nar/gkl273
Article
PubMed
PubMed Central
Google Scholar
Oldfield TJ: CAALIGN: a program for pairwise and multiple protein-structure alignment. Acta Cryst D. 2007, 63 (4): 514-525. 10.1107/S0907444907000844
Article
CAS
Google Scholar
Friedberg I, Harder T, Kolodny R, Sitbon E, Li ZW, Godzik A: Using an alignment of fragment strings for comparing protein structures. Bioinformatics. 2007, 23: E219-E224. 10.1093/bioinformatics/btl310
Article
PubMed
CAS
Google Scholar
Camproux AC, Tuffery P, Chevrolat JP, Boisvieux JF, Hazout S: Hidden Markov model approach for identifying the modular framework of the protein backbone. Protein Eng. 1999, 12: 1063-1073. 10.1093/protein/12.12.1063
Article
PubMed
CAS
Google Scholar
Hunter CG, Subramaniam S: Protein fragment clustering and canonical local shapes. Proteins. 2003, 50: 580-588. 10.1002/prot.10309
Article
PubMed
CAS
Google Scholar
Sander O, Sommer I, Lengauer T: Local protein structure prediction using discriminative models. BMC Bioinformatics. 2006, 7: 14- 10.1186/1471-2105-7-14
Article
PubMed
PubMed Central
Google Scholar
Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, Baker D: Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins. 1999, 34: 82-95. 10.1002/(SICI)1097-0134(19990101)34:1<82::AID-PROT7>3.0.CO;2-A
Article
PubMed
CAS
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucl Acids Res. 2000, 28: 235-242. 10.1093/nar/28.1.235
Article
PubMed
CAS
PubMed Central
Google Scholar
Li WZ, Jaroszewski L, Godzik A: Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics. 2001, 17: 282-283. 10.1093/bioinformatics/17.3.282
Article
PubMed
CAS
Google Scholar
Holm L, Sander C: The FSSP database of structurally aligned protein fold families. Nucl Acids Res. 1994, 22: 3600-3609.
PubMed
CAS
PubMed Central
Google Scholar
Holm L, Sander C: The FSSP database: Fold classification based on structure structure alignment of proteins. Nucl Acids Res. 1996, 24: 206-209. 10.1093/nar/24.1.206
Article
PubMed
CAS
PubMed Central
Google Scholar
Holm L, Sander C: Dali/FSSP classification of three-dimensional protein folds. Nucl Acids Res. 1997, 25: 231-234. 10.1093/nar/25.1.231
Article
PubMed
CAS
PubMed Central
Google Scholar
Holm L, Sander C: Touring protein fold space with dali/FSSP. Nucl Acids Res. 1998, 26: 316-319. 10.1093/nar/26.1.316
Article
PubMed
CAS
PubMed Central
Google Scholar
Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B. 1977, 39: 1-38.
Google Scholar
Wurst server. http://www.zbh.uni-hamburg.de/wurst
Cheeseman P, Stutz J: Bayesian Classification (Autoclass): Theory and Results. Advances in Knowledge Discovery and Data Mining. Edited by: Fayyad U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R. 1995, 61-83. Menlo Park: The AAAI Press
Google Scholar
Gotoh O: An improved algorithm for matching biological sequences. J Mol Biol. 1982, 162: 705-708. 10.1016/0022-2836(82)90398-9
Article
PubMed
CAS
Google Scholar
Smith TF, Waterman MS: Identification of Common Molecular Subsequences. J Mol Biol. 1981, 147: 195-197. 10.1016/0022-2836(81)90087-5
Article
PubMed
CAS
Google Scholar
Onuchic JN, Luthey-Schulten Z, Wolynes PG: Theory of protein folding: The energy landscape perspective. Annu Rev Phys Chem. 1997, 48: 545-600. 10.1146/annurev.physchem.48.1.545
Article
PubMed
CAS
Google Scholar
Goldstein RA, Luthey-Schulten ZA, Wolynes PG: Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc Natl Acad Sci USA. 1992, 89: 9029-9033. 10.1073/pnas.89.19.9029
Article
PubMed
CAS
PubMed Central
Google Scholar
Levitt M: Molecular dynamics of native protein. II. Analysis and nature of motion. J Mol Biol. 1983, 168: 621-657. 10.1016/S0022-2836(83)80306-4
Article
PubMed
CAS
Google Scholar
Rooman MJ, Rodriguez J, Wodak SJ: Automatic definition of recurrent local structure motifs in proteins. J Mol Biol. 1990, 213: 327-336. 10.1016/S0022-2836(05)80194-9
Article
PubMed
CAS
Google Scholar
Crippen GM: Easily searched protein folding potentials. J Mol Biol. 1996, 260: 467-475. 10.1006/jmbi.1996.0414
Article
PubMed
CAS
Google Scholar
Havel TF: The sampling properties of some distance geometry algorithms applied to unconstrained polypeptide chains: a study of 1830 independently computed conformations. Biopolymers. 1990, 29: 1565-1585. 10.1002/bip.360291207
Article
PubMed
CAS
Google Scholar
Russell A, Torda AE: Protein sequence threading – averaging over structures. Proteins. 2002, 47: 496-505. 10.1002/prot.10088
Article
PubMed
CAS
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389
Article
PubMed
CAS
PubMed Central
Google Scholar
Attwood TK, Blythe MJ, Flower DR, Gaulton A, Mabey JE, Maudling N, McGregor L, Mitchell AL, Moulton G, Paine K, Scordis P: PRINTS and PRINTS-S shed light on protein ancestry. Nucl Acids Res. 2002, 30: 239-241. 10.1093/nar/30.1.239
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu J, Rost B: Domains, motifs and clusters in the protein universe. Curr Opin Chem Biol. 2003, 7: 5-11. 10.1016/S1367-5931(02)00003-0
Article
PubMed
CAS
Google Scholar
Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P: PROSITE: A documented database using patterns and profiles as motif descriptors. Brief Bioinform. 2002, 3: 265-274. 10.1093/bib/3.3.265
Article
PubMed
CAS
Google Scholar
Salami: Protein structure similarity searches based on classification probability vectors. http://www.zbh.uni-hamburg.de/salami
Guyon F, Camproux AC, Hochez J, Tuffery P: SA-Search: a web tool for protein structure mining based on a Structural Alphabet. Nucl Acids Res. 2004, 32: W545-W548. 10.1093/nar/gkh467
Article
PubMed
CAS
PubMed Central
Google Scholar
Koehl P: Protein structure similarities. Curr Opin Struct Biol. 2001, 11: 348-353. 10.1016/S0959-440X(00)00214-1
Article
PubMed
CAS
Google Scholar
Levine M, Stuart D, Williams J: A Method for the Systematic Comparison of the 3-Dimensional Structures of Proteins and Some Results. Acta Cryst A. 1984, 40: 600-610. 10.1107/S0108767384001239.
Article
Google Scholar
Martinez L, Andreani R, Martinez JM: Convergent algorithms for protein structural alignment. BMC Bioinformatics. 2007, 8: 306- 10.1186/1471-2105-8-306
Article
PubMed
PubMed Central
Google Scholar
Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D: Design of a novel globular protein fold with atomic level accuracy. Science. 2003, 302: 1364-1368. 10.1126/science.1089427
Article
PubMed
CAS
Google Scholar
Song HK, Lee KN, Kwon KS, Yu MH, Suh SW: Crystal structure of an uncleaved alpha 1-antitrypsin reveals the conformation of its inhibitory reactive loop. FEBS Lett. 1995, 377: 150-154. 10.1016/0014-5793(95)01331-8
Article
PubMed
CAS
Google Scholar
Wilmot CM, Thornton JM: Analysis and Prediction of the Different Types of β-Turn in Proteins. J Mol Biol. 1988, 203: 221-232. 10.1016/0022-2836(88)90103-9
Article
PubMed
CAS
Google Scholar
Wilmot CM, Thornton JM: β-Turns and their distortions: a proposed new nomenclature. Protein Eng. 1990, 3: 479-493. 10.1093/protein/3.6.479
Article
PubMed
CAS
Google Scholar
Shindyalov IN, Bourne PE: A database and tools for 3-D protein structure comparison and alignment using the Combinatorial Extension (CE) algorithm. Nucl Acids Res. 2001, 29: 228-229. 10.1093/nar/29.1.228
Article
PubMed
CAS
PubMed Central
Google Scholar
Ma L, Jorgensen AMM, Sorensen GO, Ulstrup J, Led JJ: Elucidation of the Paramagnetic R1 Relaxation of Heteronuclei and Protons in Cu(II) Plastocyanin from Anabaena variabilis. J Am Chem Soc. 2000, 122: 9473-9485. 10.1021/ja001368z.
Article
CAS
Google Scholar
Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ: The copper-iron connection in biology: Structure of the metallo-oxidase Fet3p. Proc Natl Acad Sci USA. 2005, 102: 15459-15464. 10.1073/pnas.0506227102
Article
PubMed
CAS
PubMed Central
Google Scholar
Holm L, Sander C: Mapping the protein universe. Science. 1996, 273: 595-602. 10.1126/science.273.5275.595
Article
PubMed
CAS
Google Scholar
Ewens WJ, Grant GR: Statistical methods in bioinformatics. 2001, New York: Springer-Verlag
Book
Google Scholar
Jukes TH, Cantor CR: Evolution of protein molecules. Mammalian protein metabolism. Edited by: Munro HN. 1969, 21-123. New York: Academic Press
Chapter
Google Scholar
Camproux AC, Gautier R, Tuffery P: A hidden Markov model derived structural alphabet for proteins. J Mol Biol. 2004, 339: 591-605. 10.1016/j.jmb.2004.04.005
Article
PubMed
CAS
Google Scholar
Camproux AC, Tuffery P, Buffat L, Andre C, Boisvieux JF, Hazout S: Analyzing patterns between regular secondary structures using short structural building blocks defined by a hidden Markov model. Theor Chem Account. 1999, 101: 33-40.
Article
CAS
Google Scholar
Dong QW, Wang XL, Lin L: Methods for optimizing the structure alphabet sequences of proteins. Comput Biol Med. 2007, 37: 1610-1616. 10.1016/j.compbiomed.2007.03.002
Article
PubMed
CAS
Google Scholar
Simons KT, Kooperberg C, Huang E, Baker D: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997, 268: 209-225. 10.1006/jmbi.1997.0959
Article
PubMed
CAS
Google Scholar
Tendulkar AV, Ogunnaike B, Wangikar PP: Protein local conformations arise from a mixture of Gaussian distributions. J Biosci. 2007, 32: 899-908. 10.1007/s12038-007-0090-4
Article
PubMed
CAS
Google Scholar
Wurst. http://backpan.perl.org/authors/id/W/WU/WURST/
Kraulis PJ: MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr. 1991, 24: 946-950. 10.1107/S0021889891004399.
Article
Google Scholar